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Abstract
As a practice, software design seeks to contribute to developing quality software. During this software devel­

opment stage, the requirements are translated into a representation of the software (also known as design), whose
quality can be evaluated and improved. For undergraduate students, the design is difficult to understand and make.
In fact, building a good design seems to require a certain level of cognitive development that few students achieve.
The aim of this study is to know the effort dedicated to software detailed design and the effect on software quality
when graduating students use templates to represent their design. We conducted a controlled experiment where stu­
dents develop eight projects following a defined process and recording data from its execution in a software tool.
We found that the use of design templates did not improve the quality of the code, measured as the defect density
in the unit test phase. Also, the use of templates did not reduce the number of code smells in the analyzed code.
Regarding the effort, students who use templates dedicated greater development effort to designing than to coding.
Meanwhile, students who did not use templates dedicated four times less effort to designing than to coding.
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1 Introduction
Software design is one of the most important components
to ensure the success of a software system (Hu, 2013). Be­
tween the requirements analysis phase and the software build­
ing phase, software design has two main activities: architec­
tural design and detailed design. During architectural design,
high­level components are structured and identified. Dur­
ing detailed design, every component is specified in detail
(Bourque and Fairley, 2014). This work is focused specifi­
cally on detailed design.
Design is a difficult discipline for undergraduate students

to understand, and success (i.e. building a good design)
seems to require a certain level of cognitive development
that few students achieve (Carrington and K Kim, 2003; Hu,
2013; Linder et al., 2006). Students’ ability to build a good
design is related to the abstraction, understanding, reasoning
and data­processing ability (Kramer, 2007; Leung and Bol­
loju, 2005; Siau and Tan, 2005).
Building quality software is increasingly relevant. We

highly depend on software in our daily lives and its quality
has a great impact. A quality software design allows us to
build quality software, with fewer defects and is more main­
tainable. Industry practitioners are aware of the importance
of software design quality and they use clean code practices,
reviews and tools, among others, to contribute in this regard
(Brown et al., 1998; Fowler, 2018; Stevenson and Wood,
2018).
Knowing how undergraduate students design is of interest

to several authors (Chen et al., 2005; Eckerdal et al., 2006a,b;
Loftus et al., 2011; Tenenberg, 2005). Most of their studies
found that students do not manage to produce a good soft­
ware design. Some of the problems detected are lack of con­
sistency between design artifacts and code, incomplete de­

signs, and the lack of understanding of what kind of infor­
mation to include when designing software (Eckerdal et al.,
2006a,b; Loftus et al., 2011).
In this work, we study the software design practice in grad­

uating students. We conducted an experiment within the con­
text of some courses over three consecutive years to know
the effort dedicated to software design and the effect that the
representation of design using specific templates has on soft­
ware quality. We use the term graduating for our students,
because, in fact, they are in the fourth year of the degree of
the School of Engineering of Universidad de la República,
in Uruguay. The curriculum of the School of Engineering is
a five­year degree, similar to the IEEE/ACM’s proposal for
the Computer Science undergraduate curriculum (Joint Task
Force on Computing Curricula ­ ACM and IEEE Computer
Society, 2013). Students have already passed courses where
detailed software design is taught: design principles, artifacts
and design diagrams, UML, design patterns, etc.
This work is an extension of the article published at the

Iberoamerican Conference on Software Engineering (CIbSE)
2020: “The representation of detailed design using templates
and their effects on software quality”. Our article was se­
lected to participate for the publication of in a special issue
in the Journal of Software Engineering Research and Devel­
opment (JSERD).
Below, we detail the extension of our work with respect

to CIbSE article: The work presented at CIbSE 2020 aims
to know the effect on software quality when graduating stu­
dents use templates to represent the detailed design. In this
work we present an empirical study where students develop 8
projects following a defined process and recording data from
the execution in a tool. We found that the use of design tem­
plates did not improve the quality of the code measured as
the defects density in the unit test phase. Neither did the use
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of templates manage to reduce the number of code smells
present in the analyzed code. The extension carried out in this
work consists, on the one hand, of expanding and deepening
aspects that for limited space reasons are not in the CIbSE ar­
ticle. On the other hand, we add a new research question and
its analysis, which allows to knowing the effort that implies
the use of design templates.
Specifically, a new section explaining the experimental de­

sign in depth was added. The analysis of external quality was
expanded and deepened. Descriptive statistics were added
and analyzed and tables were added with the data of the av­
erage density of defects in UT for the students. In addition, a
statistical analysis was added within the between­group anal­
ysis that checks the homogeneity of the groups studied (TRD,
noTRD). Threats to validity were expanded, grouping them
by type (construct, internal, external, conclusion), and Dis­
cussion and Conclusions sections were expanded.
A research question was added that seeks to know the

effort that students dedicate to design, and how that effort
varies after the use of templates. To answer this question, the
relationship between the effort dedicated to the design phase
and the effort dedicated to the coding phase was studied. De­
scriptive and statistical analyses were presented as part of the
analysis of results. The results obtained are discussed and re­
lated to those previously obtained in the discussion section.
The document is structured as follows: Section 2 presents

related works; section 3 presents the research methodology;
section 4 presents the results, and section 5 is discussed;
threats to validity are mentioned in section 6, and section 7
presents the conclusions and future work.

2 Related Work
Software design is an important activity to ensure the qual­
ity of a software system (Hu, 2013; Taylor, 2011). It involves
identifying and abstractly describing the software system and
its relationships. Good designs help develop robust, main­
tainable software and with few defects (Pierce et al., 1991;
Sommerville, 2016). Detailed software design is a creative
activity, which can be done in different ways: implicitly, in
the developer’s mind before coding, on a sketch on paper,
through diagrams, using both formal and informal languages
or tools (Chemuturi, 2018).
Software quality is the degree to which a software product

meets stakeholders’ needs both explicit and implicit. Qual­
ity models represent quality in terms of a set of elements
of the model and their relationships (Nistala et al., 2019).
These models define internal and external software quality
attributes. The internal ones are those that do not depend on
the software execution (static), while the external ones are
those that are applicable to the execution.
In recent years, the use of clean code practices and tools

has contributed to improved design quality (Stevenson and
Wood, 2018). Code smells, anti patterns and design flaws
can be used to measure the quality of a software design (Mar­
tin, 2002; Gibbon, 1997; Brown et al., 1998; Fowler, 2018).
SonarQube (Campbell and Papapetrou, 2013) and FindBugs
(Ayewah et al., 2008) are some of the tools used to measure
the quality of the code by detecting bad smells.

