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ABSTRACT 

 The present work is concerned with the free convective two dimensional flow and heat transfer, in 

isotropic fluid filled porous rectangular enclosure with differentially heated walls for steady state 

incompressible flow have been investigated for non-Darcy flow model. Effects of Darcy number 

(0.0001  Da  10), Rayleigh number (10  Ra  5000), and aspect ratio (0.25  AR  4), for a range of 

porosity (0.4    0.9) with and without moving lower wall have been studied. The cavity was 

insulated at the lower and upper surfaces. The right and left heated surfaces allows convective transport 

through the porous medium, generating a thermal stratification and flow circulations. It was found that 

the Darcy number, Rayleigh number, aspect ratio, and porosity considerably influenced characteristics 

of flow and heat transfer mechanisms. The results obtained are discussed in terms of the Nusselt 

number, vectors, contours, and isotherms.  

 

Keywords: Numerical study, moving-wall cavity, porous medium, Darcy and Rayleigh numbers. 

 

 انتقال الحرارة بالحمل الحر في حيز مملوء بوسط مسامي مع وبدون تحريك جدار معزول
 

قسم هندسة المكائن والمعدات –الجامعة التكنولوجية  –م.د. ليث جعفر حبيب   
 

 الخلاصة

مستطيل مملوء بمادة  ان العمل الحالي يبحث انتقال الحرارة والجريان للحمل الحر ثنائي البعد في مائع ذو خواص ثابتة  في حيز  

تم دراسة تأثير رقم  دارسي. -مسامية ذو جدران مسخنة بشكل مختلف وذلك للحالة الثابتة لجريان غير قابل للإنضغاط لنموذج جريان لا

 0.4)لمدى نفاذية  ( AR  4 0.25)ونسبة العرض للإرتفاع   ( Ra  5000 10)ورقم رايلي  ( Da  10 0.0001)دارسي 

   0.9)  مع وبدون تحريك الجدار السفلي للحيز. لقد تم عزل السطحين العلوي والسفلي للتجويف.  وان السطحين الايمن والايسر

قم رايلي يسمحان لإنتقال الحمل خلال الوسط المسامي وينتج عن ذلك طبقات حرارية ودوامات جريان. لقد وجد بأن رقم دارسي ور

تؤثر بشكل كبير على الجريان وميكانيكية انتقال حرارة. لقد تم مناقشة النتائج  عواملهي المسامية ونسبة العرض للإرتفاع و

 المستحصلة برسم اشكال لرقم نسلت ومتجهات وكونتورات ومستويات درجات حرارة.

 

Nomenclature 

AR Aspect ratio 

c Micro velocity vector 

e Discrete velocity 

F Total body force due to the presence of porous media 

fi Discretized density distribution function 

fi
eq 

Discretized equilibrium density distribution function 
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G Boussinesq effect 

g Acceleration due to gravity 

gi Discretized internal energy distribution function 

gi
eq 

Discretized equilibrium internal energy distribution function 

H Characteristic length 

j Vertical direction opposite to that of gravity 

K Permeability 

p Pressure 

T Temperature 

Tm Average temperature 

t Time 

Ulid Moving lower wall velocity 

u Velocity vector 

x Position 

Greek Symbols 

 Bulk coefficient 

 Thermal diffusivity 

∆t Time step 

 Porosity 

ρ Density 

 Time relaxation 

 Kinematic viscosity 

 Effective viscosity 

 Weight coefficient 

Non-dimensional Numbers 

Nu Nusselt number 

Pr Prandtl number 

Ra Rayleigh number 

Da Darcy number 

  

