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INTRODUCTION

Every 4 s, someone in the world develops dementia. 
Dementia is a definition for decline in various mental 
abilities such as memory, speech, and cognition severe 
enough to interfere with daily life. It mainly affects people 
after the age of 60; however, there are some reports of 
cases that start before this age. In 2013, there were an 
estimated 44.4 million people with dementia worldwide. 
This number will increase to an estimated 75.6 million in 
2030, and 135.5 million in 2050. Already 62% of people 
with dementia live in developing countries, but by 2050, 
this will rise to 71%.[1,2]

Alzheimer’s disease  (AD) is the most common form of 
dementia which accounts for 60–80 percent of dementia 
cases and is the third most expensive disease and sixth 
leading cause of death in the United States.[2] It affects more 
than 11% of people over age 65 and about 32% of people 
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older than 85 worldwide,[3] and it is estimated that the 
number of the patient will triple within the next 50 years.[4] 
AD is a neurodegenerative nonreversible disorder. AD has 
no known cure now and related medications can only delay 
the symptoms and slow the progression of the disease, so 
the most important concern is to diagnose AD as soon as 
possible.

As mentioned before, having great medication impact 
directly depends on diagnosing of AD at its early stages. 
The first stage of AD is mild cognitive impairment  (MCI). 
MCI causes cognitive changes that are serious enough to 
be noticed by the affected subjects or to their families, 
but it is not severe enough to interfere with daily life or 
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basic independent function. Because MCI does not severely 
affect daily life, affected subjects do not meet diagnostic 
guidelines for AD or dementia, so they have high risk of 
eventually developing AD or another type of dementia; 
about 15–20% of MCI patients convert to AD each year while 
the conversion rate for the general population is 1–2%.[5]

Since MCI is the first symptomatic stage of AD, accurate 
detecting of MCI is the most important tool to control this 
incurable disease. Medical diagnosis of MCI is hard, and 
symptoms are often dismissed as normal consequences 
of aging. Diagnosis is usually performed through a 
combination of extensive testing and eliminations of other 
possible causes. Psychological tests (e.g. Mini‑Mental State 
Examinations [MMSE]), blood tests, spinal fluid, neurological 
examination, and magnetic resonance imaging  (MRI)[6] are 
used to help diagnose the MCI.

Since electroencephalogram  (EEG) recording systems are 
noninvasive, inexpensive, and  (usually) mobile, it would 
be very efficient and effective screening tool to detect the 
AD and MCI patients. In the recent years, several research 
groups have applied different analyzing methods to find 
some relations between EEG signal and AD/MCI. Their 
foundation shows that the effects of AD/MCI on EEG can 

be divided to the following categories:[4] Slowing of EEG, 
reducing the complexity of EEG, perturbation in EEG 
synchrony, and increasing gamma activity. Table 1 is a briefly 
categorized review of previous studies and the methods 
they used to extract discriminative features. Unfortunately, 
most of those researches have not specifically focused on 
diagnosis of MCI, especially to the best of our knowledge, 
an accurate and reliable method for classification normal 
versus MCI has not been reported in the literature yet.

The rest of paper is arranged as follows; the second section, 
materials, and methods, will illustrate MCI/normal group 
selection criteria, EEG recording protocol, preprocessing 
and feature extraction, selection, and reduction. The third 
section will show obtained results in figure and table format, 
and the last section belongs to discussion and conclusions.

MATERIALS AND METHODS

Subjects

Twenty‑seven subjects  (11 MCI and 16 normal) were 
selected from participants of previous study,[31,32] which 
included subjects above 60 years with elementary or higher 
education and history of coronary angiography during 

Table 1: Brief categorized summary of performed studies
Category Researchers Method Year

Slowing of EEG signal McBride et al.[7] Fourier power 2014
Baker et al.[8] Fourier power 2008
van der Hiele et al.[9] Fourier power 2007
Czigler et al.[10] Fourier power 2008
Gianotti et al.[11] Fourier power 2007
Dauwels et al.[12] Fourier power 2011
Latchoumane et al.[13] Fourier power 2009
Schreiter Gasser et al.[14] Fourier power 2008
Moretti[15] Fourier power 2012
Polikar et al.[16] Time-frequency map 2007
Vialatte and Maurice[17] Bump models 2008

Reducing complexity 
of signal

McBride[18] Transfer entropy 2015
Hornero et al.[19] Approximate/sample/multi scale entropy/lempel-ziv complexity/auto-

mutual information
2009

Abásolo[20] Approximate entropy/auto-mutual information 2008
Woon et al.[21] Sample entropy 2007
Zhao et al.[22] Tsallis entropy/universal compression 2007
Jeong et al.[23] Auto-mutual information 2001
Adeli et al.[24] Correlation dimension/largest lyapunov exponent 2008

Perturbation in EEG 
synchrony

McBride[25] Sugihara causality 2015
Dauwels et al.[26] Pearson correlation coefficient/magnitude and phase coherence/phase 

synchrony/state space synchrony/information theoretic measures
2009

Babiloni et al.[27] Granger causality 2009
Czigler et al.[10] Phase synchrony/State space synchrony 2008
Jeong et al.[23] Information theoretic measures 2001
Dauwels et al.[12] Stochastic event synchrony/granger causality 2011
Stam et al.[28] Graph-theoretic methods 2007
Gallego-Jutgla et al.[29] phase synchrony, granger causality 2012

