
Journal of Software Engineering Research and Development, 2022, 10:6, doi: 10.5753/jserd.2021.1903
 This work is licensed under a Creative Commons Attribution 4.0 International License..

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in
Search-based Product Line Architecture Design
Tiago Tadeu Madrigar  [Universidade Estadual de Maringá | tiago@madrigar.com.br]
Thelma Elita Colanzi  [Universidade Estadual de Maringá | thelma@din.uem.br]
Willian Nalepa Oizumi [Pontifícia Universidade Católica Rio de Janeiro | woizumi@inf.puc-rio.br
]
Luiz Fernando Okada  [Universidade Estadual de Maringá | ra107247@uem.br]
Alessandro Garcia  [Pontifícia Universidade Católica do Rio de Janeiro | afgarcia@inf.puc-rio.br
]

Abstract Search-based algorithms have been successfully employed in Product Line Architecture (PLA)
design in the seminal approach named Multi-Objective Approach for Product-Line Architecture Design
(MOA4PLA). This approach generates a set of alternative PLA designs, which optimize different ar-
chitectural properties. In addition to these properties, the alternative PLA designs should have as few
architectural smells as possible. Architectural smells can negatively impact PLA variability, PLA ex-
tensibility, SPL maintainability, and other non-functional attributes. However, one of the main findings
of a previous study is that the tool that automates the application of MOA4PLA adversely introduces
architectural smells in the automatically generated solutions. In this work, we present OPLA-Tool-ASP,
which is a tool that implements guidelines to detect and prevent the architectural smells Unused Inter-
face, Unused Brick, Concern Overload, and Link Overload in the context of MOA4PLA. An empirical
study was carried out to assess the effectiveness of OPLA-Tool-ASP in preventing the aforementioned
smells in the resulting PLA designs. The obtained results pointed out that the proposed tool is effective
in both preventing the smells and improving the architectural properties selected for optimization.

Keywords: Software Product Lines, Architectural Smells, Search-based Software Engineering.

 Published under the Creative Commons Attribution 4.0 International Public License (CC BY 4.0)

1 Introduction

Search-based algorithms have achieved satisfactory re-
sults to solve Software Engineering complex problems,
including some problems related to Software Product
Line (SPL) [21, 22, 26]. SPL Engineering aims to de-
velop a family of software products to a particular do-
main by means of reusable artifacts [25]. One of the
main artifacts of a SPL is the Product Line Architecture
(PLA), which defines a common design for all products
derived from the SPL [25]. PLA design is a high-effort
task since it is influenced by several factors, such as
feature modularity, PLA variability and extensibility. A
modular, extensible, legible PLA design eases the SPL
maintainability and evolution.

Given the complexity and variety of such influential
factors, the use of search-based algorithms have recently
been explored to derive PLA designs in the seminal ap-
proach named Multi-Objective Approach for Product-
Line Architecture Design (MOA4PLA) [9]. In this ap-
proach, software metrics are used in the objective func-
tions to guide the search process. Metrics provide indi-
cators to a wide range of architectural properties, such
as feature modularization, variability, PLA extensibility,
coupling, cohesion, design size and so on. Each solution
is evaluated and classified by the objective functions.
At the end of the search process, the search-based al-

gorithm returns a set of solutions for the PLA design
given as input. This set contains the solutions with the
best trade-off among the objectives optimized, which
represent different possible designs for that PLA design
given as input, hereafter called alternative design or de-
sign instance.

MOA4PLA concepts were automated by
OPLA-Tool [17], which produces a set of alterna-
tive PLA designs that improve the different optimized
factors from an initial PLA design, which depicts
the module view [6]. Empirical results point out that
OPLA-Tool successfully optimize the selected factors
in the generated alternative designs [5, 32, 36]. Besides
the optimization of these factors, the obtained PLA
designs should ideally have no architectural smell.
Architectural smells are problems due to architectural
design decisions, intentional or not, which negatively
impact the system quality [19]. An architectural
smell (or architectural problems) may harm not
only the PLA variability and extensibility, but also
other non-functional attributes, such as understand-
ability, testability, reusability, maintainability and
performance [18, 20].

Perissato et al. [35] carried out an exploratory investi-
gation about the presence of architectural smells in a set
of PLA designs obtained using OPLA-Tool. The results
revealed that OPLA-Tool adversely introduces some ar-

https://orcid.org/0000-0003-4244-0509
mailto:tiago@madrigar.com.br
https://orcid.org/0000-0001-9761-1999
mailto:thelma@din.uem.br
https://orcid.org/0000-0002-8956-5272
mailto:woizumi@inf.puc-rio.br
https://orcid.org/0000-0001-6871-7014
mailto:ra107247@uem.br
https://orcid.org/0000-0001-5788-5215
mailto:afgarcia@inf.puc-rio.br

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

chitectural smells in resulting designs. Furthermore, it
does not detect and remove the architectural smells ex-
isting in the original design given as input for the tool.
Perissato et al. [35] also identified the most common
architectural smells detected in the alternative design
generated by OPLA-Tool and proposed guidelines to
detect and prevent those architectural smells. However,
such guidelines were not applied and validated.

Existing approaches to identify architectural smells
usually are dependent on source code [24, 29, 34, 41].
However, the identification of these problems during the
PLA design would: (i) avoid that congenital smells are
propagated to the SPL implementation, and (ii) max-
imize non-functional quality attributes since the PLA
conception. Particularly, some quality attributes – e.g.,
reusability and maintainability – are extremely impor-
tant to SPL Engineering [25]. However, there is not
any approach to neither detect architectural smells nor
prevent their introduction in PLA design optimized by
search-based approaches [35]. In this sense, it is worth
investigating the presence of architectural smells in au-
tomatically generated PLA designs in order to avoid se-
vere smells are present in the initial design of a SPL.
Perissato et al.ťs guidelines are a starting point to
achieve this goal.

In this context, the main objective of this work is
contributing to the evolution of the PLA design op-
timization by means of a tool to detect and prevent
architectural smells during the search-based PLA de-
sign. For doing so, in this work we present a tool named
OPLA-Tool-ASP (Optimization for PLA Tool - Archi-
tectural Smells Prevention). This tool is an evolution of
OPLA-Tool that incorporates Perissato et al.ťs guide-
lines [35] to prevent architectural smells in PLA design
automatically generated, particularly those ones that
arise in the module view of the architectural design.
OPLA-Tool-ASP detects and prevents four smells that
are the most frequent in the design instances investi-
gated in [35]: Unused Interface [18], Unused Brick [18],
Concern Overload [18] and Link Overload [18]. It is im-
portant to prevent Unused Interface and Unused Brick
smells because they are the architectural smells ad-
versely introduced by OPLA-Tool in alternative designs.
Concern Overload and Link Overload negatively im-
pacts on modularity, extensibility and reusability, which
are architectural properties optimized by MOA4PLA.
A preliminary version of OPLA-Tool-ASP was intro-
duced in [28] encompassing the guidelines for the three
first architectural smells. In this work we extend our
tool including the guideline to prevent Link Over-
load and carry out another empirical evaluation of
OPLA-Tool-ASP.

To evaluate the results obtained by OPLA-Tool-ASP,
we performed an empirical study to compare
OPLA-Tool-ASP and OPLA-Tool [17] aiming at
answering the following research question RQ - Is
OPLA-Tool-ASP effective to detect and prevent
Unused Interface, Unused Brick, Concern Overload
and Link Overload?. Our study involved the PLA
design of three SPLs, one more than in our previ-

ous study [28]. The study encompassed 81 solutions
(alternative designs), being 23 solutions generated
by OPLA-Tool-ASP and 58 solutions obtained by
OPLA-Tool. Each solution was inspected searching
for the occurrence of the 4 architectural smells afore-
mentioned. A total of 1450 occurrences of smells were
detected in the alternative designs analyzed during the
study.

The main contribution of this work is the increment
of state of the art by providing a tool to detect and pre-
vent the architectural smells Unused Interface, Unused
Brick, Concern Overload and Link Overload in alterna-
tive PLA designs. Such a tool is useful for: (i) improv-
ing the resulting search-based PLA designs, or (ii) pre-
venting upfront the emergence of architectural smells in
PLA designs automatically obtained with search-based
approaches. Other contribution is the implementation
and application of the Perissato et al.ťs guidelines in
the alternative design generated from the original PLA
design of three SPLs.

The remaining of this paper is organized in sec-
tions. Section 2 presents the main concepts related to
our work as well as related work. Section 3 introduces
OPLA-Tool-ASP, a tool that apply guidelines to detect
and prevent architectural smells during the optimiza-
tion of PLA design using search algorithms. The design
of the empirical study is addressed in Section 4. Sec-
tion 5 presents the results, highlights our findings and
answers the research questions. Section 6 addresses the
main threats to the validity of our study. Finally, Sec-
tion 7 concludes the paper and points to future work.

2 Background

In this section, we present the main concepts related to
this work.

2.1 Search-based Software Engineering

In the Search-based Software Engineering (SBSE)
field [22], Software Engineering problems are formulated
as optimization problems, with the goal of minimizing
or maximizing a function or a group of factors through
search techniques. As a result, it is expected to reach
(quasi-)optimal solutions. In a SBSE approach, there
are usually two main aspects: a search space that con-
tains all possible solutions for the problem; and a fitness
function, which is responsible for evaluating the quality
of the solutions [22].

