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Abstract: 

 

      Heat transfer behavior for non-Newtonian power law fluids flow in  circular duct with laminar 

flow, fully developed, constant heat flux. And constant wall temperature was studied. A 

mathematical model which is capable of accurately predicting temperature and velocity profiles and 

heat transfer rates for power law non-Newtonian fluids was obtained. The theoretical Nussult 

number was compared with previously published works where good agreement was noticed, which 

can be easily evaluated using theoretical model as a function of power law index only for constant 

heat flux and as a function of power law index and Graets number for constant wall temperature. It 

was found find that Nussult Number decreases when values of power index increases. 

Keywords: Heat transfer; non-notonian; power law fluid; power law exponent. 
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 : Nomenclature  

Heat capacity of fluid, J/kg.k                                                                           pc      

  Consistency coefficient for pipe flow at temperature of bulk fluid         ( )
bpk  

Consistency coefficient for pipe flow at temperature of wall                   ( )
wpk 

 Mass flow rate of fluid,Kg/s                                                                               m     

                 Power law index                                                                                         n 

 Radial coordinate                                                                                       r 
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 Duct radius,M                                                                                                 R  

 Fluid temperature, K                                                                                     T  

 Bulk temperature, K                                                                                       bT  

 Center temperature, K                                                                                     cT  

 Wall temperature, K                                                                                            wT  

 Density of fluid, Kg/m
3
                                                                                     ρ   

Thermal diffusivity of fluid                                                                               α  

Shear stress                                                                                                  τ  

β Coefficient of volume expansion   

Gz  Graetz number     

Nu Nusselt number  

u  Velocity,M/s 

u   Mean velocity       

P   Pressure, N/m
2 

 Introduction: 

 

       Fluids treated in the classical theory of fluid mechanics and heat transfer rate are the ideal 

(perfect) fluid and Newtonian fluid. The former is completely frictionless so that shear stress is 

absent. The latter simply has a linear relationship between the shear stress and shear rate. Since 

world ware II, the study of real fluids used in the mechanical and chemical industries has become 

increasingly important; mainly because of sever limitations in the application of ideal and 

Newtonian theories to real situations. Most real fluids exhibit so called non-Newtonian behavior, 

which means that the shear stress is no longer linearly proportional to the velocity gradient 

(popovaska, 1977). 

          An understanding of the heat transfer behavior of these non-Newtonian fluids is important in 

as much as most of the industries chemical and many fluids in the food processing and biochemical 

industries are visco-elastic in nature and undergo heat exchanger processes either application 

(Gottifredi, 1985). 

        The Graetz-Nussult problem in heat transfer theory involved the finding of the temperature 

profile and heat transfer rate in a fully developed laminar flow of Newtonian and non-Newtonian 

fluids inside circular ducts. Several works (Richardson, 1979),( Rohsenow, 1985)and (Shah, 1987) 

investigation this problem both experimentally and theoretically, unfortunate none of them 

presented complete analytical solution therefore the presents work attempt to: 

• Developing a mathematical model, this is capable of accurately predicting temperature and 

velocity profiles and heat transfer rates for power law model non-Newtonian fluids. 
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Previous Work:  

In view of its industrial importance heat transfer in tubes become the subject of 

considerable study of the main contribution have recently been comprehensive reviewed by 

(Holland,1970) and only the brief summary of the various types of approaches  will be given here. 

For constant heat flux condition, solution is available by (Rohsenow, 1973) for circular 

ducts: 
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(Gottifredi, 1985) modified the Leveque correlation for non-Newtonian fluids, by 

suggesting the following modified version of the relationship between the mean Nussult number, 

Nu, and the Graetz number, Gz, for constant wall temperature conditions in tube flow: 
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Although, these correlations have little theoretical basis, but they have been used for engineering 

design purpose (Bird, 1977). 

Mathematical Model: 

The governing equation for the Graetz-Nusslt problems is obtained by applying an energy 

balance for circular duct. The model was based on the following assumptions: 

1. The flow is laminar and steady. 

2. Conduction of heat transfer in the axial direction is negligible relative to radial 

conduction, which is justified when Re Pr  ≈  100. 

3. Physical properties are constant. 

4. No distribution for momentum and velocity in axial direction. 

5. The tube wall temperature or heat flux is constant. 

 On the basis the simplified equation of motion, energy and continuity are as follows: 

Equation of motion  
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Equation of energy  
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Equation of continuity  
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1- Velocity profile in fully developed Laminar Flow:  

An analysis of laminar heat transfer for non-Newtonian fluids requires an understanding of the 

hydrodynamic behavior of these fluids. The analytical procedure to obtain the velocity profile for 

non-Newtonian fluids with the power-law model is exactly the same as for Newtonian fluids except 

for the specification of the shear stress in the momentum equation. The assumption of the power-

law fluid particularly in the laminar flow regime is a good approximation for most non-Newtonian 

fluids. 