Increasing gamma 
band activity

van Deursen et al.[30] Fourier power 2009
McBride et al.[7] Fourier power 2014

EEG – Electroencephalogram
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recent year. They were selected from patients who admitted 
to cardiac catheterization units of Sina and Nour Hospitals, 
Isfahan, Iran. The study design was ethically discussed and 
approved by the Deputy of Research and Technology, Isfahan 
University of Medical Sciences, Isfahan, Iran. Subjects with 
a history of major psychiatric disorders, substance misuse, 
head trauma, serious medical disease, and dementia 
were excluded. The study process was explained for all 
subjects, and written informed consent was obtained. 
Neuropsychiatric interview considering Peterson’s criteria 
for MCI[33] has been done for all subjects. MMSE scores from 
21 to 26 were utilized for validation of MCI diagnosis and 
scores more than 26, were considered normal controls.[4] 
Neuropsychiatry unit cognitive assessment tool  (NUCOG) 
has been used to confirm the diagnosis of MCI and as a 
dependent variable.[9] The NUCOG scores more than 86.5, 
between 75 and 86.5, and lower than 75 were considered 
as normal cognitive state, MCI, and dementia, respectively, 
in Iranian population.[32] Subject’s demographics and 
psychiatric test scores are summarized in Table 2.

Electroencephalogram Recording

All EEG signals were recorded in the morning times while 
subjects resting comfortably in a quiet room with closed 
eyes. The EEG activity was recorded continuously from 
19 electrodes positioned according to the 10–20 International 
system (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, 
Pz, P4, T6, O1, and O2). Figure 1 shows electrode placement 
and scalp zoning used in this study. Data were recorded 
using 32 channel digital EEG device with 256 Hz sampling 
rate (Galileo NT, EBneuro, Italy). Electrodes‑skin impedance 
was set below 5 kΩ. The recording duration was 30  min 
because longer recordings would reduce the variability of 
the data and suppress noise and artifacts, but also possibly 
increase the slowing of EEG oscillations due to reduced 
vigilance. Hence, during recording procedure, subjects were 
been checked out continuously to keep them conscious and 

avoid drowsiness. After recording procedure, a notch filter 
was used to remove 50  Hz frequency noise amplified by 
background electronic devices. Artifacts due to slipping of 
electrodes or subject’s movement were manually removed 
by visual inspection to obtain clean pieces of signal.

Feature Extraction and Selection

For this step, cleaned EEG signals should be divided into 
small segments. We tried 0.5, 1, 1.5, and 2 s length with 
0%, 25%, 75%, and 50% overlap, which the best results were 
obtained for 1 s length with 50% overlap. About 19 spectral 
features[4,7] were computed for each segment and then 
averaged along whole EEG signal length to obtain 19 overall 
features for each channel. Table  3 shows those features’ 
name and their descriptions.

As mentioned before, 19 overall features were extracted 
from each channel and as there are 19 EEG channels in 

Table 2: Subject’s demographics and psychiatric test scores
Characteristic MCI Control P

Age (years) 66.4±4.6 65.3±3.9 0.4
Education (years) 10.3±3.8 11.1±3 0.4
GHQ scores 20.5±9.4 17.9±6.6 0.3
BMI (kg/m2) 25.7±2.2 26.6±3.6 0.3
Fasting glucose (mg/dl) 115.5±24.3 121.8±36.9 0.3
Total cholesterol (mg/dl) 170.6±61.4 169.1±42.6 0.9
Triglycerides (mg/dl) 157.3±100.9 160±80.7 0.9
Creatinine (mg/dl) 1.2±0.2 1.3±0.3 0.1
MMSE scores 27.6±0.9 29.0±0.8 <0.001
NUCOG scores 82.4±3.6 91.1±3 <0.001
Gensini scores 33.3±31.9 20.3±21.7 0.1
GHQ – General health questionnaire; BMI – Body mass index; MMSE – Mini-mental 
state examination; NUCOG – Neuropsychiatry unit cognitive assessment tool; 
MCI - Mild cognitive impairment

Table 3: Names and descriptions of extracted features
Number Name Description

1 delta Power in the δ band (0.5-3.5 Hz)
2 r-delta Relative power in the δ band
3 theta Power in the θ band (3.5-7.5 Hz)
4 r-theta Relative power in the θ band
5 alpha1n Power in the α1 band (7.5-9.5 Hz)
6 r-alpha1 Relative power in the α1 band
7 alpha2n Power in the α2 band (9.5-12.5 Hz)
8 r-alpha2 Relative power in the α2 band
9 betta1n Power in the β1 band (12.5-17.5 Hz)
10 r-betta1 Relative power in the β1 band
11 betta2n Power in the β2 band (17.5-25 Hz)
12 r-betta2 Relative power in the β2 band
13 gamma Power in the γ band (25-40 Hz)
14 r-gamma Relative power in the γ band
15 total Total power of the EEG power spectrum (0.5-40 Hz)
16 R1 Power ratio: R1=θ/(α1+α2+β1)
17 R2 Power ratio: R2=(δ+θ)/(α1+α2+β1+β2)
18 R3 Power ratio: R3=θ/(α1+α2)
19 PAF Peak α frequency
PAF – Peak alpha frequency; EEG – Electroencephalogram

Figure  1: Electrode placement and scalp zones: 1  =  frontal, 2  =  left 
temporal, 3 = central, 4 = right temporal, 5 = occipital
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our recordings, so a 19 × 19 feature matrix obtained for 
each participant. As there were no reliable evidence on 
which feature/features, channel/channels, or zone/zones 
are the best for our purpose, we started a correlation 
based pursuit for feature selection step. In our pursuit, we 
examined features and channels individually, zone‑grouped 
and zone‑group‑averaged to find the best discriminative 
features. Tables  4 and 5 show correlations between 
calculated features and desired results for each channel and 
zone, respectively. These tables have been color filled (red 
for negative and blue for positive correlations) for better 
visualization, which color intensity is proportional to 
absolute value of correlation.

Somebody may ask why we did not use well‑known, easy, and 
fast feature selection methods such