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TAPERED MEMBERS USING STRENGTH AND
DISPLACEMENT CONSTRAINTS WITH GEOMETRICALLY
NONLINEAR ELASTIC ANALYSIS
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Abstract

Design of steel tapered member under combined axial and flexural strength is somewhat
complex if no approximations are made. However, recent Load Resistance Factor Design (LRFD)
of the AISC code has treated the problem with sufficient accuracy and ease. The aim of this study is
to present an algorithm for the optimum design of steel frames composed of tapered beams and
columns with I-section in which the width is taken as constant, together with the thickness of web
and flange, while the depth is considered to be varying linearly between joints .The objective
function which is taken as the weight of the steel frame is expressed in terms of the depth at each
joint. Both the displacement and combined axial and flexural strength constraints are considered in
the formulation of the design problem .The strength constraints are expressed as a nonlinear
function of the depth variables. The optimality criteria method is then used to obtain a recursive
relationship for the depth variable under the displacement and strength constraints. Numerical
examples are presented to demonstrate the practical application of the algorithm.
Keywords: Design, tapered, steel, axial, flexural, strength, constraints , optimum, nonlinear,
stability
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Nomenclature

li is the length of the tapered member i.

ts, tw, thickness of flange and web of the I-section of the tapered member respectively.
bt is the width of the flange

P and Vi are the density and volume of typical tapered member
I shown in Fig.(1) , respectively .

nm is the total number of tapered members in the frame .

D;i is the depth variable belonging to member i,

D;; is the lower bound of the depth variable .

ddj (D1, D2i) represents j™ displacement constrains .

gsri (D1i . Do) represents strength constrains for member |.
k Is the total number of restricted displacement.

51’ is the displacement at node where constraints is wanted .

Oy is its upper bound.
Fy is specified yield stress
Ay is the gross area of- the member at the smaller end.

Ae is called the effective slenderness parameter.

Sy, the sectional modulus of the larger end
Fy is the design flexural stress of tapered member,

Introduction

Steel frames with tapered members were preferred in the design of structure whenever the
architectural requirements allow their presence .They provide better distribution of strength as well
as yield lighter design. The methods available for the analysis of such frames are well established
(Haitham, 2000), (Oran, 1974) .In most of the practical design codes , approximate procedures are
suggested for dimensioning tapered members which are subjected to the combined action of axial
force and bending moment .

In this study, an optimum design algorithm is presented which takes into account the
geometrical nonlinearity for steel frames with tapered members. This is achieved by coupling
optimality criteria approach with large deformation analysis method of elastic tapered steel frame
develops in Ref (2).

Optimum Design Problem
The optimum design problem a nonlinear steel frames composed of tapered members
subjected to displacement and strength constraints can be expressed as follows :-

Zpi Vi

Min W=i=1 i=1,...,nm 1)
Subjected to

0¢j (D1i,,D2i) <0 j=1,....k

Osri (D1, D) <1 i=1,...,nm

D]_i-D]_il >0 i=1...nm (2)
Dyi-Dyil >0 i=1...nm
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Objective Displacement

The objective function, which is the total volume of frame, is obtained as a summation of
weights of all members. The volume v; of member i as shown in Fig. (1) can be expressed in terms
of the values of the depth variables (D;) and (D,) , as follow:-

Vi :|:(D1i "; Dzi)tw + th (bf _tw)}li (3)

where Dyj, Dy; is the depth variables of the smallest and largest end respectively of tapered member
l.
of the I-section of the tapered member.
It can be seen that by, t; and t,, are selected to be constant throughout the frame, which leaves only
the depths at nodes (1) and (2) as the design variables.

The elastic sectional modulus for symmetrical sections are calculated easily when the values
of Ds; and Dy; are known.

Combined Axial and Flexural Strength Constraints

The combined axial and flexural strength constraint for member i , which is subjected to
axial force and bending moment about its major axis, is given in LRFD™ as,
for

P/(?P,) > 0.2 (4)
P8 My g
¢P n 9 ¢bM nx (5)
and for
PJ(?P,) <0.2, (6)
P M
u + ux <1
2Pn M, (7)

where Py is the required axial strength and P, is the nominal tensile or compressive strength for the
member depending upon whether it is in tension or compression. My is the required flexural
strength and M,y is the nominal flexural strength about the major axis of the section. The resistance

factor (¢) is given as 0.90 in the case of tension and as 0.85 in the case of compression in LRFD.