With the power law equation, shear stress in a circular tube is,  
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Using this equation and the equation of motion, equation (3). Since the pressure is independent of 

r,the equation of motion can be integrated directly twice with respect to r and the boundary 

conditions: 

B.C.1       0=
∂

∂

r

u
                 at r = 0  

B.C.2        u = 0                    at r = R    

Yielding the fully developed velocity profile 

)7..(........................................)(1
4

)(

12









−−=

+

n

n

R

r

k

R

dx

dp
u  

 However, it is more useful to express the velocity in terms of mean velocity u   rather than 

the pressure gradient
)(

dx

dp
−

. If we now substituted velocity in to equation of continuity, eqn. (5), 

and integrate to obtains:  
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 Or expressions the results in term of the maximum velocity o
u

 by using B.C.3 
o

uu =     at    

r = 0 
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For n less than 1, this gives a velocity flatter than the parabolic profile of Newtonian fluids. As n 

approaches zero, the velocity profile predicted by this equation approaches plug flow profile. 

2- Temperature profile in fully developed Laminar Flow: 

There are at least two boundary conditions, for which it will be possible to integrate the energy 

equation directly with respect to r, Treat it as an ordinary differential equation, the possible 

conditions constant heat flux and constant wall temperature: 

Case I. constant heat flux: 

Technically, constant heat flux problems arises in a number of situation; electric resistance heating, 

radiant heating, nuclear heating, and in counter current heat exchangers where fluid capacity rates 

are the same. Therefore, 

The term 
x

T

∂

∂
 is constant  

The applicable boundary conditions are:  

B.C.1 r = 0                T = Tc 

B.C.2   r = 0              0=
∂

∂

r

T
  

Substituting into equation (4) the velocity profile, Eqn. (10) to get :  
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This equation can now be directly integrated twice with respect to r,  
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For convenience Tb is defined as the mixed mean fluid temperature, this temperature is 

sometimes referred to as the mass averaged temperature bulk fluid temperature, or mixing cup 

temperature. It is the temperature which characteristic defined the average thermal energy state of 

the fluid. This may be calculated from:  
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If equation (10) and equation (12) are substituted for u and T, then this equation can be readily 

integrated to yield:  
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coefficient is calculated from:  
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 The temperature gradient is given by:  
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Using B.C.3 r = R       T = Tw  
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Substituting the two previous Eqns. in to Eqn. (16) gives:  
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 Or expressions the results in term of the Nussult number as following :  
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Case II : constant wall temperature :  

 It occurs in such heat exchanger as evaporators, condensers, and in fact, any heat exchanger 

where one fluid has a very much higher capacity rate than the other.  

The term x

T

∂

∂

 is not constant  

Introduce the dimensionless quantities as followings  
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The dimensionless partial differential energy equation, Eqn. (4 ) , can be written as :  
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With boundary condition  
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By applying the separation of variable technique and letting :  
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The complete solution be a linear combination of products of the form :  
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Where Ci is arbitrary constant , which determined by using the first boundary condition and the 

orthogonality of the eigen -  functions can be evaluated from the following :  
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The integral in this equation can be numerically evaluated . We now turn to the evaluation of the 

Nusselt number as :  
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The temperature gradient as :  
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Substitution the velocity and temperature profiles give :  
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The Nussult number is then given by :  
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For large ξ we need only the term in each sum so that :  
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Results and Discussions:  

A theoretical treatment is present which allows redial temperature and velocity profiles to be 

predicted when power law (Ostwald equation) non-Newtonian fluid in laminar flow with fully 

developed, constant heat flux, and constant wall temperature to exit in circular duct. For n (power 

law exponent) less than 1, this gives a velocity flatter than the parabolic profile of Newtonian fluid. 

As n approaches zero, the velocity profile predicted by this equation approach plug flow profile 

.Also for increasing value of n gradually, Nu is decreases with constant heat flux and constant wall 

temperature 

The rate of heat transfer and the fluid exit temperature is simply evaluated by using temperature 

profile in equation (12) for constant heat flux and in equation (19) for constant wall temperature. 

       It can easily be evaluated using theoretical model as a function of power law index only, for 

constant heat flux as in equation (18), and as a function of power law index and Graets number for 

constant wall temperature as in equation (26). Table(l) shows the results for different n values, the 

results can be compared with the corresponding predictions, where the asymptotic, downstream, 

Nussult number for both the isothermal wall condition (constant Wall temperature) and the uniform 

heat flux (constant heat flux) are shown in Figure (1) 

Conclusions:    

In conclusion, it is obvious from the above discussions that for n (power law exponent) less 

than 1, this give a velocity flatter than the parabolic profile of Newtonian fluid. As n approaches 

zero, the velocity profile predicted by this equation approach plug flow profile .Also for increasing 

value of n gradually, Nu is decreases with constant heat flux and constant wall temperature. This 

work finds many practical applications in petroleum drilling, manufacturing of foods, production of 

polymers and slurries. More importantly, the boundary layer concept of non – Newtonian power 

law fluid has application in the reduction of frictional drags in many engineering process. 
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Table (1):Nussult Number for Two Boundary conditions 

 

Constant Heat Flux 

( xq ,Uniform) 

Constant Wall Temperature 

( wT ,Uniform) 

Power Index 

n 

Nussult Number 

Nu 

Eign value 
2

1
β  

Nussult Number 

Nu 

0.0 8.000 2.408 5.800 

0.2 5.517 2.203 4.851 

0.5 4.746 2.013 4.050 

0.8 4.468 1.937 3.752 

1.0 4.364 1.897 3.603 

1.5 4.214 1.857 3.452 

2.0 4.134 1.844 3.400 

3.0 4.051 1.841 3.391 

4.0 4.007 1.838 3.383 
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Figure (1): Fully Developed Nussult Number for Laminar flow of a power Law non Newtonian 

fluid in a tube. 


