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Abstract

Artificial neural networks (ANN) were used in this study to predict ultimate load of simply
supported concrete beams reinforced with FRP bars under four point loading. A proposed neural
model was used to predict the ultimate load of these beams. A total number of (199) beams
(samples) were collected as data set and it was decided to use eight input variables, representing the
dimensions of beams and properties of concrete and FRP bars, while the output variable was only
the ultimate load of these beams. It was found that the use of 11 and 10 nodes in the two hidden
layers was very efficient for predicting the ultimate load. The obtained results were compared with
available experimental results and with the ACI 440.1R specifications. The proposed neural model
gave very good predictions and more accurate results than the ACI 440.1R approach. The overall
average error, in the value of the predicted ultimate load, was 3.6% and 21.7% for the proposed
neural model and the ACI 440.1R approach, respectively.
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Nomenclature
a Shear span (mm)
a Summation function

Ay Area of FRP bar (mm?)
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ACI  American Concrete Institute
ANN  Artificial neural network
b Width of beam (mm) or bias
Ey FRP elasticity modulus (MPa)
f Activation function
fe Compressive strength of concrete (MPa)
Ju FRP tensile strength (MPa)
FOV  Fraction of variance
FRP  Fiber reinforcement polymer
h Beam’s depth (mm)

L Beam’s length (mm)
Logsic Logistic sigmoidal function
m Shear span ratio (a/L)

MAE  Mean absolute error
MAPE Mean absolute percentage error
MSE  Mean square error

N Number of input samples (vectors)

P Ultimate load (kN)
Pyct Ultimate load predicated by ACI code (kN)
Psvw  Ultimate load predicated by neural network (kN)
Poyp Experimental ultimate load (kN)
Purelin Linear function

R Coefficient of correlation
RMSE  Root mean squared error
tansig  Hyperbolic tangent function
u Actual value

\% Predicted value
i Mean of the actual values
w Weight vector
X Neural input
y Neural output
1 General

The ultimate strength in reinforcing members is depending on the type of reinforcement
materials. Due to durability and corrosion problem of steel reinforcement under aggressive
conditions, other materials, like fiber reinforcement polymers (FRP), have appeared to be an
alternative reinforcement material. The FRP reinforcing bars are a composite materials made of
reinforcing fibers and a matrix (resin). FRP composites are used in many types of engineering
structures and can be used for enhancing requirements of performance due to their advantageous
properties. FRP composites are utilized in rehabilitation, formwork, and reinforcement for seismic
design [Jain and lee, 2012].

FRP reinforced concrete members started to be used all over the world, specifically in areas
like flexural behavior, bond performance, column behavior and shear behavior. In structural
applications, FRP are available as plates, strips or sheets, and reinforcing bars. The use of FRP can
be either as an alternative reinforcing instead of steel or for retrofitting to strengthening existing
structures. FRP are used as internal or external reinforcement to strengthen columns, slabs, and

beams. The strength of these members can be increased even after their damage due to subjected
loading.
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Many experimental and theoretical investigations [6, 11, 15, 18, and 29] were performed to
study the structural and flexural behavior of FRP reinforced concrete beams. These beams are
expected to undergo larger deformations than corresponding steel reinforced beams, since the
modulus of elasticity of FRP bars is low. FRP bars have high ultimate strength and a linear stress-
strain response. This would lead to an almost linear load-deflection response beyond the crack
formation phase, up to failure. In this study, an attempt is made to get and predict the ultimate load
of FRP reinforced concrete beams using artificial neural networks.

2 Artificial Neural Networks (Ann)

ANNSs are computational networks which simulating a biological neural network. Due to this,
they allow using simple and basic operations to solve nonlinear or complex problems [Graupe,
2007]. Neural networks are considered good for regression and classification tasks in practical cases
[Begg et al., 2006]. This makes ANN a very efficient tool to solve and deal with many structural
and civil engineering problems [see 21, 24, and 31], particularly in problems having complex or
insufficient data.

