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ABSTRACT 
In this research, a fiber reinforced composite rod fixed from one end, while the other end is left free 
and subjected to a torsional excitation and freely vibrates. A fiber volume fraction of 40% is 
considered to rod of interest. Four various fibers and four matrices are taken to construct the rod in 
order to introduce the different shear moduli and  modular ratios to investigate their effects on the 
natural frequency under torsion. The problem is manipulated using software of Ansys V.12 
adopting the element type of (beam 188). The elastic properties of the materials are determined 
using software of Matlab v 6.5. The results show that maximum natural frequency is at (Gf/Gm) of 
(1.86), besides the results has shown that the matrix shear modulus has the most prominent effect on 
the natural frequency. A comparison is made between the results obtained numerically and these 
calculated by the exact analytical solution. A good and reasonable convergence between them is 
found ranging from 82.58% up to 85.59%. 
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1. INTRODUCTION  
Among the fundamental components of continuous systems are bars. Bars are components that have 
one dimension (length) considerably larger than the other two dimensions. In that, they share the 
same definition as a rod with only one distinction loading. Loading in rods is in the transverse 
direction. Their motion is mainly in a direction perpendicular to their longitudinal axis. Bars, on the 
other hand, take axial or torsional loads and can deform longitudinally and rotationally around their 
longitudinal axis. 
         Bars are often referred to as shafts, rods, or columns. In static analysis, we often refer to them 
as bars when they take axial tensile load. If they are under compressive loads, we call them 
columns. If subjected to torsion, we refer to them as shafts or rods. In a dynamic analysis, if the 
motion is rotational around their longitudinal axis, they are usually denoted as shafts. If their motion 
is in the longitudinal direction, they are simply called bars or rods [1]. Longitudinal and torsional 
vibrations of bars are typically higher in frequencies than in their rod-like transverse bending 
modes. They could, however, be vulnerable for excitation in certain applications causing potential 
engineering challenges. Truss members, hydraulic cylinders, as well as other components can be 
subjected to axial forces that excite mainly their longitudinal frequencies. Shafts in automotive and 
general power transmission applications may be subjected to torsional loading from the engine or 