Current industry practices require practitioners with the
necessary skills to understand and build good software de­
signs. However, students have difficulties designing. Build­
ing good designs requires a certain level of cognitive develop­
ment that few students achieve (Carrington andKKim, 2003;
Hu, 2013; Linder et al., 2006). This cognitive development
is related to the ability to recognize design patterns, architec­
tural design styles, and related data and actions that can be
extracted into appropriate design abstractions (Hu, 2013).
In fact, for students, learning to design is more difficult

than learning to code. This difficulty occurs because for most
programming languages, students get compiler feedback and
run time errors. However, this does not happen with design
(Karasneh et al., 2015).
Object­Oriented Design (OOD) is one of the most widely­

used design approaches in the industry and one of the sub­
jects normally taught in universities (Flores and Medinilla,
2017). By usingOOmodeling diagrams and languages, static
and dynamicmodels of software systems can be created. Sev­
eral empirical studies analyze the understanding and bene­
fits of using UML diagrams (Budgen et al., 2011; Fernández­
Sáez et al., 2013; Arisholm et al., 2006; Gravino et al., 2015;
Torchiano et al., 2017).
In some studies, students failed to obtain design benefits

using UML diagrams (Gravino et al., 2015; Torchiano et al.,
2017). Gravino et al. found that students who use UML di­
agrams to design do not make significant improvements in
their source code comprehension tasks compared to students
who do not use them. Also, students who use diagrams spend
twice as much time on the same source code comprehension
task than as students who do not use them. When analyzing
the experience factor, they find that the most experienced stu­
dents achieve an improvement in the understanding of the
source code (Gravino et al., 2015; Soh et al., 2012).
For industry professionals, the use of UML continues to

be resisted to a certain degree (Stevenson and Wood, 2018).
A survey conducted to on 50 software professionals indicates
that although the quality of the software is an important as­
pect, the use of UML is selective (informal, only for a while,
then it is discarded) and with low frequency (Petre, 2013).
The use of Model­Driven Development (MDD) methodol­

ogy to design software has shown improvements in software
quality. Panach et al. conducted an experiment and found that
students using MDD achieve better quality products (mea­
sured through test cases) than students using the traditional
software development method (Panach et al., 2021).
Undergraduate students’ design skills are reported by pre­

vious studies examining artifacts produced by them to learn
how they design software (Chen et al., 2005; Eckerdal et al.,
2006a,b; Loftus et al., 2011; Tenenberg, 2005). These studies
use the same requirements specification for which students
must produce a design. The studies use different approaches:
designs produced individually, designs made in groups, and
designs produced at different levels of training.
In general, all the works mentioned agree on the fact

that graduating students are not capable of designing a soft­
ware system. Lack of consistency between design artifacts
and code, incomplete designs, and lack of understanding of
what kind of information to include when designing software
are some of the major difficulties reported (Eckerdal et al.,
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2006a,b; Loftus et al., 2011).
We believe, just as Loftus et al. (Loftus et al., 2011), that

students do not precisely know what to do when they have
to design software. Besides, several authors analyzed the ar­
tifacts produced and they agree on the fact that students do
not know how to design (Chen et al., 2005; Eckerdal et al.,
2006a,b; Loftus et al., 2011; Tenenberg, 2005). This moti­
vated the work presented in this paper, in which we pro­
vide students with design templates as a support tool for de­
sign representation. Unlike Gravino and Torchiano, who an­
alyzed the benefits of using diagrams in code comprehen­
sion (Gravino et al., 2015; Torchiano et al., 2017), our ap­
proach tries to analyze the effort dedicated to designing and
coding; and the impact of the use of templates on software
quality. We studied quality from two perspectives: defects on
the code and code smells. We also analyzed the effort as the
time in minutes that students dedicate to the design and code
phases.
The focus of our research is the OOD at the class level,

including source code organization, the identification and re­
lationship between classes, and the interaction of users with
the system. As Kitchenham pointed out (Kitchenham and
Pfleeger, 1996), this corresponds, to the “Product View”, an
examination of the inside of a software product. We used
an approach focused on objects because a large part of the
current software is developed using that technology (Group,
2015).

3 Research Methodology
We studied the effect of design in software quality when grad­
uating students represent their design using a specific set of
templates and the effort they dedicate to the design activity.
We conducted three experiments within the context of three
consecutive undergraduate courses, from 2015 to 2017.

3.1 Course context
The course Principles and Foundations of Personal Software
Process (PF­PSP) have the same format every year and lasts
9 weeks. In the first week (week 1), a base process is taught,
and the dynamics of the practical work to be done throughout
the remaining eight weeks are explained. Students participate
in the course on a voluntary basis.
The base process is a defined and disciplined process that

intends to help the software development tasks and to col­
lect product and process metrics. The process has different
phases, scripts that guide the work in each phase, and logs
that are used to collect data (see Figure 1).
The base process is divided into the following phases: plan,

design, code, compile, unit test (UT), and postmortem. To
follow the process, students are provided with a set of scripts.
Scripts are a one page guide that establishes the inputs, out­

puts and activities to be carried out in each phase. Scripts
help students guide the development activities but without
demanding how they must be carried out.
In each phase of the process, students must log the time

dedicated to the phase, as well as data on the defects he or she
removes (injection phase, removal phase, type of defect and

time spent to correct it). In the postmortem phase students
log the size in line of code (LOC) of the program built.

