Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

DATA COMPRESSION FOR DNA SEQUENCE

Assist.Lec. Asaad Sumoom Daghal
Technical College-Najaf
Department of Technical Communication Engineering
Asaadasaad2000@yahoo.com

ABSTRACT

DNA Sequences making up any organism comprise the basic blueprint of that organism so that
understanding and analyzing different genes within sequences has become an extremely important
task. Biologists are producing huge volumes of DNA sequences every day that makes genome
sequence database growing exponentially. The databases such as Gen-Bank represent millions of
DNA sequences filling many thousands of gigabytes computer storage capacity. Hence an
efficient algorithm to compress DNA sequence is required. In this paper compression algorithm
which is called “Huffman code tree” is used to code and compress DNA sequences. Depending upon this
algorithm we assigning binary bit codes (0 and 1) for each base (A, T, C, and G). After assigning the
bases by bit codes, we determine the code for each base. Code for each base is determined by
tracing out the path from the root of the tree to the leaf that represents that base.

Huffman code provides a variable code length. In fact the codes for characters having a higher
frequency of occurrence are shorter than those codes for characters having lower frequency. So this
algorithm compress DNA sequences better than from old method (fixed length) if we assigning 2
bits per base. From analysis the results, average code length (1.62 bits/base) can be achieved using
this algorithm. For a higher compression ratio advised to use other compression method with the
proposed method such as the learning automata.

KEY WORDS: DNA, Huffman Code, Compression
553 Gaeal) Lljgiad clibyl) b

DB asam drd . 3ol (ujda
L) ol Atia pd | i Al A0S

LAl
Jilaiy agh o Gy SN 13 ulid) bhidll Jaly (a SIS Y (gooil Gmeall cildlsie JS
GlaS la¥l slle miy ag IS 8 AL Ay dege Cinpal LGl e dabiddl cilial)
o Gllall 2l L ahhl 3aliie agiall Glly tacl Jasy L 13 ¢ gosill Gmeadl Judid (0 dediia
o VT sae) Jual 38 (A dmas zliad) gesill meall Judud (e cpdlall Jia cilial) ol
1 8 gestll paeadl dudid haral Alled d)ld slhae (JAlls L JigneSll da e Culilagall

26

mailto:Asaadasaad2000@yahoo.com

DATA COMPRESSION FOR DNA SEQUENCE

paenll Judidi badimg saegil aadiien " Glaies Sad Je) (cand S derdiud) aaiall due)lsa Sl
2 (A, T,C,G) 52cld JSU (1 50) Al Aadad Gy il 2 e sl oda e lalaie] . g5l
D3 e Jbedl aii Gob e 3B U8 el alay) i aelE JSE el aas ael@ll ee)l sl
saclall el Jugs 3 &y) 5l

058 osehall e LS Ll (Al Gluasdl Gsoll A8Eall 8. e o) dsb Jds Ol Saes
Slillsie Jaami Aa il ey plall old I LG LSS L A Cagpall Gl e el Joh Ll
st ey pacld S dakad 2 Lieadind (il 13 (<l Jsha)iasll ddylll e Juadl gosill el
A o Jpanll L da gl A ylead) alatinly ojladl (Saysacld JSI iy 1,62 3y Jsba Jara il
Al Agyhl) ae V1 el S a0 Ak aladiuly meay (Juadl bkaa

1. INTRODUCTION

The compression of DNA (Deoxyribonucleic Acid) sequences is one of the most challenging
tasks in the field of data compression. Since DNA sequences are “the code of life” we expect them
to be non-random and to present some regularities. It is natural to try taking advantage of such
regularities in order to compactly store the huge DNA data bases which are routinely handled by
molecular biologists. [2]

The amount of DNA being extracted from organisms and sequenced is increasing exponentially.
This yields two problems: storage and comprehension. Despite the prevalence of broadband
network connections, there still exists a need for compact representation of data to speed up
transmission. Transferring a single sequence that is millions of characters long to may take ten to
fifteen minutes over a dial up connection. Compression of genomic sequence can decrease the
storage requirements, and increase the transmission speed.

