
Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

 62

DATA COMPRESSION FOR DNA SEQUENCE

Assist.Lec. Asaad Sumoom Daghal

Technical College-Najaf

Department of Technical Communication Engineering

Asaadasaad2000@yahoo.com

ABSTRACT

DNA Sequences making up any organism comprise the basic blueprint of that organism so that

understanding and analyzing different genes within sequences has become an extremely important

task. Biologists are producing huge volumes of DNA sequences every day that makes genome

sequence database growing exponentially. The databases such as Gen-Bank represent millions of

DNA sequences filling many thousands of gigabytes computer storage capacity. Hence an

efficient algorithm to compress DNA sequence is required. In this paper compression algorithm

which is called “Huffman code tree” is used to code and compress DNA sequences. Depending upon this

algorithm we assigning binary bit codes (0 and 1) for each base (A, T, C, and G). After assigning the

bases by bit codes, we determine the code for each base. Code for each base is determined by

tracing out the path from the root of the tree to the leaf that represents that base.

Huffman code provides a variable code length. In fact the codes for characters having a higher

frequency of occurrence are shorter than those codes for characters having lower frequency. So this

algorithm compress DNA sequences better than from old method (fixed length) if we assigning 2

bits per base. From analysis the results, average code length (1.62 bits/base) can be achieved using

this algorithm. For a higher compression ratio advised to use other compression method with the

proposed method such as the learning automata.

KEY WORDS: DNA, Huffman Code, Compression

 الحمض النووي متواليةضغط البيانات ل

 سموم دغل مدرس مساعد . أسعد
 نجف / قسم هندسة تقنية الاتصالات–الكلية التقنية

 الخلاصة
فهم وتحليل أ الأساسي لهذا الكان بحيث لمخططشمل اي حي ي كان لأمتواليات الحمض النووي تشكل

علماء الأحياء كميات في كل يوم ينتج متواليات أصبحت مهمة هامة للغاية.ال ضم الجينات المختلفة
باطراد. قواعد البيانات مثل متزايدةيجعل قاعدة بيانات الجينوم , هذا ما ة م تسلسل الحمض النووي ضخم

 عدة آلاف م إلىالتي تحتاج سعة خز قد تصل بنك الجينات تمثل الملايي م تسلسل الحمض النووي
ا الحمض النووي. في هذ سلسلفعالة لضغط ت خوارزميةالكمبيوتر. وبالتالي مطلوب الغيغابايت م سعة

mailto:Asaadasaad2000@yahoo.com

DATA COMPRESSION FOR DNA SEQUENCE

 62

تسلسل الحمض ترميز وضغطشجرة هوفما " يستخدم لرمز سمى "تي تال المستخدمةضغط الخوارزمية البحث
. بعد (A, T, C, G)دة (لكل قاع1و 0ثناني) قطعةرمز يتم تأشيرهذه الخوارزمية على النووي. اعتمادا

رمز لكل قاعدة ع طريق تتبع المسار م جذر ال إيجاد م. يتتأشير الرموز للقواعد نجد الرمز لكل قاعدة
 .تمثل تلك القاعدة التي ورقةالالشجرة إلى

التي لها تكرار عالي للظهور يكو رموز لشخصيات ال حقيقةرمز متغير. في الطول هوفما يوفر ترميز
وارزمية المقترحة تضغط متواليات تمثيلها بطول أقصر م الرموز للحروف التي لها تكرار قليل. لذلك فأ الخ

وم تحليل .قطعة لكل قاعدة 6نح استخدمنا إذاالحمض النووي أفضل م الطرقة القديمة)طول ثابت(
. للحصول على نسبة الخوارزمية المقترحةيمك انجازه باستخدام بت لكل قاعدة 1626طول رمز النتانج, معدل
 .مثلا التعلم الآلي مع الطريقة المستخدمة أخرىينصح باستخدام طريقة ,ضغط أفضل

1. INTRODUCTION

The compression of DNA (Deoxyribonucleic Acid) sequences is one of the most challenging

tasks in the field of data compression. Since DNA sequences are “the code of life” we expect them

to be non-random and to present some regularities. It is natural to try taking advantage of such

regularities in order to compactly store the huge DNA data bases which are routinely handled by

molecular biologists. [2]

The amount of DNA being extracted from organisms and sequenced is increasing exponentially.

This yields two problems: storage and comprehension. Despite the prevalence of broadband

network connections, there still exists a need for compact representation of data to speed up

transmission. Transferring a single sequence that is millions of characters long to may take ten to

fifteen minutes over a dial up connection. Compression of genomic sequence can decrease the

storage requirements, and increase the transmission speed.