Genetic algorithms are among the most used SBSE
techniques. A Genetic Algorithm (GA) [7] is a meta-
heuristic inspired by natural selection and genetic evolu-
tion theory. Starting from an initial population – which
in our case are alternatives for the PLA design – search
operators are applied to evolve the population through-
out multiple generations. The selection operator is re-
sponsible for selecting solutions that present the best
fitness values to survive as parents for the next gen-
eration. The crossover operator combines parts of two

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

parent solutions to create a new one. Finally, the mu-
tation operator randomly changes a solution. The off-
spring population created from the selection, crossover,
and mutation replaces the parent population.

Some GAs are adapted for optimizing multi-objective
problems. Such GAs are called Multi-Objective Evolu-
tionary Algorithms (MOEAs). The most popular and
largely applied MOEA is the Non-dominated Sorting
Genetic Algorithm (NSGA-II) [11]. A multi-objective
problem depends on multiple factors (objectives) that
may be conflicting and, therefore, there is not a sin-
gle possible solution. Therefore, there may be multiple
(quasi-)optimal solutions that represent the trade-off be-
tween the different objectives. Such solutions are called
non-dominated solutions and form the Pareto front [7].

2.2 PLA Design Optimization

Colanzi et al. [9] proposed the MOA4PLA approach,
which automates the search for the best PLA designs
using MOEAs. MOA4PLA receives as input a PLA de-
sign modeled on a UML class diagram containing all
the common and variable architectural elements. Such
an input contains a detailed design, equivalent to the
module view [6], including the classes and interfaces
structure. Stereotypes are used to associate each ele-
ment with the features they perform. The SPL architect
must then choose which MOEA to use in the optimiza-
tion process as well as the execution parameters. The
design received as input is optimized through the search
operators defined by MOA4PLA. These operators per-
form basic movements of the GAs which are the follow-
ing: crossover operators for existing individuals and mu-
tation operators for newly generated individuals. The
approach includes specific mutation operators for PLA
designs, which are: Move Method, Move Attribute, Add
Class, Move Operation, Add Component, and Feature-
driven Operator [9]. The latter aims to improve the
modularization of interlaced and scattered features in
architectural elements. MOA4PLA also has crossover
operators specific for PLA design optimization [36].

The MOA4PLA approach employs an evaluation
model proposed for PLA designs [38]. Such a model
provides a set of objective (fitness) functions based on
software metrics. The metrics are related to multiple ar-
chitectural properties, such as feature modularization,
variability, cohesion, and coupling, which are related to
structural quality attributes, such as modularity, exten-
sibility, understandability and changeability [38]. Other
quality attributes, such as availability, security or scala-
bility can only be addressed using the component view,
which is not addressed by MOA4PLA.

MOA4PLA requires the architects to select the sub-
set of objective functions that they want to optimize.
The value of the objective functions defines the fitness
of each design alternative obtained during the optimiza-
tion process. The quality of each alternative design is
evaluated according to its fitness, which is directly re-
lated to the objectives selected by the architects from
the evaluation model. In this study, three objective

functions were selected, namely: COE, ACLASS and
FM [36, 38]. In what follows, we present the equations
of the three objective functions used in our experiments.

The COE objective function evaluates the cohesion of
PLA design in terms of the internal relationship of the
classes of the PLA design, measured by the H metric
(Equation 1). ACLASS measures class coupling by the
number of architectural elements that depend on other
classes of the design (CDepIn), added to the number
of elements on which each class depends (CDepOut)
according to Equation 2. In the case of Equations 1 and
2, c is the number of classes.

COE(pla) = 1∑c
i=1 H

(1)

ACLASS(pla) =
c∑

i=1
CDepIn +

c∑
i=1

CDepOut (2)

FM deals with the modularization of a PLA in terms
of its features. It evaluates the feature modularization of
the PLA design, which is formed by metrics specific to
SPL features [33] according to Equation 3, where given a
PLA design pla, c is the number of components and f is
the number of its features. FM provides an indicator for
feature modularization based on the sum of the metrics
for feature scattering (CDAC, CDAO, CDAI), feature
interlacing (CIBC, IIBC, OOBC) and feature-driven
cohesion (LCC) [38].

FM(pla) =
c∑

i=1
LCC +

f∑
i=1

CDAC +
f∑

i=1
CDAI

+
f∑

i=1
CDAO +

f∑
i=1

CIBC +
f∑

i=1
IIBC

+
f∑

i=1
OOBC

(3)

All objective functions were conceived to be mini-
mized during the search process. This means that the
algorithms employed should search to maximize each
function’s minimization as an objective.

After the search process, MOA4PLA returns a set
with the best trade-off alternative designs among the
optimized objectives. The architects must choose one
of the solutions obtained according to their priorities to
adopt as a PLA design.

OPLA-Tool [13, 17] is a tool that automates the appli-
cation of the MOA4PLA approach. Such a tool allows
the selection of objective functions, search operators,
and MOEAs. NSGA-II is among the MOEAs provided
by the OPLA-Tool. Besides that, the OPLA-Tool also
provides a visualization mechanism for PLA alternative
designs.

As the main objective of MOA4PLA is the optimiza-
tion of PLA designs, aiming to maximize quality at-
tributes such as reusability, extensibility and maintain-
ability, it is desirable that the generated design solutions

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

are free from architectural smells – which can directly
affect the aforementioned attributes. However, existing
versions of the OPLA-Tool do not prevent architectural
smells.

2.3 Identification of Architectural Smells in
PLA Design

Architectural smells are problems arising from architec-
tural design decisions that negatively affect the qual-
ity of the system [19]. The existence of architectural
smells can negatively impact quality attributes, such as
comprehension, testability, extensibility and reusability
[16, 18]. After performing a systematic mapping of the
literature, we identified that there are no tools for the
prevention of architectural smells in PLA designs opti-
mized by SBSE techniques.

Four architectural smells were initially selected to be
investigated in this work, namely: Unused Interface, Un-
used Brick, Concern Overload and Link Overload. We
selected such smells because they were identified as the
most frequent in the 24 PLA design instances generated
by OPLA-Tool analyzed in [35]. See the description of
each smell in Table 1.

Table 1 presents the identification strategies used in
the previous study [35] as well as the proposed guide-
lines for preventing such smells in the solutions gen-
erated by OPLA-Tool. However, none of the proposed
guidelines has been previously implemented.

The proposal of Perissato et al. [35] for preventing
Unused Interface and Unused Brick was to discard so-
lutions that contained such smells, avoiding their prop-
agation between the solutions generated during the op-
timization process. For Concern Overload, we proposed
the application of the Feature-driven Operator, which
provides the modularization of some of the features as-
sociated with the smelly class/interface to solve or mit-
igate the manifestation of the smell.

Regarding the Link Overload smell, in our previous
work we identified several false positives when using
the detection strategy proposed by Garcia [18]. That
happened because inheritance relationships, which are
commonly used to resolve SPL variabilities, are consid-
ered as regular dependencies for detecting Link Over-
load [35]. Thus, we suggested to changing the identifica-
tion strategy to not consider inheritance relationships
when detecting Link Overload in SPL. Moreover, we
pointed out the application of a penalty to the solution
fitness as a guideline for preventing such a smell [35].

2.4 Related Work
In this section we present and discuss the papers that
are related to this work. We organized the discussed
papers into the following categories: (1) identification of
architectural smells and (2) architectural smells in SPLs,
and (3) SBSE approaches for identifying and removing
smells.

Identification of architectural smells. In order to find
studies that propose strategies for the detection and

identification of architectural smells, we conducted a
systematic literature mapping. After applying inclusion
and exclusion criteria, 30 papers were approved. Below,
present and discuss the most relevant ones.

Fowler [15] and Garcia [18] provided catalogs of code
smells and architectural smells, respectively. Azadi et
al. [3] also proposed a catalog of architectural smells.
Their catalog was based on the types of smells that
are automatically detected by existing tools. Finally,
Mo et al. [31] proposed and evaluated a suite of au-
tomatically detectable architectural smells that occur
in large-scale systems. Their results provided evidence
that the proposed smells significantly impact files bug-
proneness and change-proneness. However, none of the
aforementioned catalogs were designed and evaluated in
the context of PLA design.

Macia et al. [27] investigated how code smells could be
related to architectural smells. The authors presented a
set of detection strategies based on metrics focused on
architecture. Vidal et al. [39] also addressed how code
smells can affect the system’s architecture. The authors
implemented a set of three scoring criteria to prioritize
code smells, reducing the number of locations that possi-
bly contained problems, helping developers in the iden-
tification process. The authors’ strategies were based
on the identification of multiple correlated code smells.
However, none of the aforementioned studies focused on
the identification of architectural smells in PLA design.

Architectural smells in SPLs. Perissato et al. [35]
investigated which architectural smells are more fre-
quent in PLA design solutions generated by OPLA-Tool.
Based on this investigation, they proposed guidelines
for the identification and prevention of the most fre-
quent architectural smells. Although their work focused
on PLA design, none of their proposed guidelines was
evaluated.

SBSE approaches for identifying and removing smells.
The work of Mansoor et al. [29] addressed the detec-
tion of code smells using multi-objective evolutionary
algorithms. The authors applied a set of metrics using
the NSGA-II algorithm. They followed the guidelines of
Harman et al. [22], which recommend the use of genetic
operators focused on the problem to obtain the best per-
formance. However, the authors did not provide an au-
tomated tool for the proposed strategies. Besides, their
approach is neither specific for SPL nor architectural
smells. Mariani and Vergilio [30] conducted a system-
atic review to provide an overview on existing search-
based refactoring approaches. Their results show that
most approaches are focused on removing code smells
through source code refactoring. Our work, on the other
hand, is focused in preventing the occurrence of archi-
tectural smells during the optimization of PLA design.