Figure 1. Base Process

The practical work consists of each student developing 8
small projects following the base process and recording the
process data in a tool. Students carry out the projects individ­
ually and consecutively. Project 2 does not begin until project
1 has been completed, and so on with the remaining projects.
From week 2 to week 9, one project is assigned per week.
At the beginning of each week, a teacher sends the student
the requirements of each project. Each student’s submission
must contain the code that solves the problem, the test cases
executed, and the export of the data that was registered in
the tool. Once the student submits the solution, the teacher
reviews the work and sends corrections back to the student
if necessary.
Students carry out the projects at home and have a teacher

assigned, who will be responsible for assigning the projects,
correcting them and answering questions.
Before starting project 1, each student must choose the

programming language to use throughout the course. Our in­
terest is to collect data of the execution of the development
process with the use of a programming language familiar to
the student. Projects are small in size and of low and similar
difficulty, so the design phase refers to detailed design (i.e.
identifying classes, attributes, operations, program scenarios,
status diagram, and pseudocode).
The nature of project 2 is different from the other projects.

In project 2, students have to build a size­measuring software,
while in the remaining projects, they must produce mathe­
matical solutions (standard deviation, Simpson’s rule, corre­
lation parameters). Previous studies show that process mea­
sures and product measures in project 2 have greater diffi­
culty than in the rest of the projects (i.e., project 2 is an out­
lier), and it is usually discarded in statistical analysis (Grazi­
oli et al., 2014b; Moreno and Vallespir, 2018). Therefore, we
excluded the data of this project from the analyzes presented
in this article. However, it is relevant to mention that project
2 is an integral part of our course, and it is used for students
from projects 3 to 8 to count the lines of code they produce
in each project.
Percentiles 5 and 95 of the data collected for all the stu­

dents throughout the 8 projects are 26 LOC and 242 LOC
respectively.
Each replication of the experiment corresponds to an in­

stance of a different run of the course. Students who par­
ticipated in one course do not participate again in a later
course. The teachers participating were the same throughout
the three courses (2015­2017).
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3.2 Goals and research questions

The aims of the experiment are to know the effect on soft­
ware quality when students represent their designs using tem­
plates, and to study the effort they dedicate to the design ac­
tivity. Templates are documents with a predefined structure
in which students have to represent their designs.
The templates we used allow to describing the detailed de­

sign of a project. We used four templates, a brief description
of each of them is presented below:

• Operational template: specifies the interaction between
the program and the users. The content may look similar
to a use­case description.

• Functional template: the behavior of the program’s invo­
cations and returns are specified in this template. Vari­
ables, functions, classes andmethods are described.Fig­
ure 2 presents an example of the use of this template for
project 6.

• Logical template: in this template, the pseudocode of
each method that appears in the functional template is
registered.

• State template: it can be used to define the transactions
and conditions of the program’s internal states. The con­
tent is similar to state machine diagrams.

The selected templates emerge from the Personal Pro­
cess (PSP) framework(Humphrey, 1995). The PSP consid­
ers a design to be complete when it defines all four di­
mensions (internal­static, internal­dynamic, external­static,
external­dynamic). The way to correspond to each of the four
dimensions is by using the four templates (Operational, Func­
tional, Logical, State). Completing the four templates allows
describing the designs entirely and precisely (Humphrey,
1995). Several studies have shown an improvement in devel­
oper performance with templates insertion (Hayes and Over,
1997; Prechelt and Unger, 2001; Gopichand et al., 2010).
In the experiment context, we proposed the following re­

search questions and the corresponding research hypotheses:

RQ1: Is there an improvement in the quality of the
products when students represent the design using
templates?

RQ2:What is the relation between the effort dedicated
to designing and the effort dedicated to coding? Are there
any variations in effort when students use templates?

To answer RQ1, we analyzed the external and internal
quality of the software developed in each project. To study
the external quality, we considered the following research
hypothesis:
H1.0: Representing software design using design templates, does not
change the software defect density in unit testing
H1.1: Representing software design using design templates, changes the
software defect density in unit testing

To study the internal quality, we descriptively analyzed
certain code smells introduced by students when producing
software (Fowler, 2018). We are interested in knowing if the

use of templates to represent software design prevents stu­
dents from incurring into some type of code smells.
To answer RQ2, we studied the time spent on the design

and code phases.We analyzed the following research hypoth­
esis:
H2.0: The time spent on designing equals the time spent on coding.
H2.1: The time spent on designing does not equal the time spent on coding.

3.3 Experimental design
Our design is a repeated measures design with one factor (the
base process) and two levels: with templates to represent the
software design and without templates to represent the soft­
ware design. Response variables considered in this experi­
ment are internal and external software quality, and the effort
dedicated by the students to the design and code phases.
Our experimental design implies that students develop 8

projects. The base process introduces practices in the first 2
projects that allow for guiding the work and measure the pro­
cess. Therefore, during the first or second project (depend­
ing on the subject), they are already following the process
adequately.
People have high variability among themselves when

applying software development techniques or processes
(Humphrey, 2005). When high variability among people ex­
ists in an experiment with human subjects, a within­subjects
design is preferable to a between­subjects experiment (Senn,
2002). Moreover, in repeated measures experiments, sub­
jects serve as their own control (Jones and Kenward, 2014).
This reinforces the choice of our design, in which each stu­
dent carries out several projects.
The effect of students’ learning throughout these 8 exer­

cises could be a problem in our experimental design. How­
ever, this was previously studied from different approaches,
and the results indicate in both studies that repetition of pro­
gramming did not contribute to performance improvements
(Grazioli et al., 2014b; Grazioli and Nichols, 2012; Grazioli
et al., 2014a).
As we already mentioned, to evaluate the external quality,

we considered the defect density in the unit test phase of the
base process. That is to say, the number of defects detected
in that phase are counted and divided between the LOCs of
the project.
To evaluate the internal quality, we analyzed the code

smells in which students incur. Knowing the number of code
smells present in the product’s source code gives us an idea
of the maintenance costs in the future (Fowler, 2018).
The effort in design and code is measured as the time in

minutes that the student dedicates to the phase in question.
The experimental design is presented in Figure 3. All stu­

dents apply the base process in projects 1 to 4, in which sub­
mitting the design representation to the teachers is not re­
quired. When students finished project 4, they were divided
randomly into two groups: the control group and the experi­
mental group. The control group, called “without templates
to represent the design” (noTRD), continues to apply the base
process throughout projects 5 to 8. The experimental group,
called “with templates to represent the design” (TRD), started
to apply the templates from project 5 to 8.
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Figure 2. Functional Template

The TRD group attends a theoretical class where the four
design templates are presented and explained (and exam­
ples are shown). The submission of the design representation
for this group was mandatory (except for the state template
which is optional). When a student submitted the project, the
assigned teacher checked the completeness of the templates
and the consistency with the code. In this way, students de­
signing a solution and then coding another one is reduced.
However, the fact that the design is complete and verifiable
is not controlled.
Our experimental design allows us to study the behavior

of the groups before and after the use of the templates. On
the one hand, we propose to analyze the TRD (representing
design using template) and noTRD (representing design with­
out template) groups during project 1 to 4 to confirm they are
homogeneous groups; that is, the quality of the software de­
veloped is similar in both groups from programs 1­4 (when
students do not use templates in any of the groups).
On the other hand, we are interested in knowing if students

who use templates develop better­quality software. We pro­
pose studying the groups TRD and noTRD during projects 5
to 8 to know if representing the design using templates has
some effect on the software quality.

