
JURNAL RISET INFORMATIKA
Vol. 3, No. 2 March 2021

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v3i2.188

137

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

THE BLACK BOX TESTING AND LOC METHOD APPROACH IN TESTING
AND STREAMLINING THE PATIENT REGISTRATION PROGRAM

Joosten

Information System

STMIK Mikroskil
https://www. mikroskil.ac.id

joosten.ng@mikroskil.ac.id

Abstrak
Software yang baik dapat digunakan jika ada pengujian yang tepat. Tahap pengujian cukup penting karena
software perlu diuji sebelum digunakan oleh pengguna akhir. Pada pembuatan software untuk rumah sakit
hewan belum adanya validasi dan verifikasi sehingga diperlukan pengujian. Penelitian ini menggunakan
informasi bagian pendaftaran pasien rumah sakit hewan dan diuji dengan tiga metode Black Box Testing,
yaitu Equivalence Class Partitioning (ECP), Boundary Value Analysis (BVA), dan Decision Table ditambah
pendekatan LOC. Hasil pengujian dari ketiga metode tersebut adalah persentase ECP yang tidak valid lebih
besar dari yang valid, sehingga perlu diubah lagi batas nilai inputnya. Kemudian untuk pengujian BVA,
persentase yang valid lebih tinggi daripada tidak valid. Dalam tabel keputusan dibuat aturan pemendekan
antara layanan operasi dan layanan lainnya sehingga menghasilkan status rawat inap dan besaran uang
muka secara otomatis tanpa harus memilih lagi dan diuji kembali oleh decision table dengan cara
mencocokkan hasil estimasi dari kedua layanan tersebut.

Kata kunci: BVA, Decision Table, ECP, Pengujian, Validasi, Verifikasi

Abstract
Good software can be used if there is proper testing. The testing phase is quite important because the
software needs to be tested before it is used by end users. In making software for animal hospitals there is
no validation and verification so testing is needed. This study used information on the registration section
of veterinary hospital patients and was tested by three Black Box Testing methods, namely Equivalence
Class Partitioning (ECP), Boundary Value Analysis (BVA), and Decision Table plus the LOC approach. The
test results of the three methods are that the percentage of invalid ECPs is greater than the valid ones, so
the input value limit needs to be changed again. Then for BVA testing, the percentage of valid is higher than
invalid. In the decision table, a shortening rule is made between operating services and other services so
that it produces inpatient status and down payment automatically without choose it again and is tested
again by the decision table by matching the estimation results of the two services.

Keywords: BVA, Decision Table, ECP, Testing, Validation, Verification

INTRODUCTION

Today technological developments are
increasingly developing in this modern world. One of
them is software development or what is called
software. The widespread software applications of
the Internet and mobile computing have
significantly increased the dependence on enabled
software systems (Xu et al., 2015). One of the stages
in software development is software testing. The
role of testing activities is very important because
testing is one of the activities that must be carried
out on software developed before the software is
applied by users or end-users. There are three main
reasons for the importance of software testing,
namely errors or deficiencies in software can occur,

the application must be the best, and end-user
satisfaction is everything (Solution, 2018). Testing is
the process of checking software, both internally and
externally. From the internal side, testing is carried
out to see the statements that have been tested.
While on the outer side, testing is directed to find
errors that arise from the software and ensure that
the limited inputs can produce the desired actual
results according to the expected results.

The increasing demand for software makes
the testing aspect always neglected. Testing is an
important part of the software development process
(Hierons & Member, 2015). The complexity of the
software programming logic flow that developers
make is one of the problems when entering the
testing phase. Developers often find it difficult to get

http://creativecommons.org/licenses/by-nc/4.0/

P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v3i2.188

JURNAL RISET INFORMATIKA
Vol. 3, No. 2 March 2021

138

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

errors in the software they make due to algorithms
that are too complex. Users sometimes don't care if
the software has an error or not. Ignoring testing
activities in the software results in the results
(output) that is displayed sometimes not as
expected. Ordinary users will tell the developer to
change the program they make in order to produce
maximum results and satisfactory program
performance.