DNA sequences are comprised of just four different bases labeled A, T, C, and G (for adenine,
thymine, cytosine, and guanine respectively). T pairs with A, and G pairs with C, and can be
coded using two bits per base. According to functionality, DNA manifests different properties
from other kinds of data. Standard compression algorithms for text or image files exploit
small repeated patterns and contextual similarities to achieve compression. However, repeated
patterns in DNA sequences are typically much longer and less frequent, so standard compression
algorithms perform poorly on DNA. The most popular general-purpose encoders of today, such
as gzip [4], which is based on the Lempel-Ziv algorithm [5], and bzip2, based on the
Burrows-Wheeler Transform [7], which usually produces more than two bits per base to
achieve the un-encoded representation. Hence, the quest for efficient DNA compression programs
started to become popular in the competition-driven community of data compression
enthusiasts. DNA sequences are compressible, so they are not random. But they are not
highly compressible. It is therefore necessary for coding methods to be as efficient as possible.
In the context of compression, missing structure will lead to inefficient compression. [3]

2. DATA COMPRESSION:

In computer science and information theory, data compression or source coding is the process of
encoding information using fewer bits (or other information- bearing units) than an un-encoded
representation would use, through use specific encoding schemes. Compression is useful because it
helps reduce the consumption of expensive resources, such as hard disk space or transmission
bandwidth. Compressed data must be decompressed to be used, and this extra processing may be
detrimental to some applications. Therefore, the design of data compression schemes therefore
involves trade-offs among various factors, including the degree of compression and the
computational resources required to compress and uncompress the data. Further some compression

27

Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

algorithms can introduce distortion in data which are known as lossy compression. Lossless
compression algorithms usually exploit statistical redundancy in such a way as to represent the
sender’s data more concisely without error [6]. Lossless compression is possible because most real-
world data has statistical redundancy. For example, in English text, the letter “e€” is much more
common than the letter “z”, and the probability that the letter “q” will be followed by the letter “z”
is very small. Lossless compression exploits the repeats, palindromes and patterns present in the
digital to reduce the over all size.

The ratio of the original, uncompressed data file and the compressed file is referred to as the
compression ratio. The compression ratio is denoted by Equation (1). [1]

sizeof theoriginal file

Compression ratio = — :
sizeof the compressed file

1)

3. HUFFMAN CODING

In computer science and information theory, Huffman coding is an entropy encoding algorithm
used for lossless data compression. The term refers to the use of a variable-length code table for
encoding a source symbol (such as a character in a file) where the variable-length code table has
been derived in a particular way based on the estimated probability of occurrence for each possible
value of the source symbol. It was developed by David A. Huffman.

Huffman coding uses a specific method for choosing the representation for each symbol, resulting
in a prefix code (sometimes called "prefix-free codes"), that is, the bit string representing some
particular symbol is never a prefix of the bit string representing any other symbol that expresses the
most common source symbols using shorter strings of bits than are used for less common source
symbols. Huffman was able to design the most efficient compression method of this type: no other
mapping of individual source symbols to unique strings of bits will produce a smaller average
output size when the actual symbol frequencies agree with those used to create the code. A method
was later found to design a Huffman code in linear time if input probabilities (also known
as weights) are sorted.

Huffman tree generated from the exact frequencies of the text "this is an example of a Huffman
tree”. The frequencies and codes of each character are shown in figure 1 and Table 1. Encoding the
sentence with this code requires 135 bits, as opposed to 288 bits if 36 characters of 8 bits were used

[6].

4. THE AVERAGE CODE LENGTH OR WEIGHTED LENGTH
The average number of bits per base (length) is measured according to the following Equation (2).

[1]]
Lavg = le X P)
i=1

Where
Lag= average code length

| = code length in bits.
P; = Histogram probability.
We can calculate histogram probability (P;) from Equation. (3).

_ Baselength
Sequence length

i 3)

Or we can calculate weighted length from Equation (4). [8]

28

http://en.wikipedia.org/wiki/Variable-length_code
http://en.wikipedia.org/wiki/David_A._Huffman
http://en.wikipedia.org/wiki/Prefix_code
http://en.wikipedia.org/wiki/Linear_time

DATA COMPRESSION FOR DNA SEQUENCE
n - -
w; = > (i) * f (i) @)
i=1

Where
W; = Weighted Extended Path (code length)

I (i) = length of path (number of edges on path) from root to external node labeled i
f (i) = frequency of occurrences of bases

5. CODE EXISTING FOR DNA SEQUENCE

For a DNA (A, C, G, T), in classical code method we can represent it in length by 2 bits per base,
and assigning as (A=00), (C=01), (G=10), (T=11).This yields when the string A, C ,G, T whose
sequence length is 1200, in classical code method (fixed length) , this requires 2400 bits of space.
That’s mean the storage of encoded sequence is almost double its original sequence length [9].