3.4 Operation
The experiment was replicated in the course for three years:
2015, 2016, and 2017. The number of students that took part
in the experiment was: 25, 17, and 19 respectively.
Out of the 61 students participating in the experiment, 29

are part of the TRD group, and 32 of the noTRD group. This
unbalance between the groups is due to the unbalance gen­
erated when students were assigned to the TRD and noTRD
groups in each of the three replications.

4 Analysis and Results
To answer RQ1: “Is there any improvement in the quality of
the products when students represent the design using tem­

plates?”, we analyzed the quality from the internal and exter­
nal points of view.

4.1 External Quality

We measured the external quality as the defect density in
UT, that is, the number of defects in UT/KLOC. To analyze
the external quality, we defined the following research
hypotheses:

H1.0: Representing software design using design templates does not change
the software defect density in UT

H1.1: Representing software design using design templates changes the
software defect density in UT

We analyzed the external quality in two ways: intra groups
and between groups. Between groups refers to knowing if
there is a significant difference in the quality between the
TRD group and the noTRD group. Intra group refers to study­
ing the quality of the software in the TRD group before and
after the use of templates.
Between groups
The analysis between groups consists, on the one hand, of

analyzing the TRD and noTRD groups during projects 1, 3
and 4; and on the other hand, analyzing the TRD and noTRD
groups during projects 5 to 8.
Due to the difficulty of project 2 compared with the rest of

the projects, we decided not to include this project’s data in
the analysis.
During projects 1, 3 and 4, both groups apply the base pro­

cess, so, comparing the software quality of both groups dur­
ing those projects allows to confirm that they are homoge­
neous groups, and thus establishing the experimental frame.
For this analysis, we defined the following hypothesis of in­
vestigation:
H1.0: Median (Def. density in UT of noTRD) = Median (Def. density in UT
of TRD)
H1.1: Median (Def. density in UT of noTRD) = > Median (Def. density in
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Figure 3. Experimental design

UT of TRD)

Each sample corresponds to the average defect density in
UT of a student considering projects 1, 3 and 4.

1000 ∗
∑4

n=1 #defectsUTn∑4
n=1 #LOCn

(1)

where n varies between 1, 3 and 4.
During the analysis, we detected that the data from a stu­

dent of the TRD group was not accurate, that is, that the
process followed had not been accurately recorded. So, data
from that student was eliminated from the analysis and then
there were 28 students remaining as part of the TRD group.
The descriptive statistics of the TRD and noTRD groups

considering projects 1, 3 and 4 are presented on Table 1.
The values of the mean and interquartile range indicate

there seems not to be great variability between the groups.
To confirm this, we applied the Mann­Whitney test for inde­
pendent samples, since they correspond to different students.

Table 1.Mean and interquartile range in projects 1, 3 and 4
Mean Interquartile range

TRD 30.22 25.54
noTRD 32.88 28.9

The result indicates a p­value = 0.3467, with which we
cannot reject the null hypothesis (significance = 0.05). This
result does not allow us to affirm that there is a difference in
quality between TRD and noTRD groups. We can assert that
both groups have a similar or homogeneous behavior. This
gives us more confidence to study the software quality be­
tween the TRD and noTRD groups after the use of templates
eliminating the possibility that the result is due to the behav­
ior of the groups rather than to using or not using templates.
Studying the TRD and noTRD groups during projects 5 to

8 aims to know if representing the design using templates
has some effect in the software quality. For the analysis
between groups during projects 5 to 8, we defined the
following hypothesis of investigation:

H1.0: Median (Def. density in UT of noTRD) = Median (Def. density in UT
of TRD)
H1.1: Median (Def. density in UT of noTRD) = > Median (Def. density in
UT of TRD)

Table 2 presents the average defect density inUT for the 28
students of the TRD group and the 32 students of the noTRD
group in projects 5 to 8.
The values of the mean and of the interquartile shown in

Table 3 indicate low variability of the groups. That is to say,
the use of templates by the TRD group does not produce a sig­
nificant difference in the defect density compared to noTRD
group not using templates.
To study the behavior of both groups we used hypothesis

tests. The samples are different because they correspond to
different students, thus, the Mann­Whitney test is applied.
Results indicate p­value = 0.165, therefore, the null hy­

pothesis cannot be rejected. Thus, we cannot affirm that the
students who use the templates manage to develop software
with fewer UT defect density than students who do not use
templates.
Intra groups
As already mentioned, intra groups refers to knowing if

students of TRD group improve the software quality after the
use of templates to prepare the design. To know this, the de­
fect density in UT from the TRD group is analyzed in projects
1 to 4 (without project 2) and projects 5 to 8. Studying the be­
havior of the same group allows to know if there is a change
in the software quality after the use of templates.
We define the following research hypotheses:

H1.0: Median (Def. density in UT of TRD134) = Median (Def. density in
UT of TRD58)
H1.1: Median (Def. density in UT of TRD134) = > Median (Def. density
in UT of TRD58)
being TRD134 are the students of TRD group during projects 1, 3 and 4;
and TRD58 are the same students of TRD group during projects 5 to 8.