As discussed above, there is no tool that is able to
detect and remove architectural smells from optimized
PLA design solutions. Thus, in our previous work [28],
we addressed this gap through the proposal and evalua-
tion of a tool called OPLA-Tool-ASP. The first version
of our tool applied the guidelines proposed in [35] to pre-
vent the Unused Interface, Unused Brick and Concern

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

Overload smells. In comparison with the original version
of OPLA-Tool [13], OPLA-Tool-ASP presented promis-
ing results for the three smells during the optimization
of the PLA designs of two academic SPLs. Furthermore,
another finding of our previous study is that the strat-
egy to detect the Link Overload smell proposed in [18]
need to be adapted to the SPL context. The threshold to
detect Link Overload proposed by Garcia [18] count the
inheritance relationships. However, inheritance is highly
used to design variabilities in SPL Engineering, i.e. the
variation point is modeled in a super class connected
to the variants modeled in subclasses. Thus, counting
inheritance implies in several false positives.

In this work, we extend the original version of
OPLA-Tool-ASP to include the prevention of the Link
Overload smell using the findings of our previous
work [28]. Furthermore, we performed a new empirical
study to evaluate the effectiveness of OPLA-Tool-ASP
in preventing architectural smells during the PLA de-
sign optimization. In addition to the two academic SPL,
we include a real-world SPL in the scope of the empirical
study. We present details about the design and imple-
mentation of OPLA-Tool-ASP in the next section.

3 OPLA-Tool-ASP
This section presents OPLA-Tool-ASP – a tool pro-
posed as an evolution of the OPLA-Tool with the addi-
tion of functionalities related to the detection and pre-
vention of the introduction of architectural smells dur-
ing the optimization of PLA design. Besides the original
functionalities of OPLA-Tool, OPLA-Tool-ASP imple-
ments the guidelines, proposed by Perissato et al. [35],
for the detection and prevention of the most frequent
smells in optimized PLA designs, which are: Unused
Interface, Unused Brick, Concern Overload, and Link
Overload. Table 1 presents the definition of each of the
aforementioned architectural smells.

To automate each of the smell prevention guidelines,
we created a new version of the NSGA-II algorithm
– called NSGAIIASP. This new implementation ad-
dresses the rules and constraints related to architectural
smells. We also created a new fitness evaluation method
to deal with the prevention of Link Overload smell. The
next subsections present details about the prevention of
each smell type in the OPLA-Tool-ASP 1.

3.1 Prevention of Unused Interface and Un-
used Brick

Since an Unused Brick smell is a consequence of an Un-
used Interface smell, by preventing the latter we will
also prevent the former. Following the strategy to iden-
tify both smells (Table 1), we included a constraint
to consider invalid any solution that contains inter-
faces or classes without any relationship with other ele-
ments. For implementing such a constraint, we created a

1The experimental package is available at
https://github.com/otimizes/opla-tool-asp.

method called isValidSolution, which is executed when-
ever a new solution is created and returns false when
an isolated interface is identified.

The isValidSolution method is called in the loop in
which the crossover and mutation operators are applied
to generate offspring populations, as shown in lines 8
and 11 of Algorithm 1.

This method is also called during the creation of the
initial population. Thus, none of the generated popula-
tions will contain solutions with the occurrence of Un-
used Interface and Unused Brick, as invalid solutions
are not added to the new populations. Discarding in-
valid solutions is justified by the difficulty in correctly
repairing a solution, as it is not straightforward to dis-
cover to which elements an isolated interface should be
linked.

3.2 Prevention of Concern Overload

For detecting the Concern Overload smell, we imple-
mented a method called detectCO, which is partially
presented in Algorithm 2. As suggested in the detection
strategy for Concern Overload (Table 1), all features as-
sociated with PLA classes and interfaces are considered
as concerns in our implementation.

Lines 6 to 11 of Algorithm 2 are responsible for the
detection of Concern Overload in the PLA classes. To
achieve this goal, there is a loop that verifies whether
the number of features associated with a given class
is higher than the threshold, returning true when the
condition is met. The same procedure is performed for
the PLA interfaces between lines 12 and 17.

The detectCO method also calculates the threshold
that is used to identify whether a class/interface is
smelly or not. The threshold is the average number of
concerns in elements of the PLA plus the standard devi-
ation [18]. We omitted this part of the implementation
from Algorithm 2 for the sake of simplicity.

The detectCO method was implemented in the
PLAFeatureMutation class, which is responsible for im-
plementing the MOA4PLA mutation operators. Among
the implemented mutation operators there is the
Feature-driven Operator, which provides the modular-
ization of features and, as a consequence, can help to
decrease the occurrence of Concern Overload.

As suggested in [35], the detectCO method is exe-
cuted before selecting which mutation operator to ap-
ply. If the presence of Concern Overload is detected,
the Feature-driven Operator is selected for application.
Otherwise, the optimization returns to its normal flow,
randomly selecting any mutation operator.

In the case of Concern Overload, we decided to try
to repair the smelly solution instead of discarding it.
We took this decision because there is a mutation op-
erator that aims to improve the feature modularization,
which can directly impact the occurrence of Concern
Overload.

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

Algorithm 1: Generation of the child population in NSGA-II
1 for i=0;i<(populationSize/2);i++ do
2 parentes[0]=(Solution)selectionOperator.execute (population);
3 parentes[1]=(Solution)selectionOperator.execute (population);
4 Object Execute=CrossoverOperator.execute (population);
5 if (execute instanceof Solution) then
6 Solution offSpring=(Solution) crossoverOperator.execute(parents);
7 if (is ValidSolution((Architecture) offSpring.getDecisionVariable()[0])) then
8 problem_.evaluateConstrains(offSpring);
9 mutationOperator.execute(offSpring);

10 if (is ValidSolution((Architecture) offSpring.getDecisionVariable()[0])) then
11 problem_.evaluateConstrains(offSpring);
12 problem_.evaluate(offSpring);
13 offspringPopupulation.add(offSpring);
14 end
15 end
16 end
17 end

Algorithm 2: Partial view of the implementation for the detectCO method
1 public boolean detectCO(Solution solution) throws JMException{
2 final Architecture arch = ((Architecture)solution.getDecisionVariables()[0]);
3 final List< P ackage >allPackage = new ArrayyList< P ackage >(arch.getAllPackages());
4 if (!allPackage.isEmpty()) then
5 for Package selectedPackage: AllPackage do
6 List < Class >lstClass = new ArrayList<>(selectedPackage.getAllClasses());
7 for Class selectedClass: lstClass do
8 List< Concern >lstConcerrn = =new ArrayList<>(selectedClass. getOwnConcerns());
9 if (lstConcern.size()>threshold) then

10 return true;
11 end
12 List < Interface >lstInterface = new ArrayList<>(selectedPackage.
13 getAllINterfaces());
14 for Interface selectedInterface: lstInterface do
15 List< Concern >lstConcerrn = =new ArrayList<>(selectedInterface.
16 getOwnConcerns());
17 if (lstConcern.size()>threshold) then
18 return true;
19 end
20 end
21 end
22 end
23 end

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

3.3 Prevention of Link Overload

To detect Link Overload, Garcia [18] proposed an al-
gorithm to define the threshold for each type of link.
We considered as links the following relationships in-
volving classes and interfaces: dependency, association,
abstraction and realization. The definition of the thresh-
old for each link type is based on the average number
of links plus a standard deviation. The threshold is de-
fined separately for each directionality (input, output
or bidirectional).

Based on the results of our previous work [28] (see
Section 2.4), we conducted a quantitative analysis to
validate the guideline proposed by Perissato et al. [35]
for Link Overload. We verified that the inheritance re-
lationship between classes should not be considered in
the detection of Link Overload, as this relationship is
commonly used in PLA designs to model the variations
of each variability. Thus, including such a relationship
in the context of a SPL would result in false positives.

The first step for detecting Link Overload in our new
implementation is early discovering and classifying re-
lationships according to their directionality (input, out-
put or bidirectional).

The dependency relationship is a relationship in
which one element (the customer) depends on another
element (the supplier). The realization relationship is
a relationship between two elements, in which one el-
ement (the customer) performs the behavior that the
other element (the supplier) specifies. The abstraction
relationship is generally defined as a relationship be-
tween customer(s) and supplier(s) in which the cus-
tomer (source subset) depends on the supplier (desti-
nation subset). The association relationship describes a
link between classes. Through the multiplicity of the as-
sociation, it is possible to determine that the instances
of one class are linked to the instances of the other class.

For all types of relationships, the properties of the
architectural elements were observed, since some ele-
ments had the same identification as the relationship
with classes and interfaces. To determine the direction-
ality of the relationship, first, the directionless relation-
ships were considered to be bidirectional. Next, incom-
ing links were considered for customers who had an iden-
tifier (id) equal to the relationship id. The remaining
relationships that had a different id to that of the archi-
tectural element were considered outbound links. After
counting all the relationships of each class and inter-
face, we followed the formula indicated by Garcia [18]
to specify the threshold for each directionality.