The resistance factor for flexure % is specified as 0.90 by the same code(Hayalioglu, Saka,1992).
Since only the nominal strengths are the functions of the depth variables, the strength

constraint for member i can be re-written as:-

gsr(Di,Dj)zalan+ aganx, (8)
Where a; and a , are the constants given as, for

Pu/(¢ Pn) > 0.2 alzPu/0.85 8.2:8Mu/8.1 (9)

Pu/(¢ Pn) <0.2, a;=P,/1.7 a,=M,/0.9 (10)

Displacement Constraint
The j™ displacement constraints 0dj (D1i,, D2i) has the following form:-

dj (D1i,, D2i) = 51_5]“

(11)
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The displacement J

the virtual work theorem

i can be expressed as a function of the depth variable by making use of

5,=3 X, K (Dji, D,i)X,
] ; ( 1 2) j (12)

Where

Xi is the vector of virtual displacements of member i due to the virtual loading corresponding
to the j™ constrains. This is obtained by applying the unit load in the direction of the restricted
displacement j.

K (Dy;, Dy)) is the stiffness matrix of member i in the global coordinate.

Xiis the displacement vector e due to applied load.

Nominal Axial And Flexural Strength of Tapered Member

It is shown from Egs. (8) to (10) that the combined strength constraint for a tapered member makes
it necessary to express the design axial and flexural strength of the member in terms of depth
variables defined at its ends.

Nominal tensile strength
In the case where the tapered member is in tension, LRFD gives the nominal tensile strength P, as,

P, =F xA, (13)
Hence, the nominal tensile strength P, can be expressed as a function of depth variable D,
of the smaller end as

Pnsz(Dltw+2T)
(14)
where T is a constant given by

T= (tf bf - tW tf)
(15)
Nominal Compressive Strength

When the tapered member is in compression, its nominal compressive strength is given by
LRFD as;

Pn = Fcr X Ag
(16)
where F; is the critical stress computed from one of the following expressions:
Ao <15 Fe=F,.(0.658""") (17)
Ay >1.5 Fom (O.877.Fy)’ (18)

2
ﬂ“eff

A = S+ (QF, / 7°E)

112



Al-Qadisiya Journal For Engineering Sciences Vol. 1 No. 1 Year 2008

« Au <15 P, =(Dyt, +2T Jx Fyx0.658%0: 7] (23)
Ay >1.5 P =(0.877xFy)/c, (24)
(19)

in which S is equal to Kl/ry, for weak axis bending and Kl/ry for strong axis bending. K is the
effective length factor for the member. Since between the adjacent lateral restraints, buckling about
the weak axis governs, S is taken as Kl/ry,. The approximate radius of gyration ryy is defined at the
smaller end of the tapered member as,

3 1/2
P L (20)
¥ | 6(Dt,, +2T)

Substituting Eq. (20) into Eq. (19) and taking Q = 1 gives the effective slenderness as,

A

(]

« =[c.(Dgt,, +2T )} (21)
where C; is a constant.

6Fy(KI Y
Y PEt, b 22

Hence, the nominal compressive strength P, of eq. (16) can be expressed in terms of depth
variable D;, at the smaller end as for :-

Nominal Flexural Strength
The nominal flexural strentsgth of tapered flexural member for the limit state of lateral torsional
buckling is given in LRFDY as

Mn = (5/3) SyFo 05
25

F
F=2/31-"" F, <0.6F (26)
’ { /24@F%+FZWJ ' '

Unless F,< F,/3, in which case,

F, =15/(F% + F%) (27)

In Eq (26) and (27)

F, :17oyh | ?
W/ T,
= :12000Af ( / Toj (28)

: hID, "

Where factors hs and hy, are given as,
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ID.
A
hs = 1+ 0.023 f (29)

|
2V
hy = 1 + 0.00385 /% (30)

in which ry, is radius of gyration of the section at the smaller end, considering only the compression
flange plus 1/3 of the compression web area, taken about an axis in the plane of the web, As is the

area of the compression flange, 7 is given as
- DD;D <0.268 , (I/Dy) or 6. (31)
1
The relationships listed in eqns. (25)-(31) can be expressed in terms of depth variables at the ends of
the tapered member as shown in the following. The sectional modulus Sy

S, (D=t )+ 6yt (D, 1) 32)
6D,

Fsand F,, of Eq. (28) are written as

£ _ 120000,

c
E G (33)
° hID, " " v Ahwz +c,h,’D,
where constants c,, ¢z and ¢4 are

c, = 425,000tb% , c3 =31t by, c=It, (34)

In which 7 is function of D; as shown in Eq. (31), and rr, is

. t.b*s (35)
T\ 4x(3t,b, +t,D,)

It is clear from Egs. (32) to (35) that nominal flexural strength M, can be expressed in terms of
depth variables D1, and D;.