Basically, all ANNs have the same structure or topology, the most common arrangement of
the neurons by using a series of layers as shown in Figure (1). The first layer is the layer of input.
The input units at this layer is dictated by the number of independent variables or feature values and
the input data are taken either directly from electronic sensors or from input files. The final layer is

the output layer which its units depend on the number of values or classes to be predicated
and it sends information to the outside world or other devices like a mechanical control system, or a
secondary computer system. The intermediate layers are called the hidden layers which contain
many neurons in different interconnection structures. Figure (2) shows the scheme of a model of an
artificial neuron. The shown model has N number of input and one output. The body of neuron
contains the summing junction ())) and the activation function f. The following parameters and
variables are used in the artificial neurons.

Every input has its own weight, which gives it the effect that it requires to process elements
summation function. The node's internal bias (b) is a constant component represents the magnitude
offset that affects the activation of the node output. The input vector and the weights vector can be
represented as (x;, x, ..... , xy) and (w;, w, ... , wy), respectively. The summation function can be
calculated by multiplying of vector x and w and then adding up the products:

N
a=22(wx, )+b
i=1 , (1)

The result will be as a single number. This weighted sum, from summation function, is transformed

to the working output though an algorithmic process called transfer function. When neurons are
sufficiently activated its output will take a value of 1, but it take zero when the neuron is not
sufficiently activated. There are many activation functions used in neural networks which specify
the neuron output to a given input.

3 Development Of Proposed Neural Model

An artificial neural model is proposed to predict the ultimate load of simply supported FRP
reinforced concrete beams under four point loading as shown in Figure (3). The neural network
program that is implemented in MATLAB version 8.3.0.532 (R2014a) is used for performing the
neural network in this study. This program has many advantages such as containing several types of
networks and implementing many different training algorithms.
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Back-propagation neural networks are proposed to study the relations between the input
variables and the output variables by using the feed-forward back-propagation algorithm. The trial
and error process is used to configure and train the neural networks for their indeterminate
parameters such as the hidden layers and their nodes, learning patterns, and training parameters.

3.1 Selection Of Data Set

The purpose of training a network is to allow it to produce accurate answers and generalize
future data. The experimental data used in modeling the proposed neural model are subdivided into
two groups; training and testing group. The network uses the training group to updating values of
the nodes’ biases and weights in order to minimize the training error. In other words, it uses this
group to get the relationship between the input and output variables. While the network uses the
testing group to check the generalization ability of the proposed model.

The total actual (experimental) data used in the proposed neural model are those obtained
from available open literature [1, 2, 4-13, 15-18, 20, 22, 25-30, and 32-40]. A total number of (199)

beams (samples) were collected as data set. The training group must contain the extreme
values of the different input parameters of the total data set. For estimating the generalization
capacity of the training process, the testing set is either selected rotationally from the total data set,
or is selected randomly by the computer. In this study, the testing group comprises of approximately
(20)% of the collected data and is selected randomly over the entire region of data set. Accordingly,
the training group is decided to comprise of (159) samples, while the testing group is comprised of
(40) samples.

3.2 Defining Of Input And Output Variables

The problem’s nature is the effective factor that state the defining of the input and output
variables (parameters). Selection of the input variables is important to get an efficient network,
while the selection of the output variables depends on what required from the network to know. In
this study, the dimensions and properties of concrete and FRP bars are chosen as candidate input
variables. While the output variable is only the ultimate load (P) of the considered concrete beams.
For the proposed neural model, it is decided to use the following eight variables as input variables:
the cross sectional width (b) of beams, cross sectional depth (/) of beams, cylinder concrete
compressive strength (f°.), cross sectional area of FRP bars (4;), FRP bars tensile strength (f,), FRP
bars elasticity modulus (£j), effective span length (L) of beams, and shear span ratio (m). To
minimize the input variables several attempts are tried to choose their proper number to represent
the properties of the considered beams. In one attempt, the gross cross sectional area of concrete is
used instead of its width and depth. Also in another attempt, the reinforcement ratio of FRP bars is
used as an input variable. Although good performance in training is found, but the generalization is
very poor. Therefore, it is decided to use the above eight input variables for the proposed model. So,
eight nodes in the input layer and (1) node in the output layer are used in the proposed neural
model. The ranges of all variables are given in Table (1).