DNA sequences are comprised of just four different bases labeled A, T, C, and G (for adenine,

thymine, cytosine, and guanine respectively). T pairs with A, and G pairs with C, and can be

coded using two bits per base. According to functionality, DNA manifests different properties

from other kinds of data. Standard compression algorithms for text or image files exploit

small repeated patterns and contextual similarities to achieve compression. However, repeated

patterns in DNA sequences are typically much longer and less frequent, so standard compression

algorithms perform poorly on DNA. The most popular general-purpose encoders of today, such

as gzip [4] , which is based on the Lempel-Ziv algorithm [5], and bzip2, based on the

Burrows-Wheeler T r an s f o rm [7], which usually produces more than two bits per base to

achieve the un-encoded representation. Hence, the quest for efficient DNA compression programs

started to become popular in the competition-driven community of data compression

enthusiasts. DNA sequences are compressible, so they are not random. But they are not

highly compressible. It is therefore necessary for coding methods to be as efficient as possible.

In the context of compression, missing structure will lead to inefficient compression. [3]

2. DATA COMPRESSION:

In computer science and information theory, data compression or source coding is the process of

encoding information using fewer bits (or other information- bearing units) than an un-encoded

representation would use, through use specific encoding schemes. Compression is useful because it

helps reduce the consumption of expensive resources, such as hard disk space or transmission

bandwidth. Compressed data must be decompressed to be used, and this extra processing may be

detrimental to some applications. Therefore, the design of data compression schemes therefore

involves trade-offs among various factors, including the degree of compression and the

computational resources required to compress and uncompress the data. Further some compression

Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

 62

algorithms can introduce distortion in data which are known as lossy compression. Lossless

compression algorithms usually exploit statistical redundancy in such a way as to represent the

sender’s data more concisely without error [6]. Lossless compression is possible because most real-

world data has statistical redundancy. For example, in English text, the letter “e” is much more

common than the letter “z”, and the probability that the letter “q” will be followed by the letter “z”

is very small. Lossless compression exploits the repeats, palindromes and patterns present in the

digital to reduce the over all size.

The ratio of the original, uncompressed data file and the compressed file is referred to as the

compression ratio. The compression ratio is denoted by Equation (1). [1]

Compression ratio =
file compressed theof size

file original theof size
 (1)

3. HUFFMAN CODING
In computer science and information theory, Huffman coding is an entropy encoding algorithm

used for lossless data compression. The term refers to the use of a variable-length code table for

encoding a source symbol (such as a character in a file) where the variable-length code table has

been derived in a particular way based on the estimated probability of occurrence for each possible

value of the source symbol. It was developed by David A. Huffman.

Huffman coding uses a specific method for choosing the representation for each symbol, resulting

in a prefix code (sometimes called "prefix-free codes"), that is, the bit string representing some

particular symbol is never a prefix of the bit string representing any other symbol that expresses the

most common source symbols using shorter strings of bits than are used for less common source

symbols. Huffman was able to design the most efficient compression method of this type: no other

mapping of individual source symbols to unique strings of bits will produce a smaller average

output size when the actual symbol frequencies agree with those used to create the code. A method

was later found to design a Huffman code in linear time if input probabilities (also known

as weights) are sorted.

Huffman tree generated from the exact frequencies of the text "this is an example of a Huffman

tree". The frequencies and codes of each character are shown in figure 1 and Table 1. Encoding the

sentence with this code requires 135 bits, as opposed to 288 bits if 36 characters of 8 bits were used

[6].

4. THE AVERAGE CODE LENGTH OR WEIGHTED LENGTH

The average number of bits per base (length) is measured according to the following Equation (2).

[1]

 i

L

i

iavg plL 
1

 (2)

Where

 Lavg= average code length

 il = code length in bits.

 ip = Histogram probability.

We can calculate histogram probability (ip) from Equation. (3).

length Sequence

length Base
ip (3)

Or we can calculate weighted length from Equation (4). [8]

http://en.wikipedia.org/wiki/Variable-length_code
http://en.wikipedia.org/wiki/David_A._Huffman
http://en.wikipedia.org/wiki/Prefix_code
http://en.wikipedia.org/wiki/Linear_time

DATA COMPRESSION FOR DNA SEQUENCE

 62





n

i
i ifilw

1

)()((4)

Where

iw = Weighted Extended Path (code length)

)(il = length of path (number of edges on path) from root to external node labeled i

)(if = frequency of occurrences of bases

5. CODE EXISTING FOR DNA SEQUENCE
For a DNA (A, C, G, T), in classical code method we can represent it in length by 2 bits per base,

and assigning as (A=00), (C=01), (G=10), (T=11).This yields when the string A, C ,G, T whose

sequence length is 1200, in classical code method (fixed length) , this requires 2400 bits of space.