Figures (2) to (5) shows the relationships between the Nominal axial force and flexural moment
strength and their derivatives with the design variables D; & D, .Figures (6) and (7) shows the
relationship between the strength constrain with the design variables D; & D,. From these figures
we can conclude that :-

1-The nominal axial tension force strength for the cross section is greater that the nominal axial
compression force strength in specified depth variables D; & D,. This is due to the material
properties for the steel which is included empirically in the equation pg the nominal Strength.

2-The flexural moment strength for the section decreases with increasing the depth variable D;
but it is increases with increasing the depth variable D,.  This is because that the flexural
moment strength equation depends basically on the depth variable D,

3-The strength constrain function is slightly affected by the design variable D; but it is strongly
affected by the design variable D,.

Optimality Criteria for Depth variables
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It is shown previously that displacement and strength constraints in addition to the objective
function of the optimum design problem considered is highly nonlinear function of design variables.
The optimality criteria approach was found to be an effective method in finding the solution of such
design problem (1. sand" &) Thig technique transformation the constrained problem into an
unconstrained one by using Lagrange multipliers. The Lagrangian of design problem is:-

L(Dll’ DZI’/Idj ! j’srl) ZIOIVI + Zﬂ’djgdj (D1| D2|) + Z/ISI’I gstl (D1| D2|) (36)

i=1

where Ay and i are the Lagrange multipliers for the displacement and strength constraints
respectively . The necessary condition for the local constraint optimum is obtained by
differentiating this equation with respect to design variables (D, D, as the follows:-

oL(Dy;, Dy Agjs Agi) in: Zp:/l ang(Dh D,;) g 994 (Dy; , D) _
oDy, 8D1| i=1 Y D; i=1 oDy, (37)
OL(D;, D, Ay Agi) & oV, &, 09y (Dl D,) ag i(Dy, Dyi)
i s/ _ . iy yi ] i’ i A sti i 2i =0 (38)
oD, 2P, ; i Z oD,

The derivative of the volume of tapered member with respect to depth variables can
analytically obtained as follows :-

v, =2t (b, -t )+ (©, ;DZ')t ) |l (39)
v _ v 1.,
oD, D, 2" (40)

The derivative of the displacement constraint from Eq. (11) becomes:-

agdj(Dli’ D2i) _ 651
oD, oD, (41)

agdj (Dyi, D) _ 09,

]

oD, oD, 42)

Which in turn from Eq. (12) becomes:-

K,(Dy.Dy)
ij
aDl, (43)

T
Eoa i

851' :f‘lxiT aKi(Dlw D2i) Xij
b, = 0D, (44)
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The derivatives of stiffness matrix of the tapered member can be achieved analytically in Ref.(3).
On the other hand the , the same can also be achieved for the derivative of the strength

constraints with respect to design variables(D; , D,) as follows:-

oP, oM
994 (Dy, Dyi) __ai( aDli) _ & aDli)

oD, B P, M ?, (45)
0 (@M
agsrl( DZI ) ai( /D ) az /DZI
oD, (46)

o) )
The derivatives dD,” and D, can be achieved using numerical technique (finite
difference technique) as follows;-

o, AP, P,-P, M, AM, M,-M, 1)
ob; AD; D, i2 Dli1 ’ oD, AD; Dy, — Dy,
P, AP, P,-Py, M, AM, M, ,-M, 48)

aDzi - ADzi B D2i2 - D2i1 ’ aD2i ADli D2i2 - D2il
Hence the optimality criteria for depth variables are obtained from Equation (37) and (38) as

follows:-
oP, oM
2T A /Dl. ]

oL(D,D,, A, Ay;) am 'y
( 10 —2174j sr| Z a? n ﬂ ZXT aK (Dl“DZI)Xij—l_Z/’Lsrix(
1ij

oDy j=t b, i=1 P?,
(49)
which lead to:-
oP oM
o m e ap) a™p)
Z Z T+ oK. (D1I D,.) X, +z A x(- 2aDli B 2aD1i )
=t =] oDy P M*, =1 (50)
Zp. 8D1.
And
oP oM
aI—(DlvDZJ’dj’ﬂ“sri) < T oK; (Dz Dz) al( %D ) az( %D )
ﬂ, X NN 217 X _ 2 2i :0
aDZi ; 2, +g dj Z aDz, +Z SI’IX( Pzn Mzn )
(51)
which lead to:-
oP 8M
nm ai( / ) a /
Zp: S r 0K (Dl,,DZ,)X +Z (e 2aD2i 2 D2,)
oD, P (52)