Once the thresholds has been calculated, the guide-
line proposed by Perissato et al. [35] recommends ap-
plying a penalty on the fitness of the solution, so that
it is worse evaluated in the process of selecting the best
designs to remain in the optimization process. Penaliza-
tion is one of the strategies for treating invalid solutions
in SBSE. In the case of Link Overload it is not feasi-
ble to change relationships to repair the smell. On the
other hand, discarding such solutions could lead to loss
of diversity in the population. Thus, the penalty makes

it difficult for the solution to survive, but even if it sur-
vives it can be repaired by search operators in future
generations.

The next step to implement the Link Overload de-
tection was to create a new fitness evaluation method.
This new method is based on an existing method called
evaluate, which already existed in the OPLA-Tool im-
plementation. The evaluate method calculates the fit-
ness of the solution and stores it in a list. The differ-
ence of our new implementation is that it also verifies
which are the solutions that exceed the Link Overload
threshold and applies a penalty for these solutions. Al-
gorithm 3 presents the partial view of the new method,
which is called evaluateLinkOverload, with respect to
the fitness penalization. Some parts of the method were
hidden due to simplicity.

The new fitness evaluation method, presented in Al-
gorithm 3, called evaluateLinkOverload, initially checks
which objective functions were selected for optimization
(stored in the selectedMetrics variable), then a loop runs
through the entire list of solutions (line 3) to penalize
the solutions that exceeded the threshold (Table 3). The
value of the penalty by objective function is calculated
in line 7, which is the current fitness value multiplied by
1000. This value was empirically defined. The new fit-
ness value is defined in line 8, where the current fitness
value is added to the weight multiplied by the num-
ber of smell violations (returned by the getExceedLink
method). The objective function evaluateLinkOverload,
is executed after the application of the crossover and
mutation operators of the NSGA-II algorithm. In this
sense, penalties are applied for all solutions that exceed
the threshold in the same proportion of the smelly ele-
ments (classes and interfaces).

4 Empirical Study Definition

The goal of our empirical study, following the GQM
approach [4], is: Analyze the automatically generated
PLA design solutions for the purpose of evaluating with
respect to the effectiveness of OPLA-Tool-ASP in pre-
venting the architectural smells: Unused Interface, Un-
used Brick, Concern Overload and Link Overload from
the point of view of the architect in the context of the
search-based PLA design. To accomplish such a goal,
we defined the following question:

RQ - Is OPLA-Tool-ASP effective to detect and pre-
vent Unused Interface, Unused Brick, Concern Overload
and Link Overload?.

To answer the RQ, we used three metrics: (i) the
fitness of the solutions (alternative designs) generated
by OPLA-Tool and OPLA-Tool-ASP, composed by the
three objective functions which are explained below, (ii)
the number of occurrences of architectural smells in the
alternative designs, and (iii) the number of smelly ar-
chitectural elements.

Subject PLA Designs. Three PLA designs were used
in the empírical study: Arcade Game Maker (AGM) [37],
Mobile Media (MM) [10] and BET [12]. AGM was cre-

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

Algorithm 3: Partial view of the implementation for the evaluateLinkOverload method
1 public void evaluateLinkOverload(Solution solution)
2 List< F itness > fitnesses = new ArrayList<>();
3 for (String selectedMetric : selectedMetrics) do
4 ObjectiveFunctions metric = ObjectiveFunctions.valueOf(selectedMetric);
5 fitnesses.add(new Fitness(metric.evaluate((Architecture) solution.getDecisionVariables()[0])));
6 for (int i = 0; i ≤ fitnesses.size(); i++) do
7 double weight = fitnesses.get(i).getValue()*1000;
8 solution.setObjective(i, fitnesses.get(i).getValue() + (weigth * ((Architecture)solution.

getDecisionVariables()[0]).getExceedLink()));
9 end

10 end

ated by the Software Engineering Institute (SEI). It is
composed of three arcade games: Brickles, Bowling and
Pong. MM is a mobile application composed of features
that handle with music, video, and photo for portable
devices [42]. BET [12] is a SPL for public transport bus
service management. It offers features such as the use
of an electronic card for transport payment, automatic
tollgate opening, and unified traveling payment. Table 2
presents the architectural elements numbers of the PLA
designs.

Experiment Configuration. The study encom-
passes two experiments, named OPLA-Tool and
OPLA-Tool-ASP. The first experiment is the baseline
because it uses the current version of OPLA-Tool [17]
to optimize PLA designs, which does not apply any
guidelines to prevent architectural smells. In the
second experiment, the PLA designs were optimized by
OPLA-Tool-ASP, which contains guidelines to identify
and prevent the four aforementioned smells.

Search-Based Algorithm and Parameter Settings.
Both experiments (OPLA-Tool and OPLA-Tool-ASP)
used NSGA-II [11]. We chose NSGA-II because it has
been successfully used in many previous works [8]. We
used the same parameter settings for both experiments
for all PLA designs. NSGA-II was set with a population
size of 100 individuals and 30,000 fitness evaluations
(300 generations), which was the stopping criterion. The
objective functions were: Relational Cohesion (COE),
Class Coupling (ACLASS) and Feature Modularization
(FM) [38]. All mutation operators were applied under
the mutation rate equal to 0.8. The crossover opera-
tors called Feature-Driven Crossover [36] and Comple-
mentary Crossover [36] were applied with a crossover
rate of 0.4. This parameter setting is the same adopted
in [36], after an experimental parameter calibration of
OPLA-Tool with the goal of identifying the best config-
uration for its parameters. We executed 30 independent
runs for each PLA design, as recommended by Arcuri
and Fraser in [2].

Architectural Smells Screening. The threshold values
were obtained by applying the detection strategy of
each architectural smell, presented in Table 1, over the
original PLA designs provided as input to both tools.
So, the same threshold values were used to verify each
non-dominated solution. Table 3 presents the thresh-
old values adopted for each architectural smell defined
according to the detection strategies presented in Ta-

ble 1. These threshold values were used by both tools
during the optimization process in order to prevent the
architectural smells manifestation. We decided to use
the original PLA design as a baseline because: (i) it is
expected that during the optimization process the ob-
tained solutions will be better than the original design,
so this one would be the worst case, and (ii) calculat-
ing the threshold for each obtained solution represents
additional computational cost what impacts on the run-
time.

Fractional numbers resulting from the threshold cal-
culus have been rounded up. None threshold was defined
for Unused Interface and Unused Brick since the original
designs did not contain occurrences of these smells. So,
every occurrence of these smells detected in the design
was marked as a smelly element.

After the 30 runs of each experiment for the three
PLA designs, we selected the non-dominated solutions
generated by OPLA-Tool and OPLA-Tool-ASP. Then,
each non-dominated solution was inspected in order to
identify the remaining architectural smells. To do so,
the first author visually inspected the 81 non-dominated
PLA designs generated by both tools observing and
counting the manifestation of Unused Interface and Un-
used Brick. Such an inspection had the goal of certi-
fying that both tools did not generate solutions with
these smells. The number of occurrences of the Concern
Overload, Large Class and Link Overload smells were
counted automatically. The automation of this process
was validated before the studyťs conduction. During the
architectural smells screening after the execution of the
experiments, the threshold values presented in Table 3
were also considered.

Analysis of the Experiment Results. The results ob-
tained by both experiments were compared in terms of
number of the occurrences of architectural smells, fit-
ness values and analysis of the excerpts of the design
that contain smelly elements.

5 Results and Analysis

Table 4 presents the number of non-dominated solutions
found by both experiments in the context of our empir-
ical study. A total of 81 non-dominated solutions were
found after 30 independent runs for the three PLA de-
signs. OPLA-Tool-ASP generated fewer solutions than

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

OPLA-Tool. The entire set of non-dominated solutions
is used in the analysis presented in the next sections.

5.1 Fitness of the Generated Solutions

Figures 1, 2 and 3 present the solutions on the search
space, considering their fitness values, for AGM, MM
and BET, respectively. For all figures, the blue line
represents solutions found by OPLA-Tool, the red line
represents solutions found by OPLA-Tool-ASP and the
original design is depicted in green. For all graphs, the
objective function FM (Feature Modularization) is pre-
sented in the Y axis. The function COE (Relational Co-
hesion) is presented in the X axis of the graph on the
left whereas the function ACLASS (Class Coupling) is
in the X axis of the graph on the right.

These graphs allow the comparison among the fit-
ness values of the solutions generated by OPLA-Tool
and OPLA-Tool-ASP and the original PLA design. The
lower the values, the better the results, since we want
to minimize all objective functions. It is possible to no-
tice that the solutions found by OPLA-Tool-ASP and
OPLA-Tool are better than their respective original de-
sign with respect to FM function. Hence, all obtained
solutions have better feature modularization than the
original design.

With regards to cohesion (COE function), the entire
set of solutions found by OPLA-Tool-ASP for AGM and
MM has better values of cohesion than the original de-
sign as can be seen in the graphs on the left side of
Figures 1 and 2. The majority of solutions found by
OPLA-Tool for AGM and MM has also better cohesion
than the original design (100% of solutions for AGM
and 90% of solutions for MM).

On the other hand, 40% of solutions found for AGM
and 50% of solutions found for MM by both experiments
has worse class coupling (ACLASS function), as can be
seen in the graphs on the right side. However, there are
solutions with better coupling than the original design.
Particularly, 57.5% of solutions found by OPLA-Tool
have better coupling than the original design for AGM
and MM.