3.3 Hidden Layers And Their Nodes

determining of hidden layers and their nodes depends on the network application. There is no
rules available to find out their exact number. Once start with small number and then is increased
until the wanted value from the model (network) is reached. This number is chosen by a trial and
error process. If the nodes number is large, the operation of network will be slow and may cause
overfitting in the testing group performance. And if this number is very small then the network may
be unable to learn well. The suitable number will be selected by a trial and error process to get the
network of the minimum error (the best performance) for both training and testing group.
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Firstly, a proposed Levenberg-Marquardt back-propagation neural network is investigated
with different configurations to choose the best network. Many different trial networks are trained
and the optimal topology is determined by choosing the best performed network (of the less training
error). Trial networks with single and multi hidden layers and nodes and with a various activation
functions (hyperbolic tangent (tansig), logistic sigmoidal (logsig), and linear (purelin) function) are
tested. The results show that, the (11-10) two hidden layered model gives best performance with
least error in the output variable. This network, with ten nodes in the first hidden layers and twelve
nodes in the second and with tansig function for hidden layers and purelin function for the output
layer, gives the best performance with MSE of (0.000445) for the training group and (0.001069) for
the testing group and number of epochs of (616). Thus, this configuration (topology) is adopted to
the proposed network. The topology of this neural network are shown in Figure (4). While the
properties of this proposed model are shown in Table (2).

4. Results And Discussion

A regression analysis between the obtained (predicted) results and the actual values is
performed to investigate the accuracy of the proposed network. The regression coefficient of
correlation (R) is used as an index in this analysis. If (R) is close to a value of one, then there is an
excellent correlation between the obtained (predicted) loads and the actual loads. Figure (5) shows
the correlation analysis of the proposed model output and the experimental values for the training
group, while Figure (6) shows this analysis for the testing and group. From Figure (5), which
represents the regression analysis for the training data, the correlation coefficient (R) is (0.9988),
the interception with y-axis is (0.307) and the slope is (0.997). While for the testing data, Figure
(6), the correlation coefficient (R) is (0.9961), interception with y-axis is (0.863) and the slope is
(0.991). These analyses certify good agreement between the obtained results and the actual results.

5. Comparative Study

The proposed neural model is used to obtain and predict the ultimate load of the FRP
reinforced concrete beams that used in the selected testing set of this study. A comparison between
the experimental and predicted ultimate loads obtained by the proposed model (P4yy) and those
obtained from using the ACI 440.1R approach [3] (P4cy) is presented in Table (3). As can be
noticed from this table, for almost specimens the proposed network gives more accurate results as
compared with those predicted by the ACI 440.1R approach. The ACI 440.1R approach
underestimates ultimate loads up to approximately 50% (beam number 17) and overestimates
ultimate loads up to approximately 24% (beam number 27). While the proposed neural model
underestimates ultimate loads up to approximately 12% (beam number 17) and overestimates
ultimate loads up to approximately 8% (beam number 10).

A statistical comparison between the actual and predicted loads is also performed to check the
accuracy of the proposed network and the ACI 440.1R approach of ultimate load calculation as
shown in Table (4). Four indices are used in this study to comparative evaluation of the behavior
of the proposed network and the calculated ultimate loads using the ACI 440.1R specifications.
These indices are the mean absolute error (MAE), root mean squared error (RMSE), mean absolute
percentage error (MAPE), and fraction of variance (FOV). and they are given, respectively, as:

1l =
MAE == X |u |
nie @
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] n
RMSE = |~ (u—v)’
n

o G)

1~
MAPE =| = X|(u—v)/u| | x 100
T : )

FOV = 1-S(u-v) /S (u—-1u)
i=1 i=1 s (5)

where u is the actual value, v is the predicted value, U is the mean of the actual values, and 7 is
number of specimens. If MAE is 0, RMSE is 0, MAPE is 0, and FOV is 1, then the used model will
be excellent.

As can be noticed from Table (4), the MAE, RMSE, MAPE, and FOV for the ultimate load
prediction of the proposed neural model are (4.4, 5.7, 3.6, and 0.992), respectively. While these
values for the ACI 440.1R approach are (31.4, 41.7, 21.7, and 0.582), respectively. These values
proved that the proposed neural model prediction is satisfactory indicating that, an excellent
agreement with the experimental data is obtained and hence the proposed network can obtain and
predict loads very well and better than ACI 440.1R approach.