from electric or other motors exciting their torsional frequencies. 
 Torsional vibration analysis is the analysis of the torsional dynamic or static behavior and response 
of rotating shaft systems as a result of forced or free vibration excitation. Torsional or twisting 
vibration, is different to lateral, longitudinal or shaking counterparts. A torsional system like rods, 
compressor, driver and coupling are modeled as a mass-elastic system (inertia and stiffness) to 
predict stresses in each component. Mass-elastic properties of the system can be changed by adding 
a flywheel (additional inertia), using a soft coupling (change in stiffness), or by viscous damping 
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(absorb natural frequency stimulation).Not all systems require any modification to the mass-elastic 
properties to achieve a torsionally sound system [2]. 
              Most of corresponding papers and studies have dealt with the general analysis of free 
vibration of isotropic structures and systems experiencing bending, axial, tensile or compressive 
excitations, but lesser of them discussing the torsional problem. Very little works investigate and 
treat the torsional and shear moduli aspects of anisotropic continuous systems and their relationship 
with natural frequencies. 
         Rotating shafts are used for power transmission in many modern machines. Accurate 
prediction of dynamics of rotating shafts is necessary for a successful design. Free vibrations 
analysis is one of the important steps in rotor-dynamics [13]. Grybos considered the effect of shear 
deformation and rotary inertia of a rotor on its critical speeds [11]. Choi et al. presented the 
consistent derivation of a set of governing differential equations describing the flexural and the 
torsional vibrations of a rotating shaft where a constant compressive axial load was acted on it [14]. 
Jei and Leh investigated the whirl speeds and mode shapes of a uniform asymmetrical Rayleigh 
shaft with asymmetrical rigid disks and isotropic bearings [18]. Free damped flexural vibrations 
analysis of composite cylindrical tubes was carried out by Singh and Gupta [15], where they used 
rod and shell theories. Sturla and Argento [5] studied the free and forced response of a viscoelastic 
spinning Rayleigh shaft. Melanson and Zu [9] studied the free vibrations and stability of internally 
damped rotating shafts with general boundary conditions. Kim et al. [17] studied the free vibrations 
of a rotating tapered composite Timoshenko shaft.  
            Others analyzed free vibrations analysis of a shaft on resilient bearings. Free and forced 
vibrations analysis of a rotating disk-shaft system with linear elastic bearings was also investigated. 
Bearings were mounted on viscoelastic suspensions. El-Mahdy and Gadelrab [16] studied the free 
vibrations of unidirectional fiber reinforcement composite rotor. Raffa and Vatta [4] derived the 
equations of motion for an asymmetric Timoshenko shaft with unequal principal moments of 
inertia. The critical speeds and mode shapes of a spinning Rayleigh rod with six general boundary 
conditions are investigated analytically by Sheu and Yang [6]. Gubran and Gupta studied the 
effect of stacking sequence and coupling mechanisms on the natural frequencies of composite shafts 
[7]. Therefore, it is seen that's important to investigate the relationship between the various shear 
and torsional moduli of the composite materials and the natural frequencies under free torsional 
vibration excitation, since the composite materials recently are extensively chosen as torsional 
applications for the following factors:  
1. The weight: Composites has long been recognized to offer the potential of lighter weight 
materials. Aerospace development efforts also demonstrated that correctly designed composite 
components have inherently superior fatigue and vibration damping characteristics to metals. 
Finally, the advent of higher modulus graphite fibers combined with these lighter weight and 
vibration damping characteristics allowed the design of driveshafts with much higher critical speed 
capabilities.   
2. Vibration problems: Vibration in torsional members has been recognized as a major problem and 
has for many years been the subject of much theoretical analysis and trial-and-error vibrational 
control/reduction experimentation. A resonant condition can produce objectionable disturbances as 
follows: 
i) The high oscillating torque value can result in failure in rotating members.  
ii) Damage to gears, bearings, and other components can occur because of non-uniform loading [8]. 
iii) Variable reactions on supporting members can be a source of objectionable noise and vibration. 
  
2. THEORETICAL ANALYSIS 
3. 2.1. Analytical Solution: 
2.1. a. Equation of Motion for Torsional Vibrations: 

Let us consider now the torsional vibrations of the same bar, shown in Figure 1. This 
consists of the rotation of each cross-section about the longitudinal axis which passes through the 
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centroids of the cross-sections. Only the cross-sections having at least two symmetry axes (such as 
the ellipse seen in Fig. 1) will be considered to avoid coupling between twisting and bending 
displacements. A typical element of length dz, determined by parallel planes located at z and z+ dz, 
is again chosen. A free body diagram of it is drawn in Fig. 2. A twisting moment Mt is shown acting 
on the cross-section taken at the z-plane. This moment is the resultant of the internal shear stresses 
τzx and τyz Fig. 3, which exist on the cross-section and vary as functions of the transverse 
coordinates y and x (as well as with z and t). The twisting moment (which is a function of time t 
where the applied moment in case of free torsional vibration is decreasing with time) is related to 
the shear stresses by Fig. 3[1]: 

 

                                        t yz xz

A

M y z dxdy                                                 (1) 

 
Mt is therefore a function of x and t (which refers to the time). The possibility of an externally 
applied twisting moment mt, having the dimensions of moment per unit length is also shown in Fig. 
2 Summing moments about the z-axis: 
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Where dIc is the mass moment of inertia of the infinitesimal element about the z-axis, and θ is the 
rotation angle (in radians) of the cross-section; θ = θ (z,t). Looking in detail at dIc: 
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Where r is the polar coordinate of a typical point in the cross-section Fig. 3, ρ is mass per unit 
volume (assumed now to be constant throughout the cross-section), and J is the “polar area moment 
of inertia” of the cross-section (more properly, the polar second moment 
of the area), defined by: 
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Substituting (3) into (2) and simplifying: 
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The twisting moment is related to the angle of twist by a linear relationship of the form [1]: 
 