Table 4 presents the defect density in UT for the students
of the TRD group in projects 1, 3 and 4, and the same students
in projects 5 to 8.
The descriptive statistics presented in Table 5 indicate

some variability in defect density. Even though the mean is
similar, it seems that using templates (after project 5) to rep­
resent the design achieves products with less defects.
To statistically study the data, we applied the Wilcoxon

test (signed rank test) for paired samples (because for this
analysis the data come from the same students). Results indi­
cate a value of V = 138 and p­value = 0.1438. Since p­value
is higher than 0.05 (value of significance) it is not possible
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Table 2. Average defect density in UT for the students of the TRD group and noTRD group in projects 5 to 8

Group Student Defect density Group Student Defect density
TRD 1 8.83 noTRD 1 27.98
TRD 2 23.16 noTRD 2 24.86
TRD 3 33.78 noTRD 3 23.59
TRD 4 40.76 noTRD 4 14.35
TRD 5 83.33 noTRD 5 21.37
TRD 6 16.10 noTRD 6 12.19
TRD 7 5.74 noTRD 7 22.79
TRD 8 13.02 noTRD 8 43.33
TRD 9 28.07 noTRD 9 27.02
TRD 10 12.5 noTRD 10 36.46
TRD 11 9.49 noTRD 11 38.98
TRD 12 19.70 noTRD 12 16.80
TRD 13 11.70 noTRD 13 37.65
TRD 14 36.85 noTRD 14 18.93
TRD 15 20.53 noTRD 15 18.25
TRD 16 22.93 noTRD 16 22.98
TRD 17 11.80 noTRD 17 47.12
TRD 18 37.45 noTRD 18 30.21
TRD 19 26.05 noTRD 19 35.03
TRD 20 5.03 noTRD 20 27.84
TRD 21 23.35 noTRD 21 12.22
TRD 22 17.36 noTRD 22 24.57
TRD 23 10.08 noTRD 23 15.65
TRD 24 42.75 noTRD 24 41.17
TRD 25 33.43 noTRD 25 44.89
TRD 26 28.63 noTRD 26 20.35
TRD 27 44.02 noTRD 27 38.80
TRD 28 23.88 noTRD 28 51.54

noTRD 29 7.85
noTRD 30 27.89
noTRD 31 24.24
noTRD 32 25.49
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Table 3.Mean and the interquartile range in projects 5 to 8
Mean Interquartile range

TRD 24.65 21.2
noTRD 27.57 16.9

to reject the null hypothesis. This indicates that we cannot
affirm that students improve the quality of their software by
using design templates.

4.2 Internal Quality
To evaluate the internal quality, we carried out an analysis
of those code smells introduced by students when develop­
ing the course projects. The aim of this analysis is to inves­
tigate if the use of design templates prevents students from
incurring into certain code smells. The analysis presented is
preliminary and exploratory, seeking to obtain initial results
that allow us to generate new research hypotheses.
The code smell types depend on the programming lan­

guage. As students can choose the language in which they
develop their projects, this analysis has to be done taking
into account the different languages used. With the aim of
doing an initial analysis, and that it added value to our re­
search, the students who developed their projects with Java,
C#, C, C++ and Ruby were selected, excluding those devel­
oped with PHP and Python. We excluded PHP and Phyton
because they do not have many code smells in common with
the other languages. If we had added PHP and Python, the
number of code smells to analyze would have been reduced
too much. So, both languages were excluded for this initial
analysis. This left a total of 45 students for the analysis, 19
from 2015, 14 from 2016, and 12 from 2017. Of those 45
students, 21 belong to the TRD group (9 in 2015, 6 in 2016
and 6 in 2017) and 24 to the noTRD group (10 in 2015, 8 in
2016 and 6 in 2017).
To detect the code smells, the tool SonarQube1 was used,

since it is a free­software tool for a variety of programming
languages, which presents constant updates for the commu­
nity and a wide documentation, among others.
We selected 16 code smell types for the analysis. These

are common for the programming languages we chose and
are detectable by SonarQube. The code smell types are: 1)
statements “if ... else if” must end with the clause “else”; 2)
statements “switch”/“case” must not be nested; 3) statements
“switch”/“case” must not have too many “case”/“when”
clauses; 4) the cognitive complexity of the functions or meth­
ods must not be too high; 5) “if” collapsible statements must
merge; 6) the “if”, “for”, “while”, “switch” and “try” state­
ments of control flow must not nest too much; 7) the ex­
pression must not be too complex; 8) files must not have
too many lines of code; 9) functions or methods must not
have too many lines of code; 10) functions or methods must
not have too many parameters; 11) lines of code must not
be too long; 12) functions or methods must not be empty;
13) statements must be in separate lines; 14) two branches in
one conditional structure must not have the exact same im­
plementation; 15) the parameters of one function or method
not used must be eliminated; 16) the local variables not used

1http://www.sonarqube.org

must be eliminated. A more detailed description of each one
is not provided for article­length reasons.
Table 6 shows the percentage of students that incurred in

at least one code smell, segmented by project (from 1 to 8)
and by group (noTRD and TRD). Code smells 3, 8 and 12 are
not present in any of the projects analyzed.
When analyzing the table between the noTRD and TRD

groups, as of program 5 (after using templates) a great vari­
ability arises, both if it is considered per project as it is con­
sidered per code smell.
For code smells 4, 7, 10 and 13, it is observed that a group

is better for certain projects, and the other group is better for
certain other projects. For code smells 1, 2, 5, 6, 9 and 14, the
difference between groups is very little. To sum up, changes
after using templates are not observed for any of these code
smells.
For the case of code smell 11, a very minor percentage

is observed in projects 5 and 7, and a minor percentage in
project 8 on the part of the group using templates. In project
6, both groups have almost identical behavior. From the point
of view of templates, maybe it is the pseudocode template
that is helping the students decrease the introduction of this
code smell.
Code smells 15 and 16 show a similar behavior. For both

cases, TRD group almost does not incur in them, while
noTRD does and sometimes in a high percentage. Number
15 refers to parameters not used in the methods, and 16 to
local variables not used. Clearly, these types of code smells
can be avoided with good software design. From the point
of view of the use of templates, maybe the development of
pseudocode (logic template) and the functional template are
preventing the students of the TRD group from incurring in
these code smells. Anyway, it is necessary to manually ana­
lyze the templates submitted by the students and have inter­
views with them to know better if this can be happening for
the reasons already described. This has not been done yet.
However, when analyzing the table, but only considering