Considering the BET PLA design, all solutions gener-
ated by OPLA-Tool-ASP and OPLA-Tool have better
coupling than the original design (Figure 3). Conversely,
only 4 (out 19) solutions found by OPLA-Tool have
lower values of COE than the original design. None so-
lution generated by OPLA-Tool-ASP has better value
of COE than the original one. Hence, it is clear that
coupling and cohesion are measured by conflicting ob-
jective functions, i.e., when the values of COE increase,
often the values of ACLASS decrease and vice-versa.
The parallel coordinate graphs depicted in Figures 4, 5
and 6 support this finding. In these graphs, each objec-
tive function is represented by a coordinate and each
line represents a solution. For instance, the red line in
Figure 4a depicts one solution whose fitness values are
COE= 15, ACLASS=7 and FM=270. Another exam-
ple is the solution represented by the yellow line in Fig-
ure 6a that has the following fitness values: COE=203,

ACLASS=21 and FM= 825.
Another interesting observation is that the maximum

fitness values of solutions achieved by OPLA-Tool-ASP
are lower than the values of solutions generated by
OPLA-Tool for AGM and MM (Figures 4 and 5), what
means that OPLA-Tool-ASP obtained solutions with
lower fitness values than some solutions of OPLA-Tool,
as can also be noticed in Figures 1 and 2. Hence,
OPLA-Tool-ASP has potential to optimize the fitness
of the generated solutions as much as OPLA-Tool. A
similar behavior is observed in Figures 6 and 3 for BET
regarding coupling and cohesion. On the other hand,
OPLA-Tool achieved solutions with better feature mod-
ularization than OPLA-Tool-ASP for BET.

Finding #1: Both experiments achieved solu-
tions with better fitness than the original de-
sign. Feature Modularization is the architectural
property most benefited by both experiments.
Several solutions found by OPLA-Tool-ASP are
better than solutions found by OPLA-Tool in
terms of fitness.

5.2 Occurrences of Architectural Smells

So important as the fitness of the solutions is the
presence of architectural smells in the alternative de-
signs generated automatically. In this sense, Tables
5 and 6 present the number of occurrences of each
kind of architectural smell per solution obtained by
OPLA-Tool-ASP and OPLA-Tool for AGM, MM and
BET, as well as the number of occurrences of smells in
the original design of these PLAs. Each solution is iden-
tified by S[n], where n is the number of the obtained
solution. Each cell contains the number of occurrences
of each smell in that solution.

The numbers reported to Unused Interface are related
to the counting of interfaces without any relationship
with another architectural element. For Unused Brick,
we counted packages whose interfaces have no relation-
ship. For Concern Overload, classes and interfaces as-
signed to more concerns (SPL features) than the thresh-
old value were considered smelly (Table 3). Similarly,
classes and interfaces that exceed the threshold of at
least one type of relationship (input, output or bidirec-
tional) were considered smelly for the Link Overload
smell.

5.2.1 Unused Interface and Unused Brick

It is possible to notice in Table 5 that Unused In-
terface and Unused Brick are not present neither in
the original designs nor in the solutions generated by
OPLA-Tool-ASP. On the other hand, occurrences of
these architectural smells were found in several solu-
tions obtained by OPLA-Tool (Table 6).

All solutions obtained by OPLA-Tool for AGM con-
tain at least one of these two smells, totalizing 121 oc-
currences of Unused Interface and 33 occurrences of Un-

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

(a) Objective Functions: FM x COE (b) Objective Functions: FM x ACLASS

Figure 1. Solutions found for AGM.

(a) Objective Functions: FM x COE (b) Objective Functions: FM x ACLASS

Figure 2. Solutions found for MM.

(a) Objective Functions: FM x COE (b) Objective Functions: FM x ACLASS

Figure 3. Solutions found for BET.

(a) OPLA-Tool-ASP (b) OPLA-Tool

Figure 4. Parallel Coordinates of Solutions Found for AGM.

used Brick. For MM and BET only two solutions con-
tain these smells. We observed that the smelly elements

are usually new packages created by mutation opera-
tors, which contain interfaces that are not connected

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

(a) OPLA-Tool-ASP (b) OPLA-Tool

Figure 5. Parallel Coordinates of Solutions Found for MM.

(a) OPLA-Tool-ASP (b) OPLA-Tool

Figure 6. Parallel Coordinates of Solutions Found for BET.

with other elements in the design. These new packages
are usually created to modularize a single feature in or-
der to improve feature modularization, decreasing the
FM objective function. However, some unknown action
introduces at least one of these smells.

The obtained results indicate the efficacy of the guide-
lines implemented in OPLA-Tool-ASP to prevent Un-
used Interface and Unused Brick as the isValidSolution
method (Section 3.1) discards every solution that con-
tains unused interfaces. In addition, due to the ac-
tion of search operators, OPLA-Tool-ASP obtained so-
lutions whose fitness values of the FM objective func-
tion are almost as low as the solutions obtained by the
OPLA-Tool.

Finding #2: OPLA-Tool-ASP generated solu-
tions without introducing the Unused Interface
and Unused Brick architectural smells.

5.2.2 Concern Overload

With regards to the Concern Overload architectural
smell, both experiments achieved equivalent perfor-
mance for AGM maintaining the number of occurrences
of this smell as in the original PLA design (Table 5). In
all solutions in which there are occurrences of Concern
Overload the smelly classes are Puck and Sprite (Fig-
ure 7). It is possible to notice that the Puck class has

stereotypes related to 7 different features, what means
that it has attributes and methods to realize the fea-
tures << play >>, << save >>, << movement >>,
<< collision >>, << bowling >>, << brickles >>
and << pong >>. The Sprite class is also smelly since
it realizes 5 features: << play >>, << collision >>,
<< bowling >>, << brickles >> and << pong >>.
The threshold of Concern Overload for AGM is 2 fea-
tures (Table 3).

Features are well-modularized in the original design
of AGM [36]. Hence, there are a few smelly classes in the
design. This fact justifies the equivalent performance
of both experiments, since the effects of Feature-driven
Operator, which improves feature modularization, act
over a randomly selected class.

For MM and BET, both experiments have decreased
the number of occurrences of this smell in the obtained
solutions. OPLA-Tool-ASP had better performance for
BET whereas OPLA-Tool had better performance for
MM.

The original design of MM has 4 classes with Concern
Overload. The solutions generated by OPLA-Tool-ASP
have 2, on average, smelly classes whereas several so-
lutions obtained by OPLA-Tool usually have 1 smelly
class. In the original design, the smelly elements are
three classes (Media, MediaCtrl and MediaMgr) and
one interface (IMediaMgt). In the solutions generated
by OPLA-Tool-ASP, IMediaMgt and MediaCtrl are not

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

(a) Class Puck (b) Class Sprite

Figure 7. Classes with Concern Overload in AGM Original Design.

smelly elements. In the solution S1, MediaMgr is not
smelly too. The Media class is the smelly element of the
solutions obtained by OPLA-Tool-ASP and OPLA-Tool
where there is a single smelly element. This class realizes
6 features, exceeding the threshold of 5 features (Table
3).

The original design of BET has 7 smelly classes,
exceeding the threshold of 3 features (Table 3).
The solutions obtained by OPLA-Tool have 5.4
smelly classes on average, whereas the solutions of
OPLA-Tool-ASP have 5.0 smelly classes on average,
reducing 29% of these smell occurrences compared
to the original design. In the original design, the
smelly elements are the interface ICartaoMgt and the
classes CargaCartaoLimPassagensEmpresaUsuaria,
CartaoMgr, CartaoPagamentoCartaoCtrl,
ViagemCtrlTempoNumViagens, ViagemIntegracaoCtrl
and GerenciaSistViarioNumCartoesTempoNumViagem.
However, CartaoPagamentoCartaoCtrl and
ICartaoMgt are not smelly elements in the solu-
tions obtained by OPLA-Tool-ASP.

For the sake of illustration, Figure 8-a presents in-
terface ICartaoMgt extracted from the original de-
sign of BET. ICartaoMgt manifests Concern Over-
load since it realizes 4 features, exceeding the
threshold. The features realized by this interface
are << pagamentocartao >>, << acadicional >>,
<< tipopassageiro >> and << acabasico >>. Fig-
ure 8-b illustrates an excerpt of the solution S1 of
OPLA-Tool-ASP, where ICartaoMgt is not a smelly in-
terface since it realizes 3 concerns. Interface7419 was
created by the Feature-driven Operator in order to mod-
ularize the feature << acadicional >>, reducing the
number of features realized by ICartaoMgt. On the
other hand, we can observe that ICartaoMgt of solution
S16 generated by OPLA-Tool (Figure 8-c) is equal to
the original design, manifesting the architectural smell.

We observed that OPLA-Tool-ASP presented sat-
isfactory results regarding Concern Overload due
to the decreased number of features realized by
classes/interfaces of the obtained solutions. This de-
crease contributed to generating alternative designs
with fewer smelly classes/interfaces. Thus, the guide-
line proposed by Perissato et al.[35] and implemented
in OPLA-Tool-ASP is able to detect and reduce the

occurrences of Concern Overload in the generated al-
ternative designs. However, we infer that the search al-
gorithm would need to evolve for more generations to
optimize the FM function even more and then generate
solutions without occurrences of Concern Overload or
with a lower number of smelly elements. Even though,
it might be impossible to reduce to zero the occurrences
of Concern Overload given certain characteristics of the
original design, such as the existence of features that are
crosscutting and/or tangled by nature.