tM k G
x







                                                       (6) 

  
where kθ is the torsional stiffness coefficient for the cross-section, which may be evaluated by the 
St. Venant formulation of classical elasticity theory and G is the shear modulus for the material. A 
partial listing of J and kθ for various cross-sectional shapes is given in various literatures. Numerous 

data for kθ are available for other shapes are also found in the relevant literatures. 
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It should also be mentioned that the classical elasticity theory analysis described above assumes that 
cross-sections are free to warp out of their planes during torsional displacements. All but circular 
cross-sections will typically warp. If one or both ends of a bar are rigidly fixed, so that an end 
cannot warp, and if the bar is not slender (so that the end effects are small), then the additional 
stiffness due to warping constraint must be considered. Substituting (6) into (5) yields: 
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In Eq. (7) kθ, G, ρ, and J may all be functions of x, whereas mt may be a function of both x and t. If 
kθ, G, ρ, and J are constants, and if free vibrations are of interest, then (7) may be written as: 
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Or in a simpler approach, the problem can be manipulated as a single degree of freedom system 
under torsional vibration as follows:  
For one degree of freedom torsional system consider the one degree of freedom systems shown in 
figure 4, represents a torsional system. These systems are represented by an equation of motion 
using Newton’s second law as follows [10]: 
 

                                                              (9) 
 
The solution of the above equation (which can be found in various relevant literatures) leads to that 
for free (undamped) torsional vibration, the angular natural frequency  can be found as: 

 

                                                           (10)       

                                                                                                                                                                                                                        
Where   is the torsional spring constant of the shaft,  is the polar mass moment of inertia for the 
disk. The torsional spring constant  is determined from the relationship between moment M and 
angular displacement  of the shaft through the following relationship: 
 

                                                           (11) 
 

Also           therefore                                        (12)  

  
Where G,  ,  are the shear modulus, polar area moment of inertia, and the length of the shaft 

respectively. For a circular shaft  is given by  (mm4), therefore: 

 

                                                                                (13) 

 
Equation (13) is used to determine the natural frequency ( ) of the system shown in Figure 

4: 
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                  or                              (14) 

The factor G (shear Modulus) is specified for a cross section lies in a plane perpendicular to the 
longitudinal axis of the rod. For composite rod of interest it is being the factor of G23 since the 
longitudinal axis is taken as 1 direction as shown in Fig. 5, thus Eq. (14) is turned to be as follows 
 

         or                                (15) 

 
 
Given that the mass moment of inertia for the disk Jo can be calculated using the formula of: 
                 

                                                                                     (16) 

  
 where k is radius of gyration of the disc about an axis passing through its center and perpendicular 
to the plane of the disc and k = r  (radius for circular discs ). 
 
2.1.b. Properties of Composite Materials: 
The composite materials chosen for this work are constituted from four matrices and four different 
fibers well known and and widely used in torsional applications in order to get sixteen differed 
composites which are 1. E-Glass   2. Kevlar-49     3. Kevlar-29    4. Carbon fibers (T300). The 
matrices are chosen to be: 1. Polyester   2. Polypropylene    3. Epoxy    4. Polyamide. Each of the 
fibers above will be taken with each of the matrices mentioned afterwards to constitute a particular 
composite material, thus sixteen different modular ratios will be gotten. It’s arbitrarily chosen to 
start with Kevlar-49 with the four matrices above at a fiber volume fraction of  (Vf =40 %) which is 
experienced as an optimum one from both stiffness and economical considerations [10]. The 
effective elastic properties of the constituents and the composites with the various values of the 
modular ratios (Gf/Gm) are as shown in tables-2 through -8. The effective properties of the 
composite materials considered in this research are determined using the well-known rules of 
mixtures and the Halpin-Tsai equation [3, 12]: 
 

                                                      (17) 

 

                                                              (18) 

                                                                                                                                                     
                                                      19) 

 
Where Vm = 1- Vf 
 

                                                    (20) 