I. INTRODUCTION 

A basic understanding of fluid flow and heat transfer in a lid-driven cavity filled with saturated 

porous medium with buoyancy effect for steady state case is important in many areas such as solar 

power collector, nuclear energy systems, chemical processing equipment, coating and industrial 

processes, galvanizing and metal coating, float glass manufacturing, dynamics of lakes and large 

reservoirs, crystal growth, food processing and so on. Numerous investigations have been conducted in 

the past on lid-driven cavity flow and heat transfer considering various combinations of the imposed 

temperature gradients and cavity configurations. Such configurations can be idealized by the simple 

rectangular geometry with regular boundary conditions yielding a well-posed problem. The resulting 

flow however, is rather complex even when the flow is purely shear driven for the isothermal case 

without any temperature gradient. When a temperature gradient is imposed such that the shear driven 

and buoyancy effects are of comparable magnitude then the resulting flow falls under the convection 

regime and the interaction and coupling of these effects makes the analysis more complex. In recent 

years, the Lattice Boltzmann Method (LBM) has received considerable attention as an alternative 

approach for simulating wide range of fluid flow. Unlike other numerical methods, LBM predicts the 

evolution of particle distribution function and calculates the macroscopic variables by taking moment 
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to the distribution function. (Nithiarasu et al 1997) outlined a double-diffusive natural convection in a 

fluid saturated porous medium using the finite element method. A generalized porous medium model 

was used to study both Darcy and non-Darcy flow regimes in an axisymmetric cavity. Results indicated 

that the Darcy number should be a separate parameter to understand flow characteristics in non-Darcy 

regime. It was also observed that an increase in radius ratio leads to higher Nusselt and Sherwood 

numbers along the inner wall. (Hakan 2006) performed a numerical work to analyze combined 

convection heat transfer and fluid flow in a partially heated porous lid-driven enclosure. The top wall 

of enclosure moves from left to right with constant velocity and temperature. Heater with finite length 

was located on the fixed wall where its center of location changes along the walls. The results were 

shown that the best heat transfer was formed when the heater was located on the left vertical wall. 

(Hakan 2007) investigated numerically the natural convection heat transfer in a partially cooled and 

inclined rectangular enclosure filled with saturated porous medium. One of side wall has constant hot 

temperature and one adjacent wall is partially cooled while the remaining ones were adiabatic. It was 

found that inclination angle was the dominant parameter on heat transfer and fluid flow as well as 

aspect ratio. (Ayad 2008) studied numerically two–dimensional, steady natural convection in a 

rectangular cavity filled with a heat generating saturated porous medium for the case when the vertical 

walls of the cavity were isothermal and the horizontal walls were either adiabatic or cold. The thermal 

convection flow together with the uniform heat generating produces a highly stratified medium at high 

Rayleigh numbers. The change in the horizontal wall boundary condition from adiabatic to cold 

reduces (max) also it was found that heat transfer increase with increasing Rayleigh number while it 

decrease with aspect ratio. (Wang 2009) studied the lid-driven rectangular cavity containing a porous 

Darcy–Brinkman medium. It was found that the porous medium effect decreases both the strength and 

the number of recirculating eddies, especially for deep cavities. (Mohd et al 2010) investigated fluid 

flow behavior through porous media in a lid-driven square cavity. The Brinkman-Forcheimer equation 

was coupled with the lattice Boltzmann formulation to predict the velocity field in the system. They 

found that the magnitude of velocity, strength of vortex and velocity boundary layer was significantly 

affected porosity of the media. The lattice Boltzmann simulation scheme was capable in prediction of 

fluid flow behavior through porous media. (Mohamed and Wael 2010) concerned with the mixed 

convection in a rectangular lid-driven cavity under the combined buoyancy effects of thermal and mass 

diffusion. Double-diffusive convective flow in a rectangular enclosure with moving upper surface is 

studied numerically. Both upper and lower surfaces are being insulated and impermeable. Constant 

different temperatures and concentration are imposed along the vertical walls of the enclosure. In 

addition, the predicted results for both local and average Nusselt and Sherwood numbers are presented 

and discussed for various parametric conditions. (MOHD 2010) applied (LBM) to predict the 

phenomenon of natural convection in a generalized isotropic porous media model filled in a square 

geometry by introducing a force term to the evolution equation and porosity to the density equilibrium 

distribution function. The model was used for simulation at ε equal to 0.4, 0.6 and 0.9. (Waheed et al 

2011) investigated numerically the mixed convective heat transfer in a fluid-saturated porous medium 

using the generalized non-Darcy model. The flow governing parameters including the Darcy, 

Richardson and Péclet numbers, and the length-to-height aspect ratio were varied in the range 10
-3

 ≤  

Da ≤ 10, 0.1 ≤  Ri ≤  10, 1 ≤  Pe ≤ 10
3
 and 0.5 ≤ AR ≤  4 respectively while the Reynolds number was 

held constant at a value of Re = 100 for all computations. The results showed that all the flow 

governing parameters have strong influence on the flow pattern and heat distribution within the 

enclosure. (Prakash and Satyamurty 2011) investigated the free convective flow and heat transfer, in an 

anisotropic fluid filled porous rectangular enclosure using Brinkman extended non-Darcy flow model. 

