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Abstract

A simplified computational procedure for shear buckling problems of rectangular thin plates with
constant and variable thickness is presented. The discretization of the problem is carried out by
means of finite differences. Geometric and material non-linearity are neglected. The effect of
boundary conditions, aspect ratios, and tapering ratios on the shear buckling behavior is considered.
The plate was analyzed with different tapering ratios (¢,/t,) (1.0, 1.25, 1.5, 1.75, and 2.0). It is
concluded that the shear buckling behavior of thin plate is very sensitive to the magnitude of
tapering ratio.

Keyword: Finite differences, Eigen-value problem, Buckling behavior, Rectangular plates, Tapered
plates
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Notations
A = 6h; +6h, +8h_h,
a,b =Plate dimension in x and y- directions respectively.
[B] = In-plane stiffness matrix.
B, =—-4h; (h} +h;)
B, =—4h; (h} +h;})
2,2
C =2hyh;
¢ = clamped edge.
;= (ta -1, )/ at, =Slope coefficient in- the plate.

D = Er2 12{1=v2) Modulus of Rigidity.
D,y = Eed, /12{1-?)

D, =hj

D, =h}

E =Modulus of Elasticity.
hy .hy =Mesh size at x and y-direction, respectively.

[K] = Bending stiffness matrix.
Ny, Ny, Ny, = In-plane forces.

q= Transverse load.

s = Simple supported edge.

t = Plate thickness.

t, = Thickness at the side x=a.

t,, = Average thickness ((¢,+,)/2).
t, = Thickness at the side x=0.

v =Poisson’s ratio.

w = Out-of-plane displacement.

Introduction

Thin plate elements used in naval and aeronautical structures are often subjected to normal
(Figure 1) and shearing forces acting in the plane of the plate. If such in-plane forces are
sufficiently small, the equilibrium is stable and the resulting deformations are characterized by the
absence of the lateral displacements. As the magnitude of these in-plane forces increases, at certain
load intensity, a marked change in the character of the deformation pattern takes place. That is,
simultaneously with the in-plane deformations, lateral displacements are introduced. In this
condition, the originally stable equilibrium becomes unstable and the plate is said to have buckled.
The load producing this condition is called the critical load. The importance of the critical load is
the initiation of a deflection pattern, which, if the load is further increased rapidly leads to very
large deflections and eventually to complete failure of the plate. This is a dangerous condition,

which must be avoided.
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Though considerable amount of information is available on the buckling of isotropic and
orthotropic plates of constant thickness with different boundary conditions and subjected to various
types of loading [ e.g. Salvadori (1949), Timoshenko and Gere (1961)], there are limited number of
research works on rectangular plates with variable thickness. Chehil and Dua (1973) investigated
the buckling behavior of simply supported rectangular plates with a linear thickness variation in one
direction. They employed perturbation method to solve the governing equation of rectangular plate
with variable thickness. Kobayashi and Sonoda (1990) used a power series method with the used of
a coordinate transformation to solve analytically the buckling problem of uniaxially compressed
rectangular plates with linearly tapered thickness. Chin, ef al (1993) used finite element method to
predict the buckling capacity of arbitrary shaped thin-walled members under any general load and
boundary conditions. Ohga, et al (1995) used analytical procedure for the elastic buckling problems
of thin-walled members with variable thickness cross section by using the transfer matrix method.
More recently, Hussain, et al (2002) used the finite difference method to estimate buckling factor of
rectangular plate with variable thickness cross section. The present paper is concerned with the
elastic buckling behavior of rectangular thin plate with variable thickness under shear load with
types of boundary conditions. In this study, a simplified finite difference method used to solve the
governing differential equation of plates with variable thickness. The influences of thickness

variation, plate aspect ratios, and boundary conditions on the buckling load are examined.

Governing Equation and Solution

The buckling of isotropic rectangular plates with linearly tapered thickness in the x-direction is

considered as shown in Figure 2. The plate is subjected to uniform compressive load in y-direction.

The thickness {*) and moment of inertia 1 (*) are expressed as: -
t(x)=t,(1+c;x) 6))
I1(x)=1,1+¢,x)3 @)

in which ¢t =g~y )/ at"; Lo and la denote the thickness at the sides ¥ =0 and X=a,

_4+3
respectively; I, =1, / 12

is the second moment of area(per unit width) for the plate cross section at
the side ¥ =0
Within the classical small deflection theory of thin plates, the differential equation for the

rectangular plate under consideration can be written in the form [Hussain, et al (2002)]: -

2, (33w 33w | I2(3%*w  3*w 1 92w
A v e b e e RS )
x \ox”  dxdy x \ ox oy (x) X0y
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in which
3 2
D(y) = Et(x)/IZ(l—v )
varying with respect to x).
9 ot 9
=——+2 +
ox4 8x28y2 ay4
I, =1,(1+c;x)°
I, =3c,I,(1+c,x)?