Joel Spolsky (Spolsky, 2020), a software
developer in New York City, wrote an article
discussing the top 5 reasons (wrong) that a tester is
not needed. Joel is applying for a job at a company
led by Mr. Gleick. Joel asked Mr. Gleick about the
Pipeline that Gleick created. Joel sees that Gleick's
creation has problems such as not using an error
correction protocol so that it can damage or crash.
But Gleick denies that Pipeline has no bugs and is
just as bad as Ms. Word from Microsoft. Both reasons
from Gleick kept Joel from applying to Gleick's
company.

From Joel Spolsky's case, it can be
concluded that the average person ignores the
validation, verification, and testing of the software
that is made. Neglect of software testing makes the
software unable to work optimally and many errors
occur. This study discusses several methods that
can be used to test software so that the software can
work optimally.

The use of excessive costs in software
testing causes the quality of the software to be poor.
Every year, poor software quality losses exceed $
500 billion (Shahbazi & Miller, 2016). The National
Institute of Standards of Technology (NIST) (Rep,
2002) conducted a study in 2012 that explained the
United States economy calculates a loss of $ 59.5
billion every year due to bugs in software created.
NIST explains about one-third of these losses can be
avoided if the developers do software testing better.
More than half the cost of fixing bugs given to
software users is given to developers and vendors
(Wong et al., 2016).

Besides the use of large costs, another thing
that assumes that software testing is not needed is
the time spent. In the 1980s, one of the most
notorious cases of software development failure
was the Ariane rocket (Lynch, 2017). The rocket
exploded due to software failure. As a result of the
explosion of the rocket, the researchers over the
years focusing their efforts on looking for problems
or bugs in the software on the rocket.

Rashad Khalid (Khalid, 2017) conducted a
study that focused on the efficiency side of software
testing by combining two methods, namely the
black box testing method with the white box testing
method. Khalid developed an automated analysis
and testing technique consisting of two main steps:

1) the first step was to take the software under test
(sut) and identify all files, input and output
variables, and functions. 2) in the next step, the user
selects the desired module part or function to test
and selects the required tests such as dead-code,
assertion based tests and exception tests. The
programming language khalid tested was the c ++
programming language. Khalid claims the tools he
recommends can perform various tests such as
static analysis, unit testing, dead-code testing,
exception testing and assertion based testing. But
the program code that khalid tested was only a
simple program and did not tell from the efficiency
side whether the recommended tool could handle
the limited testing time or not so that the tool did
not guarantee the success of the test when the
program code was quite complex.

Christopher Dimas Satrio et al (Satrio et al.,
2018), conducted a study comparing a test case
generation with two genetic algorithm approaches,
namely mutual analysis and sampling. The two
approaches will be compared from the reduction in
test cases that occur. Apart from reducing the test
case, the number of iterations, the total number of
individuals, the number of fitness evaluations, and
the size of the test suites will also be a comparison
between the two approaches. From the two
approaches, it was found that the genetic algorithm
mutual analysis approach was better than the
genetic algorithm sampling in terms of the number
of test case reductions and all the comparative
variables applied. However, in terms of execution
time, it is still assumed that the genetic algorithm
mutual analysis is faster, so there has been no
decision that the genetic algorithm mutual analysis
approach is faster when executing larger sample
data. Researchers also concluded that to increase
the effectiveness and efficiency in software testing
by shortening the time that must be allocated for the
testing carried out. But the researchers did not
explain how long the time should be allocated, so
they had to see how complex the software to be
tested was.

Marcel Bohme and Soumya Paul (Bohme &
Paul, 2016), conducted a study that analyzed the
efficiency between random testing (r) and
systematic testing (S0). They built a general model
for software testing by specifying a sampling
strategy on random testing and systematic testing
associated with cost and sampling time. They
considered two such strategies whereby random
testing was unaware of partition based errors and
systematic testing that sampled each partition
exactly once. They perform calculations on these
two strategies to calculate the relative efficiency
value. In the end they conducted 24000 simulation
experiments with various parameters. However, in

http://creativecommons.org/licenses/by-nc/4.0/

JURNAL RISET INFORMATIKA
Vol. 3, No. 2 March 2021

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v3i2.188

139

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

this study there are recommendations from
researchers to compare systematic testing
techniques to random techniques with a given time
limit practically because they assume random
techniques must have the same "power" compared
to systematic techniques so that there may be other
testing techniques that can overcome the time
required. Limited compared to using random
techniques.