The studies involve simultaneous consideration of hydrodynamic and thermal anisotropy. However, the 

magnitude of the change in average Nusselt number depends on the parameter Da, characterizing the 

Brinkman extended non-Darcy flow. (Antonio 2012) used lattice-Boltzmann equation method to 

simulate non-Darcy flow in porous media. 2-D in-line and staggered arrangements of uniform cylinders 
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have been considered. The results of a comprehensive computational evaluation were reported: the 

range of validity of Darcy-Forchheimer equation was investigated and correlations for macroscopic 

transport properties were presented. His investigation covered both no-slip and the slip-flow regimes. 

(Wenchao and Yueying 2012) built dimensionless mathematical models of one-dimensional flow in the 

semi-infinite long porous media with threshold pressure gradient for the two cases of constant flow rate 

and constant production pressure on the inner boundaries. Through formula deduction, it was found 

that the velocity of the moving boundary is proportional to the second derivative of the unknown 

pressure function with respect to the distance parameter on the moving boundary, which is very 

different from the classical heat-conduction Stefan problems. It was shown that for the case of constant 

flow rate the effect of the dimensionless threshold pressure gradient on the dimensionless pressure 

distributions and the transient dimensionless production pressure was not very obvious; in contrast, for 

the case of constant production pressure the effect on the dimensionless pressure distributions was 

more obvious especially at the larger dimensionless distance near the moving boundary; and for the 

case of constant production pressure, the smaller the dimensionless threshold pressure gradient was, the 

larger the dimensionless pressure is, and the further the pressure disturbance area reached. 

From the available literature, the study of moving wall –such as lower wall- of an enclosure filled 

with porous medium with wide range of Darcy and Rayleigh numbers are limited. So, my concern in 

this work is to study the effects of Darcy number, Rayleigh number, and aspect ratio for a range of 

porosity with and without moving lower wall which are not covered in the previous works. 

 

II.  PROBLEM DEFINITION AND GOVERNING EQUATIONS 

 

A. Physical Model 

A schematic of the system in the present study is shown in Figure 1. The system consists of a 

square enclosure with sides of length H, filled with a fluid saturated porous medium and Prandlt 

number (Pr) =1.0. The problem has been studied assuming that the gravitational acceleration acts in the 

negative y-direction. As the square enclosure are long enough, so the flow is consider to be two 

dimensional, the fluid and the solid matrix are in thermal equilibrium, and the porous medium is 

homogeneous. This study will be limited to: steady state incompressible fluid flow, square enclosure 

with differentially heated walls, isotropic porous media, and non-Darcy region. 

 The directions of vortex rotation generated under the 84 different conditions were examined here. 

Always the left and right walls are subjected to hot and cold temperatures (non-dimensions 1.0 and 0.0) 

respectively, and the upper and lower walls are insulated (assumed to be adiabatic). The moving lid or 

wall is considered to be the lower one in this study, which is moved to the right (+x direction).  

In cases (1-18) -for this study- no wall movement is applied for Darcy number (Da = 0.0001, 

0.001, 0.01, 0.1 1.0, and 10.0) each at porosity ( = 0.4, 0.6, and 0.9) and Rayleigh number (Ra = 10
4
).  

In cases (19-36) the lower wall is moving at 0.2 m/s and for Darcy number (Da = 0.0001, 0.001, 

0.01, 0.1 1.0, and 10.0) each at porosity ( = 0.4, 0.6, and 0.9) and Rayleigh number (Ra = 10
4
) to study 

the movement effect. 