Finding #3: The guideline implemented in
OPLA-Tool-ASP contributes to the reduction
and prevention of the Concern Overload archi-
tectural smell.

5.2.3 Link Overload

OPLA-Tool-ASP achieved excellent results for AGM
with respect to the Link Overload architectural smell,
decreasing the mean of occurrences of this smell in
the obtained solutions. On the other hand, OPLA-Tool
achieved solutions with twice the occurrences of this
smell when compared to the original PLA, as presented
in Tables 5 and 6.

Figure 9-a presents an excerpt of the original de-
sign including the GameBoardCtrl and its interfaces.
The threshold for AGM is 2 input links, 2 output links
and 1 bidirectional link. Thus, GameBoardCtrl is con-
sidered a smelly class since it realizes 3 output links.
Figure 9-b presents the equivalent excerpt for the so-
lution S7 of OPLA-Tool-ASP, where the methods re-
lated to the feature << play >> of IGameBoardData
and ICheckScore were moved to the IGameMgt inter-
face, which is implemented by GameCtrl. This action
is typical of the behavior of the Feature-driven Oper-
ator to improve feature modularization. In this way,
GameBoardCtrl is not a smelly class because it real-
izes only 1 output link. Figure 9-c presents part of the
solution S1 generated by OPLA-Tool. In addition to
the interfaces that GameBoardCtrl realizes in the orig-
inal design, this class is also realizing Interface28728 of
Package64435Ctrl, a smelly class.

Taking into account the threshold values for MM re-

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

(a) PLA Original (b) OPLA-Tool-ASP(S1) (c) OPLA-Tool(S16)

Figure 8. Example of reduction of Concern Overload in solution of BET.

garding the Link Overload smell (Table 3), the smelly
classes in the original design are Media with 4 bidi-
rectional links, MediaCtrl with 7 output links, and
MediaGUI with 7 input links. The results obtained by
OPLA-Tool-ASP were similar to the original design.
However, the results of OPLA-Tool were significantly
worse than the OPLA-Tool-ASP ones. This is probably
due to the Feature-driven Operator action that creates
new packages and classes to improve feature modular-
ization, increasing the class coupling.

For BET, solutions generated by OPLA-Tool-ASP
has significantly fewer occurrences of Link Over-
load than the original design whereas the results of
OPLA-Tool were similar to the original PLA, as can
be observed in Tables 5 and 6.

Figure 10-a illustrates the original design of the
ViagemTempoLinhaIntegradaCtrl class of BET. This
class was considered smelly because it implements 5 in-
terfaces, overcoming the threshold of output links that
is 4 (Table 3). On the other hand, in the solution S8 of
OPLA-Tool-ASP, ViagemTempoLinhaIntegradaCtrl is
not smelly since it realizes only 3 interfaces. In S8, the
ICartaoMgt interface is implemented by GerenciaCtrl.
The IRegistrarArrecadacao interface does not exist
and its operations are now realized by a new inter-
face assigned to << bet >> feature: Interface8992. The
new interface is realized by AquisicaoCartao inside
Package26782GUI, which was created to modularize
the referred feature. Figure 10-c presents the equiva-
lent excerpt of solution S2 generated by OPLA-Tool. In
this solution, ViagemTempoLinhaIntegradaCtrl imple-
ments 4 interfaces (output links) and has 1 bidirectional

link. So it does not overcome the threshold. Although
ViagemTempoLinhaIntegradaCtrl is not a smelly class
in both solutions, in S8 of OPLA-Tool-ASP this class
has fewer responsibilities than in S2 of OPLA-Tool,
what is considered better.

Taking into account the mean number of the Link
Overload occurrences for BET presented in Tables 5 and
6, it is noticeable that the solutions of OPLA-Tool-ASP
have around 12 smelly classes – 60% less occurrences
than the original design, whereas the solutions obtained
by OPLA-Tool have equal ou higher number of occur-
rences than the original design.

The excellent results point out that this differ-
ence between the performance of OPLA-Tool-ASP and
OPLA-Tool with respect to Link Overload is due to the
guideline to prevent this smell, which penalizes the fit-
ness of smelly solutions as presented in Section 3.3. In
this way, solutions with worse fitness have less chance
of being selected for the next generation of the search
process. It is worth highlighting that every solution gen-
erated by OPLA-Tool-ASP that contained classes or in-
terfaces surpassing the threshold value was penalized
depending on the number of elements that exceeded this
value.

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

(a) PLA Original (b) OPLA-Tool-ASP(S7)

(c) OPLA-Tool(S1)

Figure 9. Occurrences of Link Overload in solution of AGM.

Finding #4: The penalty applied in the fitness of
the solutions together with the feature modular-
ization improved by the Feature-driven Operator
were essential to the excellent results achieved by
OPLA-Tool-ASP for the three PLAs, indicating
that the guideline to prevent Link Overload im-
plemented in our tool is effective.

5.3 Answering the Research Question

Another point to be observed before answering the re-
search question is the total number of smelly elements
of each solution. In this sense, Table 7 presents the num-
ber of smelly elements per solution taking into account
the smells: Unused Interface, Unused Brick, Concern
Overload and Link Overload. Numbers related to the
original design of AGM, MM and BET are presented in
the column labeled as Original. The numbers related to
the solutions found by OPLA-Tool-ASP are presented
in the remaining columns. Table 8 presents the number
of smelly elements per solution found by OPLA-Tool.

OPLA-Tool-ASP found a lower number of solutions
than OPLA-Tool and sometimes its solutions have

worse fitness than some solutions of OPLA-Tool. How-
ever, its solutions contain fewer smelly elements than so-
lutions of OPLA-Tool considering the four architectural
smells that were mostly found in the solutions gener-
ated by OPLA-Tool in the study of Perissato et al.[35].
OPLA-Tool-ASP also satisfactorily optimizes the objec-
tive functions during the evolutionary process as shown
in Section 5.1.

However, we observe that there are opportunities to
improve our tool. As the results of preventing Concern
Overload were not so significant, it is worth investigat-
ing whether better results can be reached by using a
greater number of generations during the search pro-
cess.

Results regarding to Unused Interface, Unused Brick
and Link Overload presented effective results. No oc-
currence of Unused Interface and Unused Brick was de-
tected in the solutions found by our tool. The penalty
applied to the fitness of solutions that exceed the thresh-
old of Link Overload was also effective in achieving sat-
isfactory results for the three PLA designs.

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

(a) PLA Original

(b) OPLA-Tool-ASP(S8)

(c) OPLA-Tool(S2)

Figure 10. Occurrences of Link Overload in solution of BET.

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

Answering RQ: By analyzing quantitative
and qualitative results we can state that
OPLA-Tool-ASP is effective to optimize the
PLA design and to simultaneously prevent or re-
duce the smells Unused Interface, Unused Brick,
Concern Overload and Link Overload.

5.4 Discussion

In this section we discuss the main contributions of this
work against related work.

The results of the systematic mapping (Section 2.4)
pointed out a research gap regarding the automation
of strategies to detect and prevent architectural smells
in PLA design. Such a gap reinforces the relevance of
the present work to the PLA design optimization using
SBSE techniques.

In this sense, our work increases state of the art by
providing OPLA-Tool-ASP, which aims to detect and
prevent the generation of PLA design alternatives that
contain the following architectural smells: Unused Inter-
face, Unused Brick, Concern Overload and Link Over-
load.

The aforementioned empirical results attest the effec-
tiveness of OPLA-Tool-ASP in detecting and preventing
these kinds of architectural smells in several obtained
solutions.

Our work serves as a starting point to the applica-
tion of guidelines to detect architectural smells, orig-
inally proposed to software design, to the context of
PLA design. There is room for improvements in this
sense, however the results are promising.

The results also corroborate that the PLA design op-
timization should be solved using multi-objective algo-
rithms, since COE and ACLASS objective functions are
in conflict, following the recommendation of Coello et
al. [7] of employing multi-objective algorithms to simul-
taneously optimize competing factors.

Our study also contributes to ascertaining the suit-
ability of the guidelines proposed in [35], which were
implemented in OPLA-Tool-ASP.

6 Threats to Validity
In this section we discuss the possible limitation of our
study, and how we mitigate them, based on the main
types of threats to validity described by Wohlin et al.
[40]: internal, external, construct and conclusion.

The threats to the internal validity are related to
the experimentťs settings. We used as baseline the
state-of-the-art tool, namely OPLA-Tool, as it is the
tool most related to ours. The PLA designs used in
the experiments were extensively used in other stud-
ies [10, 12, 14, 23]. We used the most used search-based
algorithm [8], which was configured according to previ-
ous works [5, 32, 36]. During the architectural smells
screening, to compare the obtained results, the visual
inspection searching for Unused Interface and Unused

Brick was performed by the first author and was checked
by the second author.

Another threat concerns the way of the threshold
values were calculated. We adopted the calculus-based
on average plus standard deviation proposed by Gar-
cia [18]. However, we did not analyze if the objective
functions follow a normal distribution, otherwise, the
threshold might not be a good value. We softened such
a threat during the visual inspection when the authors
have observed the entire model with the goal of validat-
ing the threshold values adopted by OPLA-Tool-ASP,
and no value seemed to be inappropriate.