the data of the TRD group throughout the 8 projects, we do
not see that the use of templates improves the internal quality.
It is worth noting that this group normally did not incur in

code smells 15 and 16 (or did it in a very low percentage). Ob­
serving projects 1 to 4 and 5 to 8 separately, we do not see any
difference between them. That means, the behavior of this
group before using templates and during its usage does not
change for these code smells. So, the difference presented in
the previous analysis between TRD and noTRD groups does
not seem to respond to the use of templates.
Something similar happens with code smell 11. Results do

not show a decrease of this code smell when using templates.
It can be observed that in project 8, the percentage of oc­

currence of code smells 4, 9 and 10 significantly increases
for both groups. This increase makes us think that project 8
is more complex for the students. These three code smells in­
dicate that the code developed is too complex and long for its
comprehension. That is, the use of templates did not help the
students elaborate a less complex and understandable design.
Putting both analyses together, we conclude that the use of

templates does not improve the internal quality. Specifically
(or being more precise), the use of templates does not seem
to have an effect on the code smells in which the students
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Table 4. Defect density in UT for the students of the TRD group in projects 1, 3 and 4, and in projects 5 to 8

Group Student Defect density 1,3 and 4 Defect density 5 to 8
TRD 1 2.22 8.83
TRD 2 7.22 23.16
TRD 3 35.33 33.78
TRD 4 14.24 40.76
TRD 5 95.74 83.33
TRD 6 17.85 16.10
TRD 7 10.14 5.74
TRD 8 21.18 13.02
TRD 9 15.54 28.07
TRD 10 39.80 12.5
TRD 11 13.79 9.49
TRD 12 18.31 19.70
TRD 13 10.23 11.70
TRD 14 60.60 36.85
TRD 15 32.60 20.53
TRD 16 25.83 22.93
TRD 17 51.09 11.80
TRD 18 48.78 37.45
TRD 19 39.63 26.05
TRD 20 15.56 5.03
TRD 21 30.70 23.35
TRD 22 25.77 17.36
TRD 23 9.72 10.08
TRD 24 32.71 42.75
TRD 25 10.05 33.43
TRD 26 42.70 28.63
TRD 27 16.87 44.02
TRD 28 102.04 23.88
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Table 5.Mean and the interquartile range calculator
Project Mean Interquartile range
1, 3 y 4 30.22 25.5
5 to 8 24.65 21.2

incur when designing software.

4.3 Effort dedicated to designing and coding

To answer RQ2: “What is the relation between the effort ded­
icated to designing and the effort dedicated to coding?, Are
there any variations in effort when students use templates?”
, we analyzed the following hypothesis test:
H2.0: Median (TCOD) <= Median (TDLD)
H2.1: Median (TCOD) > Median (TDLD)

As part of the base process, each student registered the
time spent in the design phase (TDLD) and the time spent in
the code phase (TCOD) for each project.
To know the effort dedicated to designing and to coding

by the group that uses the templates and the group that does
not use them, we analyzed both groups independently during
projects 5 to 8. That is, on the one hand, we carried out the
analysis of the TRD group during projects 5 to 8, and on the
other hand, of the noTRD group during projects 5 to 8.
For each student, we calculated the time spent in design

and the time spent in code for projects 5 to 8. The calculation
for each pair of data is the following:

(
8∑

n=5
TDLDn,

8∑
n=5

TCODn) (2)

where TDLDn is the time spent in the design phase for
project n, TCODn is the time spent in the code phase for
project n, and where n varies from 5 to 8.
Table 7 presents the 28 data pairs (TDLD, TCOD) for the

TRD group, and the 32 data pairs (TDLD, TCOD) for the
noTRD group.
Table 8 presents the mean and the interquartile range for

the TRD group and the noTRD group.
The mean value of the TRD group shows that the use of

templates takes more design time compared with the group
that did not use templates. Furthermore, the design time in
the case of TRD exceeds the time spent on coding.
Regarding the TCOD’s mean, even though it is similar in

the TRD and noTRD groups, a decrease in the TRD group
is observed. Despite the fact that the decrease is not quite
significant, the use of templates might have helped coding in
less time.
To determine the statistical test that best fits the problem to

be solved, the distribution of the data was previously studied.
When applying the Kolmogorov­Smirnov test for the TRD
group, a significance value of 0.00478 is obtained, indicating
that the values do not fit a normal distribution. The result
of applying Kolmogorov­Smirnov test for the noTRD group
returns 7.713e­12 as a significance value, for that, the values
do not fit a normal distribution.
As the data of both does not follow a normal distribu­

tion, Wilcoxon’s test is used for paired samples. The sam­

ples of each group are paired since the sampled pairs (TDLD,
TCOD) correspond to the same student.
We executed the test for the TRD group and for the noTRD

independently.
For the noTRD group, we proposed to know the value of

X such that TCOD = X*TDLD. We analyzed the following
hypothesis test:
H2.0: Median (TCOD of noTRD) <= Median (X*TDLD of noTRD)
H2.1: Median (TCOD of noTRD) > Median (X*TDLD of noTRD)

When executing the test for the noTRD group with X=1,
the null hypothesis is rejected (p­value = 4.169e­07, the sig­
nificance level is taken with a value of 0.05), confirming that
the coding time is greater than the designing time. To know
how much more or what is the relationship between these
times (TCOD = X*TDLD) we applied the test again but now
multiplying the TDLD by an integer X value until the null hy­
pothesis cannot be rejected. Table 9 presents the results for
the Wilcoxon test.
The results indicate that for X=1, X=2 and X=3 the null

hypothesis is rejected, so the coding time is greater than 3
times the design time. For X=4, the null hypothesis cannot
be rejected (p­value=0.541). In other words, students who
did not use templates generally spent at least 3 times more
time on coding than on designing.
In the case of the TRD group, the mean value shows that

students tend to dedicate more time to design in relation to
code. Therefore, we carried out the analysis in an inverseway,
calculating X such that: X*TCOD=TDLD. We analyzed the
following hypothesis test:
H2.0: Median (X*TCOD of TRD) >= Median (TDLD of TRD)
H2.1: Median (X*TCOD of TRD) < Median (TDLD of TRD)