 
While ν23 can be found through Halpin-Tsai equation stated as: 
 

                                                       (21) 
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Where, E1: modulus of elasticity of the composite in the longitudinal direction (direction of the 
fibers).  
E2: modulus of elasticity of the composite in the transverse direction (in a direction normal to that 
of fibers), equal to E3 in case of transverse isotropy in 2-3 direction.                                       
νij: Poisson's ratio of the composite giving the transverse strain in j- direction due to longitudinal 
strain in i-direction. 
Gij: shear modulus of the composite material in i-j plane. 
Ef: fibers modulus of elasticity. 
Em: matrix modulus of elasticity. 
Vf: fiber volume fraction. 
νf: Poisson's ratio of the fibers. 
νm: Poisson's ratio of the matrix. 
Gi: shear modulus of the component i. 
M: composite modulus (E2, G12 or ν23) 
Mm: corresponding matrix modulus. 

: reduced factor whose value ≤ 1 and affected by the constituent materials properties as well as by 

the factor . 

: is a measure of the fiber reinforcement of the composite depends on the fiber geometry, packing 

geometry and loading conditions. An empirical formula found by Hewitt and Malherbe to find ( ) 

such that: 

       = 1+40*(Vf)
10                                                          (22) 

 
Thus for Vf = 40% ,  = 1 

The factor  can be calculated through the following relation [3]: 

 

                                                          (23) 

 
Since, ν23 has already been found therefore G23 can be determined using the relation of [19]: 

 
                                                             (24) 

 
Thus, the required effective elastic properties of the composite are all found, keeping in mind that it 
can neither precisely predict the composite module, nor is there any need to [12]. Approximations 
such as the Halpin-Tsai equations should satisfy all practical requirements. The elastic properties of 
the constituent materials of the rod under consideration are as given in tables-2 through -8. The 
major Poisson's ratios ν12 and ν13 in the cases under consideration are equal due to the transverse 
isotropy existed in the system idealization adopted in the current study in 2-3 plane [3]. 
 

4. RESULTS AND DISCUSSION 
The rod of interest shown in Fig. 5 is completely fixed from one end while the other is left 

freely angularly oscillates is meshed and discritized by the element type of beam 188 and subjected 
to a torque of 1000 N.m and then released to free torsional vibation.  The results obtained show    
that the matrix material is the most affecting medium in the composite material from the torsional 
resistance point of view on the natural frequency, this is due to that the fact, the torsional load is of 
an-externally-applied-load nature, and the matrix is the first external layer surrounding the fiber 
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material hence, it will be the first part receiving and experiencing the external applied load 
thereafter, it transfers and shares the load with the fibers up to certain extent, afterwards the effect 
of the fibers starts to appear limiting the angle of twist and playing an important role in formulating 
the shaft structural damping minimizing the angular oscillations as shown in Figs. 6, 8 and 13 
which also show the effect of matrix through its effect on the macroscopic transverse shear modulus 
of the composite (G23 ,i.e. Gxy) and modular ratio (Gf/Gm) (whose maximum value has been found 
as 1.68 for maximum natural frequency), such that any increasing in the matrix shear modulus 
results in decreasing the modular ratio which reflects in the value of the natural frequency through 
its affecting by a direct proportional manner with the macroscopic transverse shear modulus of the 
composite which expresses the magnitude of the resilience energy stored in the rod during its 
deformation process subsequently, the number of free angular oscillations the rod may undergo 
after load removal (i.e. free torsional vibration in other words angular natural frequency)       

The effect of fibers is not as regular as that of matrix and its behavior is of abrupt and irregular 
changes and non-precisely-predictable-effect towards the natural frequency resulting from free 
torsional vibration because of the variation of the densities of the matrices and the nonlinear 
empirical relationships (Halpin-Tsai equation) formulating the composite elastic properties that 
controlling the natural frequency as shown in Figs.7, 9,10, 11,12 and 14.The natural frequency of 
the composite can have an irregular pattern, when the magnitude of matrix shear modulus is being 
so low thereby the load sharing and transfer with fibers will be faster than the case when the 
magnitude of matrix shear modulus is being higher, hence the fibers will have the most prominent 
effect on the natural frequency of the composite but the total final macroscopic resultant effect will 
superposed from the matrix and fiber by a certain ratio governed by the ratio of the sharing and 
transferring of the load between the constituents . There is another source of irregularities that is the 
anisotropy of the material effective elastic properties [12] causing presence of the cusps seen in the 
figures referred to above. 
              