That’s mean the storage of encoded sequence is almost double its original sequence length [9].

6. PROPOSED ALGORITHM:
The process of proposed algorithm is achieved by constructed Huffman tree, and then derived codes

from it, that are used to calculate the number of bits in the encoded sequence length.

6.1 Structure Of Huffman Tree Codes:
Huffman coding is the based on building a binary tree that holds all characters in source at its leaf

nodes, and with there corresponding characters frequencies (probabilities) at the side. The nodes

from the original tree are called internal nodes. The special nodes are called external nodes. The

following tree shown in Figure 2 is extended binary tree. Empty circles represent internal nodes and

boxes represent external nodes. Every internal node consists of exactly 2 children and every external

node is a leaf.

The tree is built by going through the following steps. [10]

1- Combine the two lowest frequencies (probabilities) and continue this procedure.

2- Assign “0” to higher frequency (prob.) and “1” to lower frequency (prob.) of each pair, or

vice versa.

3- Trace the path for each character frequency from lower to upper point. Recording the one’s

and zeros along the path.

4- Assign each character (message) codes sequentially from right to left.

6.2 Tree Of DNA Sequence {A, C, G, T}:

Because the DNA sequence have only four latter (A, C, G, T), we show that from the Figure 2, the

number of internal node is (3) and the number of external node is (4). Using Figure 2 and

procedure of Huffman code tree, we can built the code of DNA sequence and get the results as:

(A=1, T=00, C=010, G=011)

From the result of code DNA by Huffman tree we show that the four latter always represented by 7

bits and we can calculate weighted length from Equation (4) as:

Calculation of Bits in Encoded sequence = 1*f(a)+2*f(t)+3*f(g)+3*f(c).

6.3 Construct Tree Of DNA Sequence:

We can construct DNA tree and encoded being code step by step as shown below.

(Step1)

Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

 00

(Step 2) Combining the lowest frequency values and assigns code

 (Step 3) Repeat step 2 until the end

DATA COMPRESSION FOR DNA SEQUENCE

 01

7. EXAMPLES AND CALCULATIONS:

Example 1: Given Sub Sequence: (aataaaataaaacaaaaaaattaaaagaaaccaaagaattaaaaatta…)

Sequence length = 600.

Base Frequency Code

A 275 1

T 275 00

C 25 010

G 25 011

From equation (4), Number of Bits in Encoded sequence

= 1*f (a) +2*f (t) +3*f (g) +3*f(c)

= 1*275 + 2* 275 + 3*25 + 3*25

= 275 + 550 + 75 + 75 = (975 bits)

From Equation(1):
encoded bits ofnumber

basesrepresent bits totalofnumber
 Ration Compressio 

23.1
975

1200


 Compression ratio in this case (1.23: 1)

Example 2: Given sub sequence: (ttttcagtgt tagattgctc taattctttg agctgttctc tcagctcctc atatttttct)

Sequence length = 60

Base Frequency Code

T 30 0

C 13 11

A 9 100

G 8 101

Number of Bits in Encoded sequence

= 1*f(t)+2*f(c)+3*f(a)+3*f(g).

 = 1*30 + 2* 13 + 3*9 + 3*8

= 30+26+27+24 = (1 0 7 bits).

 1.1214
107

120
 Ration Compressio 

 Compression ratio in this case (1.1214: 1)

Example3: let us consider the sub sequence: (aggcgtatgcgatcctgaccatgcaa…)

Sequence length = 400

Base Frequency Code

A 50 1

T 50 01

C 50 000

G 50 001

Number of Bits in Encoded sequence

= 1*f (a) +2*f (t) +3*f (g) +3*f(c) = 1*50 + 2* 50 + 3*50 + 3*50

= 50 + 100 + 150 + 150 = (450 bits)

 0.8889
450

400
 Ration Compressio 

Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

 06

In this example (3) the probability (frequency) occurrence of all bases are equally, and that is

represent the worst case. So the Huffman code method is not effective for compression ratio when

the probability occurrences of letter are equally.