17 =6c1,(1+c,x)
The solution of Equation (3) may be achieved by finite difference method as shown in Figure 3. By

= is the flexural (or bending) rigidity of the section of the plate (and this is

V4

applying the finite difference molecules at the interior nodes of the subdivided plate, the following
system of simultaneous linear equations in matrices will be obtained: -
[k {w}+AlBlw}=0 @
where the matrices [K ]and [B]may be named as follows:
[K ]: is the stiffness matrix for the plate
[B]: is the geometry matrix for the plate
Notice that Equation (4) is an Eigen-value problem. For a given thickness (to,ta) and plate—

aspect ratio a/b, the Eigen-value (A) can be determined numerically by using any relevant

technique. The smallest Eigen-value gives the most (fundamental) buckling load.

Numerical Results

Since accuracy of the buckling load depends on the mesh size and on the order finite difference
approximation. The mesh effect has been investigated for a square plate. Table (1) gives a measure
of convergence as a function of mesh size. It can be seen that a (16 X 16) mesh for this problem that

gives results to within (2%) of the exact results (9.350)().

Comparison with Other Theoretical Studies

Figure (4) shows a comparison of the buckling coefficient, which are obtained by the finite
difference method and theoretical results by [Timoshenko and Gere (1961)] for two boundary
conditions of all simply supported edges and all clamped edges. Good agreement with theoretical

results is achieved for every boundary condition.
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Parametric Study

The effects of boundary condition and tapering ratio on the buckling behavior under shear load are

studied.
Figures (5-10) present the relation between buckling coefficient (kg =2N xyh,%h% D,,)

and aspect ratio (a/b) of a rectangular thin plate with different boundary conditions and different
tapering ratios. The plate is analyzed with different tapering ratios (Z,/t,) (1.0, 1.25, 1.5, 1.75, and
2.0). The aspect ratio (a/b) is taken to be in range (0.5 and 3.0). the boundary conditions are taken
to be as [ all simply supported edges (ssss), three edges simply supported and other edge clamped
(sssc), two edges simply supported and other clamped edges (sscc), three edges clamped and other
edge simply supported (sccc), all edges clamped (cccc), and two edges simply supported and other
edges clamped (scsc)] .

From these figures, it can be seen that: -

1. The buckling coefficients decrease when the aspect ratio increases.

2. The buckling coefficients decrease when the tapering ratio increases (for the same volume
of the plate).

3. The decreasing in the buckling coefficients when the aspect ratio (a/b) <1.0 less than the
decreasing in the buckling coefficients when the aspect ratio (a/b) >1.0.

4. The decreasing in the buckling coefficients in plate with boundary condition (sscc) more

than the decreasing in the buckling coefficient in plate with boundary condition (scsc).

Conclusions

A finite difference method has been employed to solve numerically the buckling problem of
rectangular plates with linearly tapered thickness under shear load. The effect of plate aspect ratio,
boundary condition, and tapering ratio on the buckling behavior are considered. The values of
buckling coefficients decrease with an increase in the tapering ratio (for the same volume of the

plate).
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Table (1): Convergence of buckling coefficient (kSh) for a square simply supported with
constant thickness (a/b=1.0)

Shear Buckling
coefficient

8x 8 10.137
10x 10 9.824
12x12 9.661
14 x 14 9.570
16 X 16 9.511
18 x 18 9.470
20 x 20 9.440

Mesh size

Figure (1): Plate under a general pattern of combined external loads
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(a) Plate under axial (b) Plate cross section.

Figure (2): Rectangular thin plate with variable thickness under axial shear load
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Figure (3): Plate equation in finite difference molecule form
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Figure (4): Comparison of buckling coefficient (kSh ) of rectangular thin plate with

constant thickness
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Figure (5): Comparison of buckling coefficient (kSh) of rectangular thin plate with
all edges simply supported
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Figure (6): Comparison of buckling coefficient (kSh) of rectangular thin plate with
three edges simply supported and other edge clamped
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Figure (7): Comparison of buckling coefficient (kSh) of rectangular thin plate with
two edges simply supported and other edges clamped
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Figure (8): Comparison of buckling coefficient (kSh) of rectangular thin plate with
three edges clamped and other edge simply supported
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Figure (9): Comparison of buckling coefficient (kSh) of rectangular thin plate with
all edges clamped
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Figure (10): Comparison of buckling coefficient (kSh) of rectangular thin plate with
two edges simply supported and other edges clamped

ooy