External threats to validity are related to the set of
PLA designs used in the study. Our work is limited
on the number of subject PLAs, which can impact the
generalization of the results. To soften this threat, we
used SPL of different domains, with different sizes, de-
signed by different architects and widely used in related
work. The obtained solutions were generated from two
academic SPL (AGM, MM) and one real SPL (BET).
However, it was possible to observe the occurrence of
different kinds of architectural smells in the obtained
solutions.

The construct validity is related to the configuration
of our empirical study. All the choices and definitions re-
garding the empirical study rely on existing literature.
The subject PLAs are well-known, the baseline is the
state-of-the-art tool, NSGA-II is widely used for multi-
objective optimization. The analysis of the results were
similar to other studies in the same research topic, such
as our previous study [28]. Also, one of the authors vi-
sually inspected the 81 solutions obtained by both ex-
periments with respect to Unused Interface and Unused
Brick. To mitigate this threat, another author has veri-
fied the identified occurrences. The identification of oc-
currences regarding Concern Overload and Link Over-
load was automatic to reduce the human effort and the
error-proneness. This source code was properly tested
before the empirical study conduction.

The main conclusion validity is the number of PLA
designs (3) and the number of instances of design an-
alyzed during the empirical studies (81). In compari-
son with our previous study [28], the current study in-
volved the increase of 120% additional instances and
a real SPL. Despite the results of our study can-
not be generalized, it was possible to identify differ-
ences between the original PLA designs and the ob-
tained solutions, which allowed evaluating the impact
of OPLA-Tool-ASP on the prevention of architectural
smells as well as the comparison between the results gen-
erated by OPLA-Tool-ASP and the current version of
OPLA-Tool, which did not employ guidelines to detect
and prevent architectural smells.

7 Concluding Remarks

This work presented OPLA-Tool-ASP, a tool whose
goal is automatically to generate PLA design alterna-
tives that optimize the objectives selected by a software

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

engineer while preventing the existence of some architec-
tural smells in the alternative designs. OPLA-Tool-ASP
includes the original functionalities of OPLA-Tool and
applies guidelines originally proposed by Perissato et
al. [35] to prevent architectural smells. The tool includes
guidelines to prevent the four architectural smells: Un-
used Interface, Unused Brick, Concern Overload and
Link Overload.

Quantitative and qualitative empirical results
pointed out the solutions (alternative designs) gener-
ated by OPLA-Tool-ASP present less smelly elements
and with better fitness values than the solutions
generated by the current version of OPLA-Tool.
The objectives optimized during the empirical study
involved feature modularization, class coupling and
cohesion, which are important architectural properties
for PLA design.

The main contributions of this work are: (a) an evo-
lution to state of the art in PLA design optimization
using search-based algorithms; (b) the empirical results
that indicate the effectiveness of OPLA-Tool-ASP to
prevent the aforementioned architectural smells; and.
(c) our empirical study contributes to ascertaining the
suitability of the guidelines proposed in [35], which were
implemented in OPLA-Tool-ASP.

In further works we intend to perform a qual-
itative evaluation of the solutions generated by
OPLA-Tool-ASP with experts aiming at identifying im-
provement opportunities of our tool. We also intend to
include the human interaction during the search process
to evaluate an acceptable element, giving to her the op-
tion of labeling an element as not smelly even in cases
where the element exceeds the threshold.

Another future work is adding the prevention of other
smells, such as Connector Envy, Dependency Cicle and
Sloppy Delegation. We postponed the inclusion of these
smells in OPLA-Tool-ASP because they are not fre-
quent in solutions generated by OPLA-Tool and their
detection depend on the interaction with a software
architect during the search process. The evaluation of
other ways to obtain the threshold values, such as the
methodology for deriving software metric thresholds
proposed in [1], is also an interesting work to be done.

Acknowledgements

This research is supported by CNPq Grant 428994/2018-0.

References
[1] T. L. Alves, C. Ypma, and J. Visser. Deriving met-

ric thresholds from benchmark data. In 2010 IEEE
International Conference on Software Maintenance,
pages 1–10, 2010.

[2] A. Arcuri and L. Briand. A hitchhiker’s guide
to statistical tests for assessing randomized algo-
rithms in software engineering. Software Testing,
Verification and Reliability, 24(3):219–250, 2014.

[3] U. Azadi, F. Arcelli Fontana, and D. Taibi. Archi-
tectural smells detected by tools: a catalogue pro-
posal. In 2019 IEEE/ACM International Confer-
ence on Technical Debt (TechDebt), pages 88–97,
2019.

[4] V. Basili, G. Caldeira, and H. Rombacj. The goal
question metric approach. Encyclopedia of Soft.
Eng., 2:528–532, 1994.

[5] J. Choma Neto, T. Gaieski, A. M. Amaral, and
T. E. Colanzi. Quanti-qualitative analysis of a
memetic algorithm to optimize product line archi-
tecture design. In 2018 IEEE 30th International
Conference on Tools with Artificial Intelligence
(ICTAI), pages 498–505, Volos, Greece, 2018.

[6] P. Clements, F. Bachmann, and L. Bass. Doc-
umenting Software Architectures: Views and Be-
yond. Addison-Wesley Professional, 2 edition,
2010.

[7] C. A. C. Coello, G. B. Lamont, D. A. Van Veld-
huizen, et al. Evolutionary algorithms for solv-
ing multi-objective problems, volume 5. Springer,
2007.

[8] T. E. Colanzi, W. K. Assunção, S. R. Vergilio,
P. R. Farah, and G. Guizzo. The symposium on
search-based software engineering: Past, present
and future. Information and Software Technology,
127:106372, 2020.

[9] T. E. Colanzi, S. R. Vergilio, I. Gimenes, and W. N.
Oizumi. A search-based approach for software
product line design. In Proceedings of the 18th
International Software Product Line Conference-
Volume 1, pages 237–241. ACM, 2014.

[10] A. C. Contieri, G. G. Correia, T. E. Colanzi,
I. M. Gimenes, E. A. Oliveira, S. Ferrari, P. C.
Masiero, and A. F. Garcia. Extending uml com-
ponents to develop software product-line architec-
tures: Lessons learned. In European Conference
on Software Architecture, pages 130–138. Springer,
2011.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan.
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197, 2002.

[12] P. M. Donegan and P. C. Masiero. Design is-
sues in a component-based software product line.
In Brazilian Symposium on Components, Architec-
tures and Software Reuse (SBCARS), pages 3–16.
Citeseer, 2007.

[13] É. L. Féderle, T. do Nascimento Ferreira, T. E.
Colanzi, and S. R. Vergilio. Opla-tool: a support
tool for search-based product line architecture de-
sign. In Proceedings of the 19th International Con-
ference on Software Product Line, pages 370–373.
ACM, 2015.

[14] E. Figueiredo et al. Evolving software product lines
with aspects: an empirical study on design stability.
In Proc. of ICSE’08, pages 261–270. ACM, 2008.

[15] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, USA,

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

1999.
[16] M. Fowler. Patterns of Enterprise Application Ar-

chitecture. Addison-Wesley Longman Publishing
Co., Inc., USA, 2002.

[17] W. M. Freire, M. Massago, C. A. Zavadski,
A. M. M. Amaral, and T. E. Colanzi. Opla-tool
v2.0: a tool for product line architecture design op-
timization. In Proceedings of 34th Brazilian Sym-
posium on Software Engineering (SBES ’20), Oc-
tober 21–23, 2020, Natal, Brazil. ACM, 2020.

[18] J. Garcia. A unified framework for studying archi-
tectural decay of software systems. University of
Southern California, 2014.

[19] J. Garcia, D. Popescu, G. Edwards, and N. Med-
vidovic. Identifying architectural bad smells. In
2009 13th European Conference on Software Main-
tenance and Reengineering, pages 255–258. IEEE,
2009.

[20] J. Garcia, D. Popescu, G. Edwards, and N. Med-
vidovic. Identifying architectural bad smells. In
2009 13th European Conference on Software Main-
tenance and Reengineering, pages 255–258, March
2009.

[21] M. Harman, Y. Jia, J. Krinke, W. B. Langdon,
J. Petke, and Y. Zhang. Search based software
engineering for software product line engineering:
a survey and directions for future work. In Pro-
ceedings of the 18th International Software Prod-
uct Line Conference - Volume 1, pages 5–18, 2014.

[22] M. Harman, S. A. Mansouri, and Y. Zhang. Search-
based software engineering: Trends, techniques and
applications. ACM Computing Surveys, 45(1):11,
2012.

[23] E. A. O. Junior, I. M. S. Gimenes, and J. C.
Maldonado. Systematic management of variabil-
ity in uml-based software product lines. Journal
of Universal Computer Science, 16(17):2374–2393,
sep 2010.

[24] D. Le, D. Link, A. Shahbazian, and N. Medvidovic.
An empirical study of architectural decay in open-
source software. In IEEE International Conference
on Software Architecture (ICSA). IEEE, 2018.

[25] F. J. Linden, K. Schmid, and E. Rommes. Software
product lines in action: the best industrial practice
in product line engineering. Springer Science &
Bus.Media, 2007.

[26] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed.
A systematic mapping study of search-based soft-
ware engineering for software product lines. In-
formation and Software Technology, 61(C):33–51,
May 2015.

[27] I. Macia, A. Garcia, C. Chavez, and A. von Staa.
Enhancing the detection of code anomalies with
architecture-sensitive strategies. In 2013 17th Eu-
ropean Conference on Software Maintenance and
Reengineering, pages 177–186. IEEE, 2013.