When executing Wilcoxon test for the TRD group with
X=1, the null hypothesis is rejected (p­value = 0.0007155),
confirming that the coding time is less than the designing
time. To know how many times more students spent in de­
signing, we applied the test again but now multiplying the
TCOD by an integer X value until the null hypothesis cannot
be rejected.
Table 10 presents the results of the Wilcoxon test applied

to TRD group.
The results indicate that for X=2 the null hypothesis can­

not be rejected (p­value = 0.998). So, students who use tem­
plates spend more time designing than coding, but not dou­
ble.
This result indicates that the group that used templates ded­

icated a greater effort to design than the group that did not use
templates. To confirm that the relationship between design­
ing time and coding time previously obtained by the TRD
group is due to the use of templates and not to another factor
dependent on the group, we studied the relationship (TCOD,
TDLD) but in this case during projects 1, 3 and 4 (without
using templates).
Table 11 presents the mean and the interquartile range of

the pairs (TDLD, TCOD) for the TRD group in projects 1, 3
and 4.
The values of the descriptive statistics of the TRD group in

projects 1, 3 and 4 are similar to those of the noTRD group. In
other words, during projects in which students design with­
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Table 6. Percentage of students who incur at least one code smell by code smell type and student group
Code
smell

Group Project

1 2 3 4 5 6 7 8
1 noTRD 4% 29% 0% 4% 13% 13% 4% 13%

TRD 19% 19% 10% 0% 5% 5% 5% 5%
2 noTRD 0% 0% 0% 0% 0% 0% 0% 0%

TRD 0% 0% 0% 0% 0% 0% 0% 5%
4 noTRD 8% 58% 0% 13% 30% 46% 29% 50%

TRD 24% 43% 5% 10% 10% 43% 24% 95%
5 noTRD 4% 21% 0% 0% 0% 0% 0% 0%

TRD 0% 24% 10% 0% 0% 5% 0% 5%
6 noTRD 13% 63% 8% 29% 30% 38% 13% 42%

TRD 38% 67% 29% 29% 33% 52% 57% 62%
7 noTRD 0% 25% 0% 0% 0% 4% 8% 0%

TRD 0% 19% 0% 0% 0% 5% 0% 5%
9 noTRD 0% 4% 8% 17% 10% 21% 21% 67%

TRD 0% 10% 19% 14% 10% 29% 38% 71%
10 noTRD 0% 0% 0% 0% 0% 0% 8% 54%

TRD 0% 0% 5% 0% 0% 0% 19% 38%
11 noTRD 4% 46% 42% 8% 40% 4% 46% 75%

TRD 0% 29% 29% 0% 14% 5% 24% 62%
13 noTRD 0% 0% 0% 0% 10% 0% 0% 4%

TRD 5% 0% 5% 0% 0% 0% 5% 19%
14 noTRD 0% 8% 0% 0% 10% 0% 0% 0%

TRD 0% 0% 0% 0% 0% 0% 0% 0%
15 noTRD 0% 0% 8% 4% 20% 0% 13% 17%

TRD 0% 0% 0% 0% 5% 0% 0% 0%
16 noTRD 8% 13% 8% 8% 40% 8% 17% 29%

TRD 5% 5% 10% 10% 0% 0% 10% 10%
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Table 7. Data pairs for the TRD group and the noTRD group
TRD group noTRD group

TDLD TCOD TDLD TCOD
178 263 60 172
748 217 44 369
940 621 51 446
522 249 63 350
178 61 16 245
204 221 53 302
163 371 100 427
295 212 67 289
665 265 64 243
175 272 23 464
626 329 31 350
407 169 65 460
757 407 23 248
238 228 18 184
392 269 132 347
288 249 163 225
212 210 140 197
278 150 116 354
573 274 69 205
518 199 33 229
336 398 193 226
453 108 58 329
401 222 103 206
330 360 83 168
515 493 43 241
327 242 92 187
160 169 21 481
296 213 107 304

35 236
205 468
64 224
168 194

Table 8. Mean and the interquartile range for noTRD and TRD
groups

Group Mean Interquartile range
TRD TDLD 399.1 287.5
TRD TCOD 265.7 26.7
noTRD TDLD 19.5 15.7
noTRD TCOD 292.8 132

Table 9.Wilcoxon test for the noTRD group in projects 5 to 8
X=1 X=2 X=3 X=4

4.169e­07 4.088e­05 0.03861 0.541

Table 10.Wilcoxon test for the TRD group in projects 5 to 8
X=1 X=2

0.0007155 0.998

Table 11. Mean and the interquartile range of the pairs (TDLD,
TCOD) for the TRD group in projects 1, 3 and 4

Mean Interquartile range
TDLD 43 41.5
TCOD 242 118

out using templates, the time spent on design is significantly
less than the time spent on coding.
Table 12 presents the results of executing Wilcoxon’s test

to analyze the relation TCOD = X*TDLD of the TRD group
in projects 1, 3 and 4.

Table 12.Wilcoxon test for the TRD group in projects 1, 3 and 4
X=1 X=2 X=3 X=4 X=5

3.725e­09 3.725e­08 0.0002701 0.01245 0.09678

The results indicate that for X=5, the null hypothesis can­
not be rejected (p­value = 0.09678). Students of TRD group
in projects 1, 3 and 4 generally spent at least 4 times more
time on coding than on designing. This result shows that
there is an increase in the time dedicated to design after the
students of the TRD group begin to use design templates.