5. COMPARISON OF THE RESULTS 
Table-1 includes the values of the natural frequencies of the rod under consideration obtained from 
the numerical solution resulting from the ANSYS v-12 package along with those obtained from the 
analytical solution based the theory referred to above according to Eqs. (14)&(15) for the purpose 
of results validation. The differences between the analytical and numerical results may be attributed 
to the collection of pure theoretical assumptions which the analytical relationships based on, while 
the numerical solution is built on some approximations represented by the discritization of the 
whole rod domain to a certain number of structural finite elements and determining the responces at 
specified regions on the rod. 
 
6. CONCLUSIONS 
According to the above results the following points can be deducted: 

a- The shear modulus of matrix has the most affective factor on the natural frequency of the 
composite rod and they are directely proportional. 

b- The shear modulus of fiber has a minor effect on the natural frequency of the composite rod. 
In most cases is irrigular. 

c- The  natural frequency of the composite rod is affected by the transverse shear modulus G23 
by the same degree as that of shear modulus of matrix 

d- The shear modular ratio in most cases has an irrigular pattern on the  natural frequency of 
the composite rod due to the imposing the fiber modulus. 
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Table 1 Numerical and analytical values of natural frequency of the rod of interest. 

Type of omposite 
 

 
(Cycle/sec) 

Numerical Soution 

 
(Cycle/sec) 

Analytical solution 

Convergence 
Percentage 

Kevlar 49-Epoxy 123 144.260571 85.26% 
Kevlar 49-Polyester 157.48 188.016895 83.76% 

Kevlar 49-Polypropylene 116.88 138.5419283 84.36% 
Kevlar 49-Polyamid 234.51 278.7060848 84.14% 

E-Glass -Epoxy 106.02 123.8654923 85.59% 
E-Glass -Polyester 135.46 164.0335492 82.58% 

E-Glass -Polypropylene 98.495 118.2960421 83.26% 
E-Glass -Polyamid 200.23 240.1721691 83.37% 
Kevlar29-Epoxy 122.57 144.0380828 85.10% 

Kevlar 29-Polyester 156.58 187.551067 83.49% 
Kevlar 29-Polypropylene 116.56 138.3781001 84.23% 

Kevlar 29-Polyamid 229.93 276.4334901 83.18% 
CarbonT300-Epoxy 117.92 137.8583904 85.54% 

CarbonT300-Polyester 151.3 181.1654591 83.51% 
CarbonT300-Polypropylene 111.04 131.814878 84.24% 

CarbonT300-Polyamid 227.73 269.921414 84.37% 

 
Table 2 Elastic properties of the Matrices [3, 6]: 

No. Type of Matrix Em(GPa) Gm(GPa) νm 
1 Epoxy 1.7 0.7 0.27 
2 Polyester 2.75 1.146 0.2 
3 Polypropylene 1.3 0.54 0.22 
4 Polyamide 4.2 1.615 0.3 

 
Table 3 Elastic properties of the Fibers [3, 6]: 

No. Type of Fiber Ef (GPa) Gf (GPa) νf 
1 . Kevlar-49 125 3 0.35 
2 E-Glass 81.4 30 0.22 
3 . Kevlar-29 93 2 0.35 
4 Carbon Fibers T300 230 15 0.3 

 
 
 
 
 
 
 
 



EFFECT OF SHEAR MODULI AND MODULAR RATIO (GF/GM) ON THE NATURAL 
FREQUENCY OF FIBER REINFORCED COMPOSITE ROD UNDER TORSIONAL FREE 