Table 2 shows all results (weight length, average code length and compression ratio)

8. COMPARISON WITH OTHER DNA COMPRESSORS

The most natural benchmark for our algorithms is a comparison with the other algorithms designed

to compress DNA sequences. Unfortunately, such a comparison turned out to be a rather difficult

task. The first reason is that the source or executable code of DNA compressors is usually not

available. The second reason is that the huge space and time requirements of most DNA

compressors make it difficult (or impossible) to test them on sequences of significant length

9. CONCLUSION:

The need for effective DNA compression is evident in biological applications where storage and

transmission of DNA are involved. Algorithm using the concept of Huffmn tree is proposed to

compress DNA sequences. The binary trees are used to derive the variable length codes that

satisfy the prefix property. Since Huffman’s code satisfies Prefix property, it’s an efficient way to

encode and decode DNA sequences. Using Huffman code algorithm, it will be easier to compress

DNA sequences but it is not efficient when we use alone to get good compression ratio, because

the DNA sequence is always as pair. This means the likelihood of the occurrence of (A and T) as

well as equal and so on C & G. Therefore, this affects in compression ratio because the Huffman

algorithm depends on the occurrence one of the elements with a high probability and the result is a

short length of bits and this does not occur in DNA sequence. So this is representing the major

limitations of using Huffman code to compress DNA sequence.

10. FUTURE WORK:

DNA sequences may be repetitive or non repetitive, For this we can take advantage of this property

and use another compression techniques such as run length encoding or use Another way such as

learning automata with proposed algorithm (Binary tree Huffman code)

11. REFERENCES:

[1] E. U. Scoot, " Computer Vision and Image Processing: A practical Approach

 Using CVIP Tools ", prentice Hall, Inc., 1998

[2] G. Manzini and M. Rastero “ A Simple and Fast DNA Compression” Feburuary 17, 2004

[3] H. Afify,M.Islam and M.Abdel wahedL.“DNA LossLess Differential Compression Algorithm

 Based on similarity of genomic sequence data base.(I J C S I T) Vol 3, No4, August 2011.

[4] J .Gai l ly, M.Adler ,"gzip(GNUzip) compression uti l i ty",

 ht tp :/ /www.gnu.org/soft -ware/gzip/

[5] J .Ziv and A.Lempel ,"A Universal Algori thm for Sequential Data

 Compression". IEEE Trans Information Theory, Vol .23,pp. 337-343,1977

[6] K. Huffman." Data Compression and Huffman Coding".

 ht tp: / /en.wikipedia.org/wiki/ data compression, Huffman coding, Sept . 1991

[7] M.Burrows and D.J .Wheeler,"A Block Sort ing LossLess Data Compression

 Algori thms", Technical report124,Digital System Research center,1994 .

[8] R. Rajeswari, A. Apparao and R. Kiran “ Huffbit compress-algorithm to compress DNA

http://www.gnu.org/soft-ware/gzip/
http://en.wikipedia.org/wiki/

DATA COMPRESSION FOR DNA SEQUENCE

 00

 Sequences using extended binary trees. Jornal of theoretical and applied IT, pp.101-106, 2010.

[9] S. Grumach and F.Tahi ,” A New Challenge for Compression Algorithms:

 Genetic Sequences”, I.N.R.I.A, Recquencourt, Bp105, 78153 Le Chesnay France

[10] Y.Q. Shi and H. Sun. “Image and video compression for multimedia engineering

 Fundamentals, Algorithms and standars”. Boca Raton London New York Washington,

 D.C.2000.

Table 1

Char. Freq. Code Char. Freq. Code.

a 4 010 n 2 0010

e 4 000 o 1 00110

f 3 1101 p 1 10011

h 2 1010 r 1 11000

i 2 1000 S 2 1011

l 1 11001 Space 7 111

m 2 0111 t 2 0110

u 1 00111 x 1 10010

Table 2

DNA

Sequence

length

Base

Frequent

base

Probability

Eq,.(3)

Code

base

Weight

length

Eq.(4)

Average

code length

Bits/base

Eq.(2)

Compression

Ratio

Eq.(1)

Sub

Sequence 1

100

A 45 0.45 1

165

1.65

1.212: 1
T 45 0.45 00

C 5 0.05 010

G 5 0.05 011

Sub

Sequence 2

600

A 275 0.4584 0

975

1.6248

1.23: 1
T 275 0.4584 00

C 25 0.0416 010

G 25 0.0416 011

Sub

Sequence 3

400

A 50 0.25 0

450

2.25

0.8889: 1
T 50 0.25 11

C 50 0.25 100

G 50 0.25 101

Sub

Sequence 4

60

A 30 0.5 1

107

1.7833

1.1214:1
C 13 0.2167 01

T 9 0.15 000

G 8 0.1333 001

Al-Qadisiya Journal For Engineering Sciences, Vol. 6, No. 1, Year 2013

 03

Figure 1 Huffman tree.

Figure 2 Huffman tree codes for DNA