6. PROPOSED ALGORITHM:
The process of proposed algorithm is achieved by constructed Huffman tree, and then derived codes
from it, that are used to calculate the number of bits in the encoded sequence length.

6.1 Structure Of Huffman Tree Codes:
Huffman coding is the based on building a binary tree that holds all characters in source at its leaf
nodes, and with there corresponding characters frequencies (probabilities) at the side. The nodes
from the original tree are called internal nodes. The special nodes are called external nodes. The
following tree shown in Figure 2 is extended binary tree. Empty circles represent internal nodes and
boxes represent external nodes. Every internal node consists of exactly 2 children and every external
node is a leaf.
The tree is built by going through the following steps. [10]
1- Combine the two lowest frequencies (probabilities) and continue this procedure.
2- Assign “0” to higher frequency (prob.) and “1” to lower frequency (prob.) of each pair, or
vice versa.
3- Trace the path for each character frequency from lower to upper point. Recording the one’s
and zeros along the path.
4- Assign each character (message) codes sequentially from right to left.

6.2 Tree Of DNA Sequence {A,C, G, T}:

Because the DNA sequence have only four latter (A, C, G, T), we show that from the Figure 2, the
number of internal node is (3) and the number of external node is (4). Using Figure 2 and
procedure of Huffman code tree, we can built the code of DNA sequence and get the results as:
(A=1, T=00, C=010, G=011)

From the result of code DNA by Huffman tree we show that the four latter always represented by 7
bits and we can calculate weighted length from Equation (4) as:

Calculation of Bits in Encoded sequence = 1*f(a)+2*f(t)+3*f(g)+3*f(c).

6.3 Construct Tree Of DNA Sequence:

We can construct DNA tree and encoded being code step by step as shown below.
(Stepl)

29

Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

A T C G

Frequency 45 43 3 5

(Step 2) Combining the lowest frequency values and assigns code

& | [z |
45 45

(Step 3) Repeat step 2 until the end

30

DATA COMPRESSION FOR DNA SEQUENCE
7. EXAMPLES AND CALCULATIONS:
Example 1: Given Sub Sequence: (aataaaataaaacaaaaaaattaaaagaaaccaaagaattaaaaatta...)
Sequence length = 600.

Base Frequency Code

A 275 1

T 275 00
C 25 010
G 25 011

From equation (4), Number of Bits in Encoded sequence

= 1*f () +2*f (t) +3*f (g) +3*f(c)

= 1*275 + 2* 275 + 3*25 + 3*25

=275+550+ 75+ 75= (975 bits)

number of total bits representbases

From Equation(1): Compression Ratio = -
number of bitsencoded

= 1200 =1.23
975

.". Compression ratio in this case (1.23: 1)

Example 2: Given sub sequence: (ttttcagtgt tagattgctc taattctttg agctgttctc tcagctcctc atatttttct)
Sequence length = 60
Base Frequency Code

T 30 0
C 13 11
A 9 100
G 8 101

Number of Bits in Encoded sequence
= 1*f(t)+2*f(c)+3*f(a)+3*f(q).
= 1*30 +2* 13 + 3*9 + 3*8
= 30+26+27+24 = (107 hits).

Compression Ratio = 120 =1.1214
107

.". Compression ratio in this case (1.1214: 1)

Example3: let us consider the sub sequence: (aggcgtatgcgatcctgaccatgcaa...)
Sequence length = 400

Base Frequency Code

A 50 1
T 50 01
C 50 000
G 50 001

Number of Bits in Encoded sequence
= 1*f (a) +2*f (t) +3*f (g) +3*f(c) = 1*50 + 2* 50 + 3*50 + 3*50
=50+ 100 + 150 + 150 = (450 bits)

Compression Ratio = 400 =0.8889
450

31

Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

In this example (3) the probability (frequency) occurrence of all bases are equally, and that is
represent the worst case. So the Huffman code method is not effective for compression ratio when
the probability occurrences of letter are equally.