In cases (37-54) again no wall movement is considered for Rayleigh number (Ra = 10, 50, 100, 

500, 1000, and 5000) each at porosity ( = 0.4, 0.6, and 0.9) and Darcy number (Da = 0.01).   

In cases (55-72) the lower wall is moving at 0.2 m/s and again for Rayleigh number (Ra = 10, 50, 

100, 500, 1000, and 5000) each at porosity ( = 0.4, 0.6, and 0.9) and Darcy number (Da = 0.01) to 

show the movement effect. 

In cases (73-78), a stationary wall is required at (Ra = 1000), (Da = 0.01), and aspect ratio (AR = 

0.25 and 4.0) each at porosity ( = 0.4, 0.6, and 0.9) respectively. 
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In cases (79-84), a moving wall is required at (Ra = 1000), (Da = 0.01), and aspect ratio (AR = 

0.25 and 4.0) each at porosity ( = 0.4, 0.6, and 0.9) respectively to study the movement effect. 

All these cases are studied in this paper, and only selected cases are mentioned for not to be 

extensive.  

 

B. Materials and Methods 

Following [6], [8], and [13] the generalized model for incompressible fluid flow through porous 

media can be expressed by the following equations: 

  

0u                     (1) 

 

       Fup 1u utu 2                      (2) 

 

F represents the total body force due to the presence of porous media and is given by: 

 

    G u u K15075.1u KF                      (3) 

 

The permeability (K) of which can be related to no dimensional parameter of Darcy number Da as 

follow: 
2HDaK                     (4) 

 

In the formulation of LBM, the starting point is the evolution equation, discrete in space and time, 

for a set of distribution functions f. If a two-dimensional nine-velocity model (D2Q9) is used for flow 

field and two-dimensional four-speed (D2Q4) Lattice Boltzmann equation (LBE) model is used to 

simulate the temperature field, then the evolution equations for a given f and g takes the following 

forms: 

 

         i
eq

iifiii Ft,xft,xf1t,xftt,texf                  

 (5) 
 

        t,xgt,xg1t,xgtt,texg eq
iigiii                    

  (6) 

 

Where  i = 0,1,…,8  for  f   and  i = 1,2,3,4  for  g. 

 

Where distribution function fi  s used to calculate density and velocity fields while distribution 

function is used to gi to calculate temperature field. Here, e denotes the discrete velocity set and 

expressed as: 

 

 
   

 















8-5i      ,11,      

4-1i   ,1,0,1,0

0i           ,0,0      

ei                   (7) 
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fi
eq

 , gi
eq

 are equilibrium distribution functions, the choice of which determines the physics inherent in 

the simulation. For D2Q9 and (D2Q4) models, fi
eq

 and  gi
eq

  are expressed as: 

 

          
22

iii
eq

i u23ue29ue31f                (8) 

 

    2
i

eq
4,3,2,1 c/ue141Tg                     (9) 

 

Where, the weights are 0= 4/9, 1-4= 1/9 and 5-8= 1/36. The time relaxation and the effective 

viscosity can be related as follow: 

 

    2131                    (10) 

 

In order to obtain the correct macroscopic governing equations, the forcing term Fi must be 

expressed in terms of medium porosity as follow: 

 

         Fuee:uFFeF iiiii  393211
2

              

   (11) 

The macroscopic density and the macroscopic flow velocity can then be calculated as follow: 





9

1i

eq
if                  (12) 

 

G/2) (/fev
i ii                    (13) 

and: 

 vcccvu 1
2
00                   (14) 

where: 

  K150275.1c   and   2K21c 2
10                       

 

It is noted that, if we set  = 1, the Lattice Boltzmann equation reduces to the standard equation of 

free fluid flows. 

 

Boussinesq approximation is applied to the buoyancy force term. With this approximation, it is 

assumed that all fluid properties are constant except for density change with temperature.   

 

  jTTgG m                  (15) 

 

The dynamical similarity depends on three dimensionless parameters: the Prandtl number (Pr), 

Rayleigh number (Ra) and Nusselt number (Nu). 