VIBRATION 

417 Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 4, 407-423, Year 2012                 
   

 
 
 

Table 4 Values of modular ratio (Gf/Gm) of the composites consider. 
          Matrices 

  
Fibers 

Epoxy Polyester Polypropylene Polyamide 

Kevlar-49 4.28 2.62 5.56 1.86 

E-Glass 42.86 26.2 55.56 18.6 

Kevlar-29 2.86 1.74 3.7 1.24 

Carbon Fibers 
T300 

21.43 13.1 27.8 9.3 

 
Table 5 Effective elastic properties of the four fibers/Epoxy 

Fiber Type E1(GPa) E2(GPa) ν12= ν13 (GPa)=  ν23 (GPa) 

Kevlar-49 51.02 2.81 0.302 1 0.29 1.1 
E-Glass 33.58 2.79 0.25 1.15 0.25 1.8 

Kevlar-29 38.22 2.8 0.302 0.964 0.29 0.83 
Carbon Fibers 

T300 
93.02 2.82 0.282 1.2 0.27 2.7 

 
Table 6 Effective elastic properties of the four fibers/ Polyester 

Fiber Type E1(GPa) E2(GPa) ν12= ν13 (GPa)=  ν23 (GPa) 

Kevlar-49 51.65 4.51 0.26 1.522 0.25 1.65 

E-Glass 34.21 4.48 0.208 1.86 0.2 2.5 

Kevlar-29 38.85 4.49 0.26 1.38 0.25 1.42 

Carbon Fibers 
T300 

93.65 4.55 0.24 1.82 0.23 2 

 
Table7 Effective elastic properties of the four fibers/ Polypropylene 

Fiber Type E1(GPa) E2(GPa) ν12= ν13 (GPa)=  ν23 (GPa) 

Kevlar-49 50.78 2.1517 0.272 0.8 0.26 0.96 

E-Glass 33.34 2.144 0.22 0.88 0.22 1.2 

Kevlar-29 37.98 2.146 0.272 0.762 0.26 0.957 

Carbon Fibers 
T300 

92.78 2.16 
 

0.252 
 

0.88 0.25 
 

1.18 
 

 
Table 8 Effective elastic properties of the four fibers/ Polyamid 

Fiber Type E1(GPa) E2(GPa) ν12= ν13 (GPa)=  ν23 (GPa) 

Kevlar-49 52.52 9.99 0.32 1.98 0.32 2.055 

E-Glass 35.08 9.746 0.268 2.6 0.26 3.4 

Kevlar-29 39.72 9.83 0.32 1.75 0.32 1.6 

Carbon T300 94.52 
 

10.22 0.3 2.5 
 

0.3 
 

3.13 
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Figure 1 Bar (or rod) of length ℓ and cross-sectional area A. 

 

 
Figure 2 Free body diagram of a typical element of length dz subjected torsion moments. 

 
 

 

Figure 3 Internal shear stresses τyz and τxz that result in a twisting moment Mt 
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Figure 4 A excited single degree of freedom system. 

  

 
Figure 5 Fiber reinforced composite rod showing its meshing and principal coordinate and elastic 

properties axes. 
 
 

 

Figure 6 Effect of Gm on the natural frequency at constant fiber. 
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Figure 7 Effect of Gr on the natural frequency at constant matrix. 

 

 

Figure 8 Effect of G23 on the natural frequency at constant fiber. 
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Figure 9 Effect of G23 on the natural frequency for epoxy with various fibers. 
 

 
Figure 10 Effect of G23 on the natural frequency for Polypropylene with various fibers. 

 

 
Figure 11 Effect of G23 on the natural frequency for Polyamid with various fibers. 
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Figure 12 Effect of G23 on the natural frequency for Polyamid with various fibers. 

 

 
Figure 13 Effect of GF/Gm on the natural frequency at constant fiber. 
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Figure 14 Effect of GF/Gm on the natural frequency at constant matrix. 

 
 
 
 
 
 
 
 

 