Table 2 shows all results (weight length, average code length and compression ratio)

8. COMPARISON WITH OTHER DNA COMPRESSORS

The most natural benchmark for our algorithms is a comparison with the other algorithms designed
to compress DNA sequences. Unfortunately, such a comparison turned out to be a rather difficult
task. The first reason is that the source or executable code of DNA compressors is usually not
available. The second reason is that the huge space and time requirements of most DNA
compressors make it difficult (or impossible) to test them on sequences of significant length

9. CONCLUSION:

The need for effective DNA compression is evident in biological applications where storage and
transmission of DNA are involved. Algorithm using the concept of Huffmn tree is proposed to
compress DNA sequences. The binary trees are used to derive the variable length codes that
satisfy the prefix property. Since Huffman’s code satisfies Prefix property, it’s an efficient way to
encode and decode DNA sequences. Using Huffman code algorithm, it will be easier to compress
DNA sequences but it is not efficient when we use alone to get good compression ratio, because
the DNA sequence is always as pair. This means the likelihood of the occurrence of (A and T) as
well as equal and so on C & G. Therefore, this affects in compression ratio because the Huffman
algorithm depends on the occurrence one of the elements with a high probability and the result is a
short length of bits and this does not occur in DNA sequence. So this is representing the major
limitations of using Huffman code to compress DNA sequence.

10. FUTURE WORK:

DNA sequences may be repetitive or non repetitive, For this we can take advantage of this property
and use another compression techniques such as run length encoding or use Another way such as
learning automata with proposed algorithm (Binary tree Huffman code)

11. REFERENCES:
[1] E.U. Scoot, " Computer Vision and Image Processing: A practical Approach
Using CVIP Tools ", prentice Hall, Inc., 1998
[2] G. Manzini and M. Rastero “ A Simple and Fast DNA Compression” Feburuary 17, 2004

[3] H. Afify,M.lIslam and M.Abdel wahedL.“DNA LossLess Differential Compression Algorithm
Based on similarity of genomic sequence data base.(1JCSI1T) Vol 3, No4, August 2011.

[4] J.Gailly, M.Adler,"gzip(GNUzip) compression utility",
http://www.gnu.org/soft-ware/gzip/

[5] J.Ziv and A.Lempel,"A Universal Algorithm for Sequential Data
Compression™”. IEEE Trans Information Theory, Vol.23,pp.337-343,1977

[6] K. Huffman.” Data Compression and Huffman Coding".
http://en.wikipedia.org/wiki/ data compression, Huffman coding, Sept. 1991

[7] M.Burrows and D.J.Wheeler,"A Block Sorting LossLess Data Compression
Algorithms™, Technical reportl124,Digital System Research center,1994.

[8] R. Rajeswari, A. Apparao and R. Kiran “ Huftbit compress-algorithm to compress DNA
32

http://www.gnu.org/soft-ware/gzip/
http://en.wikipedia.org/wiki/

DATA COMPRESSION FOR DNA SEQUENCE

Sequences using extended binary trees. Jornal of theoretical and applied IT, pp.101-106, 2010.
[9] S. Grumach and F.Tahi,” A New Challenge for Compression Algorithms:
Genetic Sequences”, I.N.R.I.LA, Recquencourt, Bp105, 78153 Le Chesnay France

[10] Y.Q. Shi and H. Sun. “Image and video compression for multimedia engineering
Fundamentals, Algorithms and standars”. Boca Raton London New York Washington,

D.C.2000.
Table 1
Char. | Freq. | Code | Char. | Freq. | Code.
a 4 010 n 2 0010
e 4 000 0 1 00110
f 3 1101 p 1 10011
h 2 1010 r 1 11000
[2 1000 S 2 1011
I 1 11001 | Space 7 111
m 2 0111 t 2 0110
u 1 00111 X 1 10010
Table 2
DNA Weight Average
Sequence Frequent | Probability | Code | length | code length | Compression
length Base base Eq,.(3) base Eq.(4) Bits/base Ratio
Eq.(2) Eq.(1)
Sub A 45 0.45 1
Sequencel | T 45 0.45 00
100 C 5 005 010 165 1.65 1.212:1
G 5 0.05 011
Sub A 275 0.4584 0
Sequence2 | T 275 0.4584 00
G 25 0.0416 011
Sub A 50 0.25 0
Sequence3 | T 50 0.25 11
400 C 50 0.25 100 450 2.25 0.8889: 1
G 50 0.25 101
Sub A 30 0.5 1
Sequence4 | C 13 0.2167 01
60 T 9 0.15 000 107 1.7833 1.1214:1
G 8 0.1333 001

33

Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

16) 20)
(8 8) 8]

ol @ (=9 @ ® @ @°r
2 @ 2 WP 2 @ 02 R @
o1 1)) [

Figure 1 Huffman tree.

0
45 N
T C10 >
1, Qe >,
45
L G
5 5

Figure 2 Huffman tree codes for DNA

34