 /Pr                  (16) 

 

   /LTTRa 3
ch                  (17) 
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     

H

0

H

0

x
2 dy dx)y,x(q H1 THNu                  (18) 

Where:   )y,x(T x/uT)y,x(qx   is the local heat flux in x-direction. 

  

III. NUMERICAL SIMULATION 

The present algorithm used is the same in [8] and [13], it begin with main program with seven 

subroutines. The program is modified to fulfill the required different present cases and to handle more 

complex geometries. The numerical data obtained for each node are used to plot graphical 

representation of vectors, contours and isotherms. Simulations were done by programming which uses 

Fortran PowerStation 4.0 (Microsoft Developer Studio). Desktop PC with Intel (R) Core(TM)2 Quad 

CPU, 3 GHz processor and 4.00 GB RAM was used to run the simulation. 

  

Numerical stability and iteration to converge need the particles to be at equilibrium state. This will 

be obtained by manipulating the value of the time relaxation. The value of time relaxation needs to be 

closer to 1 (1.1). The closer time relaxation to 1, the more number of particles will be exchanged to 

equilibrium state.  The main iteration is repeated until a convergence solution is obtained at 

convergence criteria for the velocity less than 110
-8

. In the simulations, mesh sizes (101101), 

(20151), and (51201) were used for cases (1-72), (73-75 & 79-81), and (76-78 & 82-84) 

respectively. 

The calculations of average Nusselt numbers for the present program are compared early by [8] or 

[13] with other single phase fluid results for different values of Rayleigh number and the present 

Lattice Boltzmann model for simulation of Brinkman-Forchheimer equation is verified. The 

comparison showed that the obtained Nusselt number is acceptable.  

 

IV. RESULTS AND DISCUSSION  

The results are presented for (84) different cases corresponding to thirty six Darcy-porosity effects, 

moreover to thirty six Rayleigh-porosity relationships and twelve aspect ratio-porosity arrangements all 

with and without moving wall. The best case of moving wall is when the lower wall is moving to the 

right and the maximum heat transfer occurs at 0.2 m/s as concluded in [13] for Ra = 1000,  = 0.7, and 

Da = 0.01. Thus in this work at moving wall cases, the lower wall is moving to the right at 0.2 m/s. The 

basic features of flow and heat transfer are analyzed with the help of the vectors, contour patterns and 

isothermal contours. Also, average Nusselt numbers for all cases are tabulated and velocity components 

are plotted. Some of the results (that I find paper to compare with) have the same behavior of the 

similar published cases. Heat transfer in low speed lid-driven cavity flow is treated mostly as mixed 

convection. The flow driven by the movement of the wall is creating a forced convection conditions 

while temperature difference across the cavity causes a buoyancy driven, secondary flow. Thus, 

complicated patterns of heat and mass transfer occur inside the cavity. 

 

A. Darcy Number and Movement Effect 

Figure 2 shows the velocity vectors and temperature contours for the stationary wall for the square 

cavity filled with porous medium at Ra = 10
4
 and thermal diffusivity ( = 0.2) . Figure 2-A and B 

show the velocity vectors with y-component velocity contours and temperature contours respectively 

for Da = 0.0001 and  = 0.4. The vectors form a clockwise unicellular circulating flow pattern.  One 

big upper clockwise vortex is appeared because of the density effect due to heating. For the isotherms, 

it can be observed that they are mostly parallel to the vertical hot and cold walls indicating that 
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conductive heat transfer dominates.  Figure 2-C predicts the velocity vectors with y-component 

velocity contours for Da = 0.0001 and  = 0.9. Porosity does not seem to significantly affect the pattern 

only for the vortex center to be moved upward. Figure 2-D illustrates the temperature contours for Da 

= 0.01 and  = 0.6. As the Darcy number and the porosity increase, there is a tendency of the lines to 

becoming less parallel. This is due to the fact that the inertial and non-linear drag terms are becoming 

less significant as the porosity increases, leading to higher dimensionless flow velocities which start to 

initiate convection. Also, at a lower Darcy number of 10
4
, the velocity vectors (not shown here) are 

seen to violate the no-slip condition, with maximum magnitude near the wall.   This is a typical 

characteristic of approximately Darcian flow regime. With increase in Darcy number 10
2
, the flow 

satisfies the no-slip boundary condition on the walls. The point to be noted here is , the present 

generalized flow model predicts both the slip flow at lower Darcy numbers (near Darcian regime) and 

the no-slip flow condition at higher Darcy numbers (non-Darcian flow regime). Figure 2-E shows the 

velocity vectors with y-component velocity contours for Da = 1.0 and  = 0.4. The elliptic shape of the 

vectors or of the vortex flow and the circular shape of the y-component velocity contours are now 

obvious. As the Darcy number and porosity increase, the circular shape vortex becomes more elliptic.  