In Figure (7), the predicted ultimate loads obtained by the proposed model (P4yy) and the
ACI 440.1R approach (P4cy) are plotted against the actual loads. From this Figure, it is obvious that
in general the ACI approach underestimates the value of the ultimate load. The coefficient of
correlation R = 0.9961 and 0.7629 for P,yy and P4y, respectively. These values show that the
proposed neural model predicts loads much better than the ACI approach.

Therefore, with an overall average error of 3.6%, it is concluded that the developed network
could be used efficiently in obtaining the ultimate loads and that the ANN provided an alternative
procedure to the costly test procedures for the ultimate load prediction of FRP reinforced concrete
beams.

6. Conclusions
The main important points that can be concluded from this study are as follows:

1. The artificial neural networks (ANN) have been proved its capability in predicting the ultimate
load of FRP reinforced concrete beams, and it could be used this procedure as a reliable
alternative to other complex or costly test procedures.

2. The proposed neural model, in the current study, has been found to be very excellent for
prediction of the ultimate load of FRP reinforced concrete beams.

3. The configuration (11-10) for the proposed neural model was found to be very typical for
prediction of the ultimate load of FRP reinforced concrete beams.

4. The overall average error, in ultimate load prediction, was 3.6% and 21.7% for the proposed
neural model and the ACI 440.1R approach, respectively. So the proposed neural model gave
more accurate results than the ACI 440.1R specifications and it could be used efficiently in
predicting the ultimate load FRP reinforced concrete beams.
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5. The ACI 440.1R approach was shown to give, in general, an underestimated value for the
ultimate load.
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Table (1) Input And Output Variables

Variable Range

Input variables:

Width of beam, b, (mm) 80 —500

Depth of beam, 4, (mm) 100 — 590
Concrete compressive strength, /., (MPa) 13.7 — 85.6
Area of FRP bars, 4, (mmz) 39.3-19635
FRP bars tensile strength, f,, (MPa) 126.2 — 2250
FRP bars elasticity modulus, £ (MPa) 30000 — 200000
Length of beam, L, (mm) 400 — 4200
Shear span ratio, m 0.273 -0.47
Qutput variable:

Ultimate load, P, (kN) 16 —365.4

Table (2) Properties Of The Proposed Neural Model

Nodes in Nodes in .
Network | I' hidden | 2 hidden | Y09 ™ | ppocns | MSEfor | MSE for
output layer training set | testing set
layer layer
11-10 11 10 1 616 0.000445 0.001069