RESEARCH METHODS

This study uses methods to verify, validate,

and test the hospital information system program.
The methods used are Equivalence Partitioning (EP),
Boundary Value Analysis (BVA), and Decision Table
added with the Line of Code (LOC) approach to count
the number of rows before using the Decision Table
and after using the Decision Table. These three
methods are part of the Black Box Testing method.
Black Box Testing is a software testing technique
that focuses on the functional specifications of the
software being developed (Jaya, 2018). The way
Black Box Testing works is only to check the output
value based on the software input value without
knowing what program code is used.

Equivalence Partitioning (EP) or what is
often called Equivalence Class Partitioning (ECP) is a
technique or method that produces test data from
several system requirements by grouping or
dividing input data and testing the data in order to
get several understandable and feasible categories
(Jahanbin & Zamani, 2018). From these methods,
there are several combinations that can occur in
Equivalence Partitioning, including:
a. Valid and invalid input values
b. A numeric value that is negative, positive, or

zero
c. An empty, non-empty string

Boundary Value Analysis (BVA) (Ardana,
2019) is a technique of the Black Box Testing method
that focuses on the input process by testing the
values at the upper and lower limits. There are three
principles that underlie the Boundary Value Analysis
(BVA) method are:
a. Many errors occur with input errors
b. Select a test case that tests the limits of input

values
c. BVA is a part of Equivalence Partitioning that

selects elements in the equivalence class at the
value limit.

Decision Table is one of the techniques of
the Black Box Testing method that uses tables to
perform testing and can also be used to shorten the
logic flow of software programming. Decision Table
Testing (Joosten et al., 2020) is a software testing
technique used to test software on different input

combinations by combining different input and
output values and summarizing them into a table.
Decision Table is also often referred to as a cause and
effect table because of the several causes and effects
used to create a Decision Table.

The reason the decision table is quite
important is as follows (Joosten et al., 2020):
1. Very helpful in test design techniques.
2. Help testers to look for the effect of the

combination of various inputs and the status of
other software that must implement business
rules properly.

3. Provide a regular way to express complex
business rules, which is beneficial for both
developers and testers.

4. Assist in the development process with a
developer to do a better job. Testing with all
combinations might not be practical.

5. This method is basically a technique used in
testing and managing requirements.

6. This method is a structured exercise to prepare
the requirements when dealing with complex
business rules.

7. It can also be used in complex logic models.

Line of code or what is often referred to as the
source line of code (SLOC) is a software metric that
is often used to measure the size and complexity of a
software project. There are two main types of SLOC
calculations, namely Physical SLOC (P-SLOC) and
Logical SLOC (L-SLOC). The definition of P-SLOC is
the line count in the source code text of the program
as well as comment lines and blank lines.

Meanwhile, L-SLOC is responsible for
measuring the number of expressions that can be
executed. The intended expressions are operators,
functions, etc. So if there is one or more statements
which are followed by the end-of-line comment is a
line of code and is counted into L-SLOC. Meanwhile,
comment lines and blank lines will not be counted
into L-SLOC. In addition to Physical SLOC, Logical
SLOC, comment line of code (CLOC), blank line of
code (BLOC), there are also code & comment source
line of code (C & SLOC) and comment words
(CWORD). To find out the calculation of the number
of lines in a source code such as P-SLOC, L-SLOC, and
others, below is an example of source code:

#include <iostream>

#include <conio.h>

#include <windows.h>

using namespace std;

int main ()

{

char lagi;

int name;

int option;

int number;

int paid;

http://creativecommons.org/licenses/by-nc/4.0/

P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v3i2.188

JURNAL RISET INFORMATIKA
Vol. 3, No. 2 March 2021

140

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

int price;

int total;

int code;