 

Figure 3 shows the temperature contours and velocity vectors for the lower wall movement for the 

square cavity filled with porous medium at Ra = 10
4
 and thermal diffusivity ( = 0.2). 

Figure 3-A, B, and C shows the temperature contours at Da = 0.0001 and  = 0.4, 0.6, and 0.9 

respectively. It is obvious that the lines are now mostly curvature. Convection dominates at this 

Rayleigh number condition and as the porosity increase; the curvature effect becomes stronger due to 

the fact that the inertial and non-linear drag terms are becoming less significant as the porosity 

increases, leading to higher dimensionless flow velocities which make convection more vigorous. 

However at areas near to the walls, heat conduction still dominates. The viscous effect from the walls 

retards the momentum of buoyancy force initiated by the differentially heated walls which slows down 

convective effect. The moving lid transfers the heat from the left side and the vortex caries the heat to 

the center. Figure 3-D predicts the velocity vectors at Da = 0.01 and  = 0.9. When the lower wall 

moves to the right, two counterclockwise vortices are generated in the whole domain and a small 

clockwise vortex is generated near the left wall. Figure 3-E illustrates the temperature contours at Da = 

10.0 and  = 0.9. As it shown, the isotherms are distributed in whole domain resulting high Nusselt 

number.    

 

Figure 4 shows the relationship between the average Nusselt number and Darcy number with and 

without movement at various porosities. When the Darcy number increases, the average Nusselt 

number is increases. But a significant increase in the average Nusselt number is detected at Darcy 

number range (0.0001-0.01) after that a small increase is noticed. As porosity increases, the average 

Nusselt number increases. A large increase in average Nusselt number is obtained when the lower wall 

is moved.   

 

B. Rayleigh Number and Movement Effect 

Figure 5 shows the velocities distributions (u) or x-component along the box height and (v) or y-

component along the box width for Da = 0.01 with and without movement. Velocity components are 

plotted at mid width of the cavity and mid-height of the cavity respectively at different Rayleigh 

number and porosity. Figure 5-A shows the velocity distributions (x-component) for Ra = 10, 50, and 

100 and  = 0.4, 0.6, and 0.9 without movement. At the top of the cavity, a significant increase in x-

component velocity as Rayleigh number and porosity are increase. Figure 5-B shows the velocity 

distributions (y-component) for Ra = 500, 1000, and 5000 and the same porosity range without 

movement. A significant increase in y-component velocity as Rayleigh number and porosity are 
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increase in the left hand side (+ values) and R.H.S. (- values). Figure 5-C shows the x-component 

velocity for Ra = 10 and  = 0.4, 0.6, and 0.9 with movement. The velocity of the flow is higher near 

the hot vertical wall and it decreases continually with an increase in the horizontal distance. Figure 5-D 

shows the y-component velocity for Ra = 10 again at the same porosity range. The velocity of the flow 

is higher at the upper half of the cavity than that of bottom half. In the moving wall cases, a small 

increase in the velocity components due to Ra increase because of the high velocity magnitude of the 

moving wall comparing with the velocities of natural convection without movement.  