[28] T. T. Madrigar, T. E. Colanzi, W. Oizumi, and
A. Garcia. Prevention of architectural anoma-
lies in optimizing product line architecture design.

Ibero-American Conference on Software Engineer-
ing (CibSE) - Technical Symposium 2020, 2020.

[29] U. Mansoor, M. Kessentini, B. R. Maxim, and
K. Deb. Multi-objective code-smells detection us-
ing good and bad design examples. Software Qual-
ity Journal, 25(2):529–552, Jun 2017.

[30] T. Mariani and S. R. Vergilio. A systematic re-
view on search-based refactoring. Information and
Software Technology, 83:14–34, 2017.

[31] R. Mo, Y. Cai, R. Kazman, L. Xiao, and
Q. Feng. Architecture anti-patterns: Auto-
matically detectable violations of design princi-
ples. IEEE Transactions on Software Engineering,
47(05):1008–1028, 2019.

[32] J. C. Neto, C. H. da Silva, T. E. Colanzi, and A. M.
M. M. Amaral. Are as profitable to search-based
product-line architectures design? IET Software,
13(6):587–599, 2019.

[33] C. Nunes, U. Kulesza, C. Sant’Anna, I. Nunes,
A. Garcia, and C. Lucena. Assessment of the de-
sign modularity and stability of multi-agent system
product lines. Journal of Universal Computer Sci-
ence, 15(11):2254–2283, jun 2009.

[34] W. Oizumi, A. Garcia, L. D. S. Sousa, B. Cafeo,
and Y. Zhao. Code anomalies flock together: Ex-
ploring code anomaly agglomerations for locating
design problems. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE),
pages 440–451. IEEE, 2016.

[35] E. G. Perissato, J. C. Neto, T. E. Colanzi,
W. Oizumi, and A. Garcia. On identifying ar-
chitectural smells in search-based product line de-
signs. In VII Brazilian Symposium on Software
Components, Architectures, and Reuse., pages 13–
22, 2018.

[36] D. F. d. Silva, L. F. Okada, T. E. Colanzi, and
W. K. G. Assunção. Enhancing search-based prod-
uct line design with crossover operators. In Ge-
netic and Evolutionary Computation Conference
(GECCO 20), page 12501258, 2020.

[37] Software Engineering Institute. Arcade game
maker: Pedagogical product line. Software Engi-
neering Institute, (10):115–118, 2016.

[38] Y. D. Verdecia, T. E. Colanzi, S. R. Vergilio, and
M. C. B. Santos. An enhanced evaluation model
for search-based product line architecture design.
In XX Ibero-American Conference on Software En-
gineering (CIbSE2017), Buenos Aires, 2017.

[39] S. Vidal, E. Guimaraes, W. Oizumi, A. Garcia,
A. D. Pace, and C. Marcos. Identifying archi-
tectural problems through prioritization of code
smells. In 2016 X Brazilian Symposium on Soft-
ware Components, Architectures and Reuse (SB-
CARS), pages 41–50. IEEE, 2016.

[40] C. Wohlin. Guidelines for snowballing in system-
atic literature studies and a replication in software
engineering. In Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment
in Software Engineering, pages 1–10, 2014.

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

[41] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng.
Identifying and quantifying architectural debt. In
2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pages 488–498.
IEEE, 2016.

[42] T. J. Young. Using aspectj to build a software prod-
uct line for mobile devices. PhD thesis, University
of British Columbia, 2005.

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

Table 1. Catalog of architectural smells prevented by OPLA-Tool-ASP
Type Definition

Description: An interface that is not linked to any component, adding unnecessary complexity to the
Unused system [18].
Interface Detection: Identification of isolated interfaces.

Guideline: Discard solutions that contain such a smell.
Unused Description: Occurs when all interfaces of a component have the Unused Interface smell [18].
Brick Detection: Identification of packages containing only isolated interfaces.

Guideline: Discard solutions that contain such a smell.
Description: A component that addresses an excessive number of features, breaking the single responsibility
principle [18].

Concern Detection: Consider the features of each SPL as the concerns of the PLA design. Use the algorithm proposed
Overload by Garcia [18] to define the threshold and count the features associated with the classes and interfaces of

the design.
Guideline: Apply the Feature-driven Operator to modularize some of the features associated to the smelly
class/interface.
Description: A component that has excessive dependence on other components, thus impairing the
separation of concerns and the isolation of changes. These dependencies can manifest as inbound or
outbound links [18].
Detection: We used an adaptation of the algorithm proposed by Garcia [18] to define the threshold for each

Link type of link. Associations, dependencies, realizations were considered as links. In addition, we included
Overload links for classes having attributes that are of the type of other classes. The threshold was calculated for each

direction – input, output, and bidirectional – rounding up fractional values. Then, we counted the number
of links for all classes and interfaces. The adaptation is related to do not consider inheritance as a link in the
threshold definition.
Guideline: Penalize the fitness of the smelly solution, so that it is worse evaluated in the process of
selecting the best designs to remain in the optimization process.

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

Table 2. PLA Information.

PLA #Packages #Interfaces #Classes #Features

AGM 9 14 30 11
MM 8 15 14 14
BET 56 36 126 118

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

Table 3. Thresholds Used in the Empirical Study.

Architectural Smell AGM MM BET

Concern Overload 2 4 7

Link Overload Input Output Bidirectional Input Output Bidirectional Input Output Bidirectional
2 2 1 3 3 2 3 5 2

Table 4. Number of Non-dominated Solutions by Experi-
ment.

PLA OPLA-Tool-ASP OPLA-Tool

AGM 8 19
MM 6 20
BET 9 19
Total 23 58

OPLA-Tool-ASP: a Tool to Prevent Architectural Smells in Search-based PLA Design Madrigar et al. 2022

Table 5. Number of Occurrences of Architectural Smells Detected in Alternative Designs Generated by OPLA-Tool-ASP.

Architectural Original OPLA-Tool-ASP
Problem Design S1 S2 S3 S4 S5 S6 S7 S8 S9

AGM

Unused Interface 0 0 0 0 0 0 0 0 0 -
Unused Brick 0 0 0 0 0 0 0 0 0 -
Concern Overload 2 2 2 2 2 2 2 2 2 -
Link Overload 5 3 4 4 4 4 4 4 4 -

MM

Unused Interface 0 0 0 0 0 0 0 - - -
Unused Brick 0 0 0 0 0 0 0 - - -
Concern Overload 4 2 1 2 2 2 2 - - -
Link Overload 3 3 3 4 4 4 4 - - -

BET

Unused Interface 0 0 0 0 0 0 0 0 0 0
Unused Brick 0 0 0 0 0 0 0 0 0 0
Concern Overload 7 5 5 5 5 5 5 5 5 5
Link Overload 31 12 12 12 12 12 12 12 11 11

Table 6. Number of Occurrences of Architectural Smells Detected in Alternative Designs Generated by OPLA-Tool.

Architectural Original
Design

OPLA-Tool
Problem S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

AGM

Unused Interface 0 6 4 6 6 13 15 14 12 5 6 6 5 2 2 8 4 1 4 1 -
Unused Brick 0 1 1 1 1 6 2 6 2 4 4 4 4 2 4 6 4 4 5 0 -
Concern Overload 2 -
Link Overload 5 8 8 8 7 6 6 7 7 9 9 9 9 11 10 8 12 11 11 11 -

MM

Unused Interface 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Unused Brick 0
Concern Overload 4 3 2 2 2 1 1 1 1 1 2 1 1 1 1 2 0 0 0 0 0
Link Overload 3 7 7 7 7 7 6 6 8 7 7 7 7 7 8 7 5 5 5 6 5

BET

Unused Interface 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -
Unused Brick 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -
Concern Overload 7 6 6 6 6 6 6 5 5 5 4 5 5 5 5 5 6 6 5 6 -
Link Overload 31 38 31 37 37 32 36 31 31 36 27 29 32 30 29 29 26 27 29 31 -

Table 7. Number of Smelly Elements (Classes, Interfaces and Packages) in the Original Design and in the Solutions Found
by OPLA-Tool-ASP.

PLA Original
Design

OPLA-Tool-ASP
S1 S2 S3 S4 S5 S6 S7 S8 S9

AGM 7 5 6 6 6 6 6 6 6 -
MM 7 5 4 6 6 6 6 - - -
BET 38 17 17 17 17 17 17 17 16 16

Table 8. Number of Smelly Elements (Classes, Interfaces and Packages) in the Solutions Found by OPLA-Tool.

PLA OPLA-Tool
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

AGM 17 15 17 16 27 25 29 23 17 18 18 17 15 15 21 19 15 19 14 -
MM 12 11 9 9 8 7 7 9 8 9 8 8 8 9 9 5 5 5 6 5
BET 44 37 43 43 38 42 36 36 41 31 34 37 35 34 34 34 35 34 37 -

	Introduction
	Background
	Search-based Software Engineering
	PLA Design Optimization
	Identification of Architectural Smells in PLA Design
	Related Work

	OPLA-Tool-ASP
	Prevention of Unused Interface and Unused Brick
	Prevention of Concern Overload
	Prevention of Link Overload

	Empirical Study Definition
	Results and Analysis
	Fitness of the Generated Solutions
	Occurrences of Architectural Smells
	Unused Interface and Unused Brick
	Concern Overload
	Link Overload

	Answering the Research Question
	Discussion

	Threats to Validity
	Concluding Remarks