j=1 i=1

=1

Zp. 8Dz.
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Multiplying both sides of Equations (52) and (54) by D; and D,

taking the ¢ root yields:-

_1

respectively, and then

i P, oM
3K, (Dy. D a(™p) al /D
zgdj ZXT (a[; X;, +Z/15r.><(— =) i 1
1i (53)
- nm aVI
Zpi oD,
DliHl: Dlti x t
I n aMn
(DL D, a®p) a®™ )
XT i 2i 2i
S A X X S At o L ”
nm &/I
27,
D;l = D;I X _t
where

tand t+1 represent the current and the following optimum design cycles, and the
c is known as the step size process.
It is apparent that the use of Equation. (53) and (54) require that values of Lagrange
multipliers to be known .There are several methods to obtain their values .One simple and effective

way used in Ref.(1).This method takes the constraint equality and multiplies both sides by g and
then takes the m™ root . This leads to the following recursive relationship :-
o
4=2%% )
ju j=1,2.eq. P (55)

where m is the step size and its value form the numerical examples is between 0.8 and 0.7 for

%n At is clear that Egs. (54) and (55) require the initial values of the Lagrange parameters to be
selected .1t was found suitable to use (10000) as an initial value for these parameters (multipliers).
Figures (8) and (9) shows the relationships between the derivatives of the strength constraints
with the design variables D; & D;.
From these figures we can conclude that :-

Ve

<0.2

1-for the value of /P , the derivative of strength constraints for the cross section is slightly
greater in compression that in the tension force with respect to design variables D; & D;.

FV >0.2
2- for the value of n  the derivative of strength constraints for the cross section is slightly
greater in tension that in the compression force with respect to design variables D; .

117



Al-Qadisiya Journal For Engineering Sciences Vol. 1 No. 1 Year 2008

Nonlinear Elastic Analysis of Steel Frames Composed of Tapered Members.

The nonlinear elastic analysis of frames composed from tapered members is obtained by the method
reported in Ref.(3) .This method improved from the nonlinear elastic analysis of frames composed
of prismatic members described in Ref.(7) which takes into account both the geometrical and
material nonlinearities .

Design Convergence Criteria:-
Two types of design criteria are use in this study to insurance the satisfaction of the convergence in
design, these are :-

1-weigh criteria: This criterion depends on comparison of the weight of the frame for the
current design cycle and the weight of the frame for the previous design cycle, and convergence is
assumed to have occurred when the inequality :-

(Wr+l _Wr)2 W 2, <to

I
" is satisfied (56)
Where: - W,.1: represents the total weight of the structure in the current design cycle
W, : represents the total weight of the structure in previous design cycle

2-depth criteria :- This criterion depends on comparison of the depth at both ends of each design
group of the frame for the current design cycle and for the previous design cycle, and convergence
is assumed to have occurred when the inequality when the inequality

(D.,~ D) A{ <tol, (57)

In Eq. (56 ) and (57 ), the dimensionless quantity, tol. represents a prescribed tolerance
each criteria In this study the tolerance used as indication for satisfied the convergence is as
follows
tol1=0.005. tol2= .01

Flow chart and computer program:-
The algorithm developed for optimum design of geometrical nonlinear elastic —frame
composed of tapered members can be described by the following chart of the program with
a brief description for each subroutine, Fig.(10) and a computer program (EDTS) is
developed using QBasic language.

Design Examples

Two examples are used her to demonstrate the capability of the algorithm developed in this study to
achieve the optimum design of tapered steel frame under elastic nonlinear behavior , the values of
modulus of elasticity and yield strength of the steel used to fabricate the structure were taken as
205 kN/mm? and 275N/mm? respectively .The density of the steel was 7850kg/m>.Th convergence
criteria used for the minimum objective function was 0.1% while it was 1% for the depth variables
1-Fixed Ends Tapered Beam.

In this example a single span beam was designed using the algorithm developed in this study , the
dimensions of the beam ,member cross section and loading condition is shows in Fig. (11) the beam
was divided into two linearly tapered beams which introduced two design variables in each beam
(1,2)in beam No.1 and (2,3)in beam No.2 , due to symmetry the depths and nodes 1 & 3 was
assumed to be the same . This would eliminate the design variables into two variables (D:& D,), the
frames was designed under three cases of constraints

1-Displacement constraints

2-Strength constraints.