 

C.   Aspect ratio and movement effect 

Figure 6 depicts the velocity vector with y-component velocity contours and temperature contour 

for AR = 0.25 and 4.0 at Ra = 1000 and Da = 0.01 with and without lower wall-driven. Figure 6-A and 

B show the velocity vectors with y-component velocity contours and temperature contours respectively 

at AR = 0.25 and  = 0.4 without movement. One big clockwise vortex is appeared in the middle of the 

cavity approximately. The isotherms are being curvature near the hot wall and become vertical 

wherever it gets closer to the cold wall. Figure 6-C illustrates temperature contours at AR = 0.25 and  
= 0.9 again without movement. More curvature isotherms are being observed with higher temperatures 

near the hot wall. Figure 6-D, E, and F shows velocity vectors with y-component velocity contours at 

AR = 0.25 and  = 0.4, 0.6, and 0.9 respectively with lower wall-driven. When porosity increases, 

movement would be spread well and vortex is formed to transfer fluid and heat. Figure 6-G and H 

shows velocity vectors and y-component velocity contours at AR = 4.0 and  = 0.6 without movement. 

For a deep cavities there exists a string of eddies of rapidly decreasing strength. Note that the strengths 

of the deep eddies are very small, thus has little effect on the transport properties of the cavity. Figure 

6-I and J illustrates velocity vectors and y-component velocity contours at AR = 4.0 and  = 0.9 with 

lower wall-driven. More relevant is the dominant eddy adjacent to the moving lid. 

 

Figure 7 shows the velocities distributions (u) or x-component along the box height and (v) or y-

component along the box width for AR = 0.25 and 4.0 at Ra = 1000 and Da = 0.01 with and without 

lower wall-driven. Velocity components are plotted at mid width of the cavity and mid-height of the 

cavity respectively at different porosity. Figure 7-A, B, C, and D depicts x-components and y-

components velocities for AR = 0.25 and 4.0 respectively at  = 0.4, 0.6, and 0.9 for the case of no 

movement. Figure 7-E, F, G, and H depicts x-components and y-components velocities for AR = 0.25 

and 4.0 respectively at  = 0.4, 0.6, and 0.9 for the case of lower wall-driven. The effect of the moving 

wall is clear on the velocity distributions. The y-component velocity of flow is higher at the upper half 

of the cavity than that of bottom half. But for the x-component velocity is higher near the hot wall and 

it decreases continually with an increase in the horizontal distance.  

 

Finally, table 1 tabulated the average Nusselt number Nu  for aspect ratio and movement effects. 

The conclusions from this table are: 

  

1- The effect of wall movement in average Nusselt number is clear for all cases. The improvement is 

reach to 79 %. 

2- The highest average Nusselt number is in case (78) for AR = 0.25 and  = 0.9 with movement 

( Nu 3.2) (i.e. moving the big horizontal wall).  

3- Cases (73, 74, and 75) are refused because they reduce the average Nusselt number compared with 

AR = 1.0 (i.e. horizontal position without movement at AR = 0.25 and  = 0.4, 0.6, and 0.9).  

4- The average Nusselt number increases as the porosity increases for the movement cases.  

5- At the same porosity, as aspect ratio decreases the average Nusselt number decreases for no 
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movement cases. And at the same porosity, as aspect ratio decreases the average Nusselt number 

increases for movement cases. 
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Table 1 Average Nusselt number for aspect ratio and movement effects. 

 

AR  Ulid = 0.0 m/s Ulid = 0.2 m/s 

0.25 

0.4 0.7884136 1.311706 

0.6 0.7170379 1.785798 

0.9 0.6652881 3.217035 

1.0 

0.4 0.9989753 1.222328 

0.6 0.9958305 1.591573 

0.9 0.9915955 2.031172 

4.0 

0.4 1.011749 1.051095 

0.6 1.011716 1.069172 

0.9 1.011661 1.088600 

 

                                        

 

 

     

                                        

 

 

 

                         

 

 

 

 

 

Figure 1 Schematic diagram for the physical model with the wall boundary constraints and the 

coordinate axes. 
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Figure 2 Velocity vectors, contours and temperature contours for stationary wall cavity at Ra = 10
4
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Figure 3 Temperature contours and velocity vectors for moving lower wall cavity at Ra = 10
4
. 
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Figure 4 Average Nusselt number and Darcy number with and without movement. 

     

       
Figure 5 Velocities distributions at different Ra and . 
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Figure 6 Velocities distributions at different Ra and . 
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Figure 7 Velocities distributions at different Ra and . 
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