Table (3) Actual And Predicted Ultimate Load

Type
Concrete F RP Ultimate load (kN)
Beam of Compressive | reinforcement Pow | Pict
Strength, f°. | ratio to ; /P /P
No. FRP balanced Actual | Predicted EXP EXP
(MPa) ratio, (es/ e
bars (s ery) Pexp By By
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ANN | ACI
Punn | Pact
1 GFRP | 24.5 2.67 75.2 74.2 | 425 | 0987 | 0.565
2 GFRP | 30.0 1.99 96.0 96.3 [79.2 |1.003 |0.825
3 GFRP | 27.6 0.42 33.7 339 (31.6 |1.006 |0.938
4 GFRP | 27.6 0.69 51.2 534 |[62.5 |1.043 | 1.221
5 GFRP | 38 4.05 40.7 40.5 |34.7 |0.995 | 0.853
6 GFRP | 27.6 4.30 41.6 41.2 334 [0.990 |0.803
7 GFRP | 27.6 3.44 127.4 | 118.6 | 75.4 | 0.931 | 0.592
8 GFRP | 59.8 3.68 143.4 | 150.2|89.5 | 1.047 |0.624
9 GFRP | 56.3 5.58 169.8 | 164.6 | 102.8 | 0.969 | 0.605
10 GFRP | 55.2 4.43 85.1 923 557 |1.085 |0.655
11 GFRP | 39.6 3.38 1349 | 140.5|82.2 | 1.042 | 0.609
12 BFRP | 61.7 3.23 200.0 | 209.8 | 164.1 | 1.049 | 0.821
13 CFRP | 40.1 1.76 170.5 |162.7 | 162.0 | 0.954 | 0.950
14 CFRP | 40.4 2.52 178.7 | 180.0 | 158.2 | 1.007 | 0.885
15 GFRP | 39.3 3.36 1623 | 161.9 | 127.40.998 | 0.785
16 GFRP | 32.5 1.19 185.5 | 187.3|211.7|1.010 | 1.141
17 GFRP | 41.4 1.28 154.1 | 1349|779 |0.875 | 0.506
18 GFRP | 41.4 1.71 106.4 | 100.9 | 55.4 | 0.948 | 0.521
19 GFRP | 29.8 1.67 80.0 76.0 [70.0 |0.950 |0.875
20 GFRP | 29.8 6.26 118.0 | 110.0| 117.8 | 0.932 | 0.998
21 CFRP | 29.8 0.76 76.0 74.0 [63.8 |0.974 | 0.839
22 CFRP | 29.8 1.14 105.0 | 100.0 [ 100.5 | 0.952 | 0.957
23 CFRP | 29.8 1.81 125.0 | 123.0| 117.2 | 0.984 | 0.938
24 GFRP | 40.6 1.09 76.0 80.0 | 79.7 |1.053 | 1.048
25 GFRP | 40.0 5.74 112.0 | 118.0 | 138.4 | 1.054 | 1.236
26 CFRP | 47.0 0.67 70.0 75.0 |75.5 |1.071 | 1.079
27 CFRP | 44.7 1.34 100.0 | 101.0| 124.4 | 1.010 | 1.244
28 CFRP | 44.0 3.18 120.0 | 125.0 | 145.1 | 1.042 | 1.209
29 GFRP | 30.0 3.61 1232 | 127.8 | 129.1 | 1.037 | 1.048
30 CFRP | 30.0 3.13 135.0 | 1399|1323 1.036 | 0.980
31 GFRP | 48.0 4.89 135.0 [ 130.7 | 104.3 | 0.968 | 0.773
32 GFRP | 48.0 4.80 138.6 | 134.6 | 119.9 | 0.971 | 0.865
33 CFRP | 48.0 4.25 155.0 | 144.8 | 107.3 | 0.934 | 0.692
34 GFRP | 24.0 1.21 92.8 99.0 [79.6 |1.067 |0.858
35 GFRP | 24.0 1.82 125.6 | 132.1|93.2 | 1.052 |0.742
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36 GFRP | 29.3 1.06 207.0 |209.5]137.1|1.012 | 0.662
37 GFRP | 29.3 2.28 307.0 |302.7 | 192.6 | 0.986 | 0.627
38 GFRP | 29.9 2.44 229.7 |1228.0|162.70.993 |0.708
39 GFRP | 36.5 2.12 227.0 |228.0|177.4]1.004 |0.781
40 GFRP | 29.9 5.12 331.3 |332.8230.9|1.005 | 0.697
Average 1.001 | 0.844
Standard deviation 0.007 | 0.032

Table (4) Statistical comparison

Proposed neural
Norm model (NNI) ACI approach
Mean absolute error (MAE) 4.4 314
Root mean squared error (RMSE) 5.7 41.7
Mean absolute percentage error (MAPE) 3.6 21.7
Fraction of variance (FOV) 0.992 0.582
Connection
Nodes Weights
Ipput Output
Signal Signal

Layer Hidden
Layer

Figure (1) Architecture Of A Neural Network
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Figure (2) Artificial Neuron Model
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Figure (4) Proposed Neural Model Topology
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Figure (5) Regression Analysis For Training Group

350 T T T
y=0.991x + 0.863
R = 0.9961

300
=250
=
=
k=]
8200
-
=
Q
3]
= 150 )
@ o
=
o

100 5

O ANN
50 —— Predicted = Experimental
Bestlinear fit
[} u u u
8] 50 100 150 200 250 300 350

Experimental Load (KN)

Figure (6) Regression Analysis For Testing Group
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Figure (7) Comparison Between Predicted And Actual Loads
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