3-Both displacements & strength constraints.

The results of both studies is shown in Figs.(12 to14) It shows from these figures that the
reduction in depth variable D, is more faster than in depth variable D; which mean that the value of
depth variable D, more effective in the optimum design processes from the value of D; this may be
caused by the including of the geometrical nonlinearity in the analysis and taking in the account the
large deformation, bowing effect and stability behavior of the structure which lead to increasing the
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effect of design components relating to depth variable D, on the other hand the depth variable D,
usually used in maximum flexural moment zone which is usually near the support so that the
deformations and displacement is being at their maximum value and then cause that increase in
optimum design components.

From figures (12-14) we can note that when excluding the displacement constraints from
the optimum design processes the decreasing in depth variables D; & D, become more that when
using both displacements and strength constraints and which lead to lighter structure and
subsequently more economic and more save in cost without increase in the constrained
displacement on its upper bound. This mean that including the strength constraints in the optimum
design processes will improve the design efficiently. On the other hand the optimum design reached
after design cycle No.8 we using strength constraints only in the optimum design comparing with
design cycle No.9 when including both displacement and strength constraints.
2-Pitched roof tapered steel frame.

In the example a one bay pitch roof frame is designed using the optimum design algorithm developed
her, the frame is divided to 15 node at the point of application the external loads and 14 tapered
member , the dimension of the frame ,member cross section and loading condition is shows in
Fig.(15 ). This frame was designed by Ref. (5) using linear elastic analysis , in this study the frame
is designed three constraints cases :-

1-Displacement constraints

2-Strength constraints.

3-Both displacements & strength constraints.

The results of our study is shown in Figures (16 to 19) , from these figures we reach to the same
view obtained from the previous example in addition to noting that in this example we have two
deign groups the rafters (Beams ) and the columns , each group treated separately in design
processes but at the joins the developed program takes into account the effect of changing in each
depth variable on the connected members which help in giving more reliable design .T he results of
design for each group are shown separately in figures ( 16 ) and ( 17 ) we can note the similarity in
behavior for each group . the effect of nonlinear analysis is shown obviously in Fig.( 19 ) hence
from this Figure we can observe that the displacement reached to its upper limit faster than the
former example.

Conclusions:-
Depending on the design results obtained from the present study, one can draw several conclusions,
concerning the optimum design of the tapered steel frames with | —section these may be
summarized as follows: -
1-The optimum design components represented in this study by the strength and displacement
constraints equations is affected by the design variable D,, specially when including the
geometrical nonlinearity and stability behaviors in the analysis of steel frame. This is required
to choose the value of depth variable D, carefully in design of such frames.
2- The excluding of displacement constraints in the optimum design processes( using strength
constraints only )lead to faster design and more economic and saving in cost design .
3-In frames composed from different structural members, the behavior of the optimum design
results will be slightly different.
4- This study may be improved by including more restrains in to design processes that make the
design more economic and more saving in time and cost such as (buckling constraint, plasticity
constraint, creep constraint)
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Fig. (1): Typical Tapered Member With Linear Variation
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Start Select initial values of design variables (Dy,D; )
and other sectional properties for each group in
Se ect addition to the geometrical and material properties

for each member.

Design Parameters Select the initial values _of_ the des_lgn
components (Lagrange multiplier, step size,

constraints displacements, tolerance, upper

carry out the nonlinear elastic analysis of the | bound disblacement . )
frame and calculate the displacement vector Nonlinear
[Xi]
|
carry out the linear elastic analysis of the steel L
frame using the original coordinates of the frame Inear
due to a unite load and then obtain the joint |
displacement vector [Xij] of Eq.(12).
1-1 TO NG

NG=Number of design
groups in frame

calculate all the components of Egs. (55) & (56)
and the new values of Lagrange multipliers using

Optimum Design Cycles Eq. (57).

Determine the new values of design variables
(D1,D;) for each group in the frame using D.,. D,
Eqgs.(55) and (56 ).

Compare these values with their lower bound ,
take whichever greater as a new values of depth

[variables

Set the design variables
equal to their lower Equal
bound

Calculate the new weight of the frame ,cheak the
convergence of both weights an depths , if it is
obtain , terminate the design and printout the
results otherwise go to the next step

Weight

Yes
onvergence

No

< Print the results >

Fig. (10) Flow Chart of the Computer Program (EDTS)
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