5 Discussion
In the context of our experiment, we found that design repre­
sentation using templates produced an increase in time spent
designing (we were expecting this). However, it did not help
to develop better­quality software products, nor from an in­
ternal point of view, neither from an external point of view.
Results show that the use of templates did not improve nei­

ther the number of defects the developed code has (measured
as defects density in UT), nor the internal quality (measured
as the number of code smells in the code). These results are
related to those reported by Gravino (Gravino et al., 2015),
where the use of UML diagrams did not achieve any improve­
ment in the comprehension of the source code vis­à­vis not
using them.
In addition, the analysis of the relation between effort dedi­

cated to coding and effort dedicated to designing showed that
the use of templates produced an increase in design time. Stu­
dents who did not use the templates tended to spent 3 times
more on code than on design. Students who use templates
spent more time designing than coding. Moreover, students
in both groups spent similar time in coding and before us­
ing templates the students in TRD group behave similar to
noTRD group.
We can conclude then, that using templates to represent

design increases the effort dedicated to design but does not
have a significant positive effect on quality or in reducing
coding time. This can be due to several factors that we must
analyze in the future. It could be, among other reasons, that
students are not used to these templates and so they did not
get the expected benefit; it could be that they just filled the
templates but, in that moment, they did not care to think or de­
velop a quality system; it could be that students do not know
how to design (as found in other studies); or as mentioned
by Chaiyo (Chaiyo and Ramingwong, 2013), it could be that
the templates are difficult to use by students.
We believe that students do not have the habit of designing

and thinking of a solution before coding. Although we think
that the use of templates would be helpful, we believe that the
students filled them in to achieve the goal without thinking
of a design solution. Rather, we believe that the usual stu­
dent practice is code­and­fix. Even though more analysis is
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needed, we agree with several authors on the fact that grad­
uating students have difficulties to design and they do not
seem to understand what type of information to include to de­
sign software (Eckerdal et al., 2006a,b; Loftus et al., 2011).

6 Threats to validity
Most empirical studies are threatened by the way research is
conducted (Wohlin et al., 2012). This section describes the
threats to validity we have detected.
Internal validity threats: Investigating with students in­

volves several threats. On the one hand, the fact that the con­
text of the experiment is a course implies that the students
does not develop naturally. We tried to minimize this threat
with a non­graded course, that is, the student approved or
failed. Besides, we remarked the importance of monitoring
and registering the process just as it was, and we emphasized
that students’ assessments would not be done according to
results, defects found, or efforts made.
On the other hand, there is a threat that students share in­

formation or solutions to projects. In this sense, the assigned
teachers reviewed the submissions and compared them be­
tween students to ensure there were no duplicate submis­
sions.
In addition, students carry out their projects at home,

which causes limited control by teachers. To reduce this
threat, we introduced supervision, corrections, and feedback
between the student and the assigned teacher.
Besides, for the analysis, we did a data aggregation of the

three courses, knowing that the different courses can have
influence on the data collected for being a hierarchical model.
We tried to reduce this threat through the use of a defined
and disciplined process the students followed, and keeping
the same material and the same teachers throughout the three
courses.
External validity threats: experimenting with students of

a course has the advantage that they are available and are will­
ing to participate in experiments, and the disadvantage that
their characteristics cannot be generalized. In our experiment,
students took part of the PF­PSP course voluntarily and did
not know that they were part of an experiment until they fin­
ished the course. This reduces to the minimum the bias they
might have when feeling part of a research. Conversely, the
results obtained in this experiment cannot be generalized to
the students practice of design in other contexts.
Construct validity threats: this kind of threat is related

to the way in which the response variables were measured.
In our experiment, we measured effort as the time in min­
utes that the student spends on the phase and the quality as
the number of defects in UT and the number of code smells
in which students incur. To ensure a correct data recording,
we used a data recording tool and framework that allows a
disciplined and measurable process to be followed.
Conclusion validity threats: The number of students in

the research constitutes a threat to the statistical conclusion.
61 students participated during the three replications. This
causes the statistical analysis to be carried out using non­
parametric tests whose statistical power is lower than the
parametric tests. As a measure to this threat, we completed

the non­parametric tests with descriptive statistics.

7 Conclusions
This work is one step further towards the understanding of
the software design practice. The results of our experiment
show that graduating students do not improve the software
quality when using templates for design representation. How­
ever, using templates produces a significant increase in the
time spent on the design phase without reducing coding time.
We analyzed the software quality from the internal and ex­

ternal points of view, and from the effort dedicated to design.
On the one hand, we statistically proved that using templates
for design representation does not improve the external soft­
ware quality, measured as the defect density in unit testing.
From the internal quality perspective, the use of templates

does not have a significant positive effect on the code smells
in which students incur when designing software.
Regarding the effort, students who used templates dedi­

cate a greater effort to designing than to coding (which is
not double). Meanwhile, students that did not use templates
dedicated four times less effort to designing than to coding.
Our results are related to those mentioned by Gravino

and Torchiano (Gravino et al., 2015; Torchiano et al., 2017),
where the use of UML diagrams to design does not make
significant improvements in their source code comprehen­
sion tasks. Also, regarding effort, students who use diagrams
spend twice as much time on the same source code compre­
hension task than students who do not use them. Gravino ana­
lyzes the experience factor, and they find that themost experi­
enced students achieve an improvement in the understanding
of the source code (Gravino et al., 2015). Although we did
not analyze the experience factor of the graduating students,
it could be an analysis to be performed in the future.
Our research focuses on graduating students, most of them

working in the Uruguayan software industry as junior engi­
neers. These engineers usually perform programming tasks,
which include low­level design. The results obtained in our
experiment cannot be generalized to all junior developers and
even less to senior developers.
Our results raises new questions about the practice of soft­

ware design: What do students usually design? What kind of
information do they include when designing? Is it possible
for them to produce their designs mentally, without repre­
senting them? Do they know the effect of a good design in
software quality?
Continuing with this line of research, in 2018, we executed

an experiment that sought to know how students usually de­
sign. Students performed the same 8 projects during this ex­
periment and delivered the design representation made in a
natural way (without templates). Although we have not yet fi­
nalized the data analysis, we have found that students do not
deliver complete designs in a preliminary analysis. In gen­
eral, they use informal/natural language and incomplete class
diagrams in a few cases. Studying the students’ habitual be­
havior when designing software should help identify poten­
tial problems in the design practices and find better ways of
teaching skills for developing quality software. In 2019 and
2020, no experiments could be performed, but in 2021 we
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are replicating the 2019 experiment to have more data. As
future work, we will finish the above­mentioned analysis to
identify potential problems in the design practices and find
better ways of teaching skills for developing quality software.
Also, we plan to analyze the designs produced with the tem­
plates to know what students design and conduct interviews
with students to know their experience using templates.
On the other hand, we find it interesting to experiment with

some simple MDD tool to know the effect on software qual­
ity.
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