// create menu list

// cout << endl ends list;

early:

system("cls");

cout<<"======================"<<endl;

cout<<"+++++++ Keday kopi balog

+++++++"<<endl;

cout<<"====Menu========Harga=="<<endl;

cout<<"1. Black coffee Rp.10000"<<endl;

cout<<"2. Coffee mocca Rp.15000"<<endl;

cout<<"3. Coffee milk Rp.9000"<<endl;

cout<<"4. Love coffee Rp.20000"<<endl;

cout<<"5. Pineapple juiceRp.10000"<<endl;

cout<<"6. Avocado juice Rp.12000"<<endl;

cout<<"7. Orange juice Rp.10000"<<endl;

cout<<endl; //end

cout<<"Enter Your Selection (1-7) =";

cin>>code;

From the sample source code above, the

number of P-SLOC is 29, the number of L-SLOC is 24,
the number of BLOC is 1, the number of CLOC is 2. In
the source code above, there are C & SLOC and
CWORD. The part which is C & SLOC is
‘cout<<endl;//selesai’. whereas for CWORD it is
‘create’, ‘list’, ‘menu’, ‘cout<<endl’, ‘ends’, ‘list;’, and
‘end’

Research Material

This study uses html and php files from a
medical information system. The medical record
program will be tested first by checking the patient
number on the medical record. After being tested
properly, the medical record program can be used in
the hospital. The contents of the html and php files
are part of the patient registration form which is part
of the medical information system. The initial
display of the registration form on the medical
information system is shown in Figure 1.

Figure. 1. Patient registration section

In this method, the equivalence class

partitioning will test the input value of the
registration form to determine whether the form
input is valid or not. Then the Boundary Value
Analysis method tests the input value limits on the
registration form. Then, in the detail section,
services and inpatient services are processed using
the decision table and LOC approaches to calculate
the estimated number of rows before using the
decision table and after using the decision table. The
data used in the decision table is shown in table 1:

Table 1 Dataset of Operating services
Conditio
n Stub

Operatin
g
Services

Scalling
Castrasi
OH
Sectio Caecaria
Ortopedica

Services Public
Lab
Grooming
ETC

Action Stub no need for
hospitalization
infectious space
hospitalization
non-infectious space
hospitalization
hospitalized healthy room
advance payment Rp.
3.000.000
advance payment Rp.
3.500.000
advance payment Rp.
2.500.000

http://creativecommons.org/licenses/by-nc/4.0/

JURNAL RISET INFORMATIKA
Vol. 3, No. 2 March 2021

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v3i2.188

141

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

RESULTS AND DISCUSSION

This study uses three methods of Black Box
Testing, namely Equivalence Class Partitioning,
Boundary Value Analysis, and Decision Table
coupled with the LOC approach to estimate the
calculation of the number of program lines. To find
out the percentage of valid and invalid test cases, this
study used the standard testing metrics formula
(Akshatha & Illango, 2018).

𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 𝑃𝑎𝑠𝑠 % = (
𝑁𝑜.𝑜𝑓 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 𝑝𝑎𝑠𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝐶𝑎𝑠𝑒𝑠
) 𝑥 100 (1)

From the equivalence class partitioning method,

the test results are obtained as in the Table 2 below:

Table 2 Testing the Equivalence Class Partitioning

No Menu Elements Rule Data used E. Result Result Statue
1 Nama Pemilik Min input of 1 char a data is not

saved
stored data Fail

2 Nama Pemilik Input 3-20 char adi stored data stored data Pass
3 Nama Pemilik Input 3-20 char,

strings & numbers
Ad1n$e data is not

saved
stored data Fail

4 Nomor Telepon Min input of 1
number

1 data is not
saved

stored data Fail

5 Nomor Telepon Input 10 – 13
number

0812345679 stored data stored data Pass

6 Nomor Telepon Input other than
numbers

Asds$@ data is not
saved

stored data Fail

7 Alamat Min input 1 char a data is not
saved

stored data Fail

8 Alamat Input at least 10
char & numbers

Jl. Kaliurang
no 70

stored data stored data Pass

9 Alamat Input char,
numbers, & strings

Jl. K@l1urang
no 118

data is not
saved

stored data Fail

10 Nama Hewan Min input 1 char a data is not
saved

stored data Fail

11 Nama Hewan Input 3-25 char Leo stored data stored data Pass
12 Nama Hewan Input 3 – 20 char,

string, & num
@sing data is not

saved
stored data Fail

13 Ras Min input 1 char a data is not
saved

stored data Fail

14 Ras Input 3-25 char Kampung stored data stored data Pass
15 Ras Input 3 – 20 char,

string, & numbers
@sing data is not

saved
stored data Fail

16 Jenis Kelamin Please select a
gender

Jantan stored data stored data Pass

17 Jenis Kelamin Not choose - Asked to
choose

Must
choose a
gender

Pass

18 Tanggal Lahir Input number 03-04-1990 stored data stored data Pass
19 Tanggal Lahir Input other than

numbers
sadef@#$ Cannot be

typed
Must be
number

Pass

From the test results in Table 2, there were 19
test cases consisting of 9 valid or pass test cases and
10 invalid or failed test cases. So that the percentage
of valid test cases is 47.4% and the percentage of
invalid test cases is 52.6%.

In the BVA method, test results are obtained as in
Table 3:

http://creativecommons.org/licenses/by-nc/4.0/

P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v3i2.188

JURNAL RISET INFORMATIKA
Vol. 3, No. 2 March 2021

142

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

Table 3 Testing the Boundary Value Analysis
N
o

Menu
element

Rule Data used E. Result Result Statu
s

1 Nama Pemilik Empty it Data is not
saved

The message "Please fill
in" appears

Pass

2 Nama Pemilik Min input of 1
char

a Data is not
saved

Stored data Fail

3 Nama Pemilik Min input of 3
char

adi Stored data Stored data Pass

4 Nomor
Telepon

Empty it Data is not
saved

The message "Please fill
in" appears

Pass

5 Nomor
Telepon

Min input of 1
number

1 Data is not
saved

Stored data Fail

6 Nomor
Telepon

Input 10 – 13
number

0812345679 Stored data Stored data Pass

7 Nomor
Telepon

Input more
than 13
numbers

0912345678919
2

Data is not
saved

Stored data Fail

8 Alamat Empty it Data is not
saved

The message "Please fill
in" appears

Pass

9 Alamat Min input of 1
char

a Data is not
saved

Stored data Fail

1
0

Alamat Input at least
10 char &
numbers

Jl. Kaliurang no
70

Stored data Stored data Pass

1
1

Nama Hewan Empty it Data is not
saved

The message "Please fill
in" appears

Pass

1
2

Nama Hewan Min input of 1
char

a Data is not
saved

Stored data Fail

1
3

Nama Hewan Input 3-25
char

Leo Stored data Stored data Pass

1
4

Nama Hewan Input above 25
char

Sadhadsgyqwew
wqegwuqegwrw
qrwqrwqr

Data is not
saved

Stored data Fail

1
5

Ras Empty it Data is not
saved

The message "Please fill
in" appears

Pass

1
6

Ras Min input of 1
char

a Data is not
saved

Stored data Fail

1
7

Ras Input 3-25
char

Kampung Stored data Stored data Pass

1
8

Ras Input above 25
char

@sing Data is not
saved

Stored data Fail

1
9

Jenis kelamin Empty it Data is not
saved

The message "Please fill
in" appears

Pass

2
0

Jenis Kelamin Please select a
gender

Jantan stored data stored data Pass

2
1

Tanggal Lahir Input number 03-04-1990 stored data stored data Pass

2
2

Tanggal Lahir Input other
than numbers

sadef@#$ Cannot be typed Must be number Pass

From the test results in Table 3, there are 22 test

cases consisting of 14 valid or pass test cases and 8
invalid or failed test cases. So that the percentage of
valid test cases is 63.6% and the percentage of
invalid test cases is 36.4%.

For the decision table method, the part that is
processed and tested is the operation service section
and the selection of inpatients. In both parts, a rule
shortening process is carried out so that when
choosing an operating service with another service,

it will be notified whether it needs to be switched in
or not. The result of the shortening rule from the
decision table is shown in figure 2.

http://creativecommons.org/licenses/by-nc/4.0/

JURNAL RISET INFORMATIKA
Vol. 3, No. 2 March 2021

P-ISSN: 2656-1743 |E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v3i2.188

143

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

Figure. 2. The result of the decision table

From the results of the shortened rule, when

implemented into the algorithm, the number of
algorithm lines is reduced due to the algorithm being
changed and the result of the number of lines of code
is shown in Table 4.

Table 4 Comparison of LOC before and after the

decision table
 Before use

Decision
Table

After use
Decision Table
(Estimation)

LOC 466 425
P-SLOC 456 415
L-SLOC 111 111
BLOC 6 6

C&SLOC 1 1
CLOC 4 4

CWORD 10 10

After getting the final amount of LOC, the next

step is to calculate the LOC efficiency. The formula
for finding the LOC efficiency is:

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑂𝐶 𝑎𝑚𝑜𝑢𝑛𝑡−𝐹𝑖𝑛𝑎𝑙 𝐿𝑂𝐶 𝑎𝑚𝑜𝑢𝑛𝑡

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑂𝐶 𝑎𝑚𝑜𝑢𝑛𝑡
𝑥100% (2)

In the LOC calculation, the results are as follows:

Efficiency of LOC =
466−425

466
𝑥100% = 8,8% (3)

In the P-SLOC calculation, the results are as

follows:

Efficiency of P-SLOC =
456−415

456
𝑥100% = 9% (4)

In testing using the decision table method,

there are 32 test cases from the Scaling operation
service with other services. When the input of
Scaling operating services is True and Public
services is True, the output expectation is infectious
space hospitalization and Advance Payment of Rp.
3,000,000. When the input of Scaling operating
services is True and Grooming services is True, then
the output expectation is no need for
hospitalization. When the input of Scaling operating
services is True and Lab or ETC services is True,
then the expected output is non-infectious space

hospitalization and Advance Payment of Rp.
3,500,000. The test result becomes an error if other
input is outside of the four test cases above.
Likewise with testing Castrasi operation services
with other services.

CONCLUSIONS AND SUGGESTIONS

Conclusion

This study is a continuation of previous
research that only shortened the rule by using a
decision table (Joosten et al., 2020). From the
results of the research above, the percentage of
valid ECPs is lower than invalid ones, so the
software needs to be fixed. For the BVA test results,
the percentage of valid BVA is higher than the
invalid one and can be increased again which is the
valid part so that the BVA test is even better. For
testing using the decision table and LOC approach,
after changes to the code part of the program were
made, the number of LOCs was reduced and the LOC
efficiency was 8.8% and the P-SLOC was 9% so that
it became efficient. In addition to reducing rules,
testing is also carried out on the operation service
section with other services.

Suggestion

From this research it is hoped that there
will be other methods that can be combined with the
three methods so that it is more efficient and the
testing is getting better so that it does not take a
long time and is expensive

REFERENCES

Akshatha, V., & Illango, V. (2018). A Comparative

Analysis On Equivalence class partitioning
And Boundary value analysis. International
Journal of Recent Trends in Engineering and
Research, 4(3), 542–554.
https://doi.org/10.23883/ijrter.2018.4163.2
aczv

Ardana, I. M. S. (2019). Pengujian Software
Menggunakan Metode Boundary Value
Analysis dan Decision Table Testing. Jurnal
Teknologi Informasi ESIT, 14(11), 40–47.

Bohme, M., & Paul, S. (2016). A Probabilistic
Analysis of the Efficiency of Automated
Software Testing. IEEE Transactions on
Software Engineering, 42(4), 345–360.
https://doi.org/10.1109/TSE.2015.2487274

Hierons, R. M., & Member, S. (2015). for Distributed
Testing. IEEE Transactions on Software
Engineering, 41(3), 279–293.

Jahanbin, S., & Zamani, B. (2018). Test model

http://creativecommons.org/licenses/by-nc/4.0/

P-ISSN: 2656-1743 | E-ISSN: 2656-1735
DOI: https://doi.org/10.34288/jri.v3i2.188

JURNAL RISET INFORMATIKA
Vol. 3, No. 2 March 2021

144

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License

generation using equivalence partitioning.
2018 8th International Conference on
Computer and Knowledge Engineering, ICCKE
2018, Iccke, 98–103.
https://doi.org/10.1109/ICCKE.2018.85663
35

Jaya, T. S. (2018). Pengujian Aplikasi dengan Metode
Blackbox Testing Boundary Value Analysis
(Studi Kasus: Kantor Digital Politeknik Negeri
Lampung). Jurnal Informatika Pengembangan
IT (JPIT), 3(2), 45–46.
http://www.ejournal.poltektegal.ac.id/index.
php/informatika/article/view/647/640

Joosten, J., Permanasari, A. E., & Adji, T. B. (2020).
The use of decision table for reducing complex
rules in software testing. IOP Conference
Series: Materials Science and Engineering,
732(1). https://doi.org/10.1088/1757-
899X/732/1/012086

Khalid, R. (2017). Towards an automated tool for
software testing and analysis. Proceedings of
2017 14th International Bhurban Conference
on Applied Sciences and Technology, IBCAST
2017, 461–465.
https://doi.org/10.1109/IBCAST.2017.7868
094

Lynch, J. (2017). The Worst Computer Bugs in
History: The Ariane 5 Disaster.
Https://Www.Bugsnag.Com/Blog/Bug-Day-
Ariane-5-Disaster.
https://www.bugsnag.com/blog/bug-day-
ariane-5-disaster

Rep, N. (2002). The Economic Impacts of Inadequate
Infrastructure for Software Testing.
Http://Www.Abeacha.Com/NIST_press_relea
se_bugs_cost.Htm.
http://www.abeacha.com/NIST_press_releas
e_bugs_cost.htm

Satrio, C. ., Saputra, M. ., & Rachmadi, A. (2018).
Perbandingan test case generation dengan
pendekatan genetic algorithm mutation

analysis dan sampling. Jurnal Pengembangan
Teknologi Informasi Dan Ilmu Komputer, 2(1).

Shahbazi, A., & Miller, J. (2016). Black-Box String
Test Case Generation through a Multi-
Objective Optimization. IEEE Transactions on
Software Engineering, 42(4), 361–378.
https://doi.org/10.1109/TSE.2015.2487958

Solution, Q. (2018). Masih Bertanya Kenapa Anda
Harus Melakukan Testing Pada Software? Ini
Alasannya”.
Http://Www.Quadras.Co.Id/2016/05/25/Ma
sih-Bertanya-Kenapa-Anda-Harus-
Melakukan-Testing-Pada-Software-Ini-
Alasannya/.
http://www.quadras.co.id/2016/05/25/mas
ih-bertanya-kenapa-anda-harus-melakukan-
testing-pada-software-ini-alasannya/

Spolsky, J. (2020). Top Five (Wrong) Reasons You
Don’t Have Testers.
Https://Www.Joelonsoftware.Com/2000/04
/30/Top-Five-Wrong-Reasons-You-Dont-
Have-Testers/.
https://www.joelonsoftware.com/2000/04/
30/top-five-wrong-reasons-you-dont-have-
testers/

Wong, W. E., Gao, R., Li, Y., Abreu, R., & Wotawa, F.
(2016). A survey on software fault
localization. IEEE Transactions on Software
Engineering, 42(8), 707–740.
https://doi.org/10.1109/TSE.2016.2521368

Xu, D., Xu, W., Kent, M., Thomas, L., & Wang, L.
(2015). An automated test generation
technique for software quality assurance.
IEEE Transactions on Reliability, 64(1), 247–
268.
https://doi.org/10.1109/TR.2014.2354172

http://creativecommons.org/licenses/by-nc/4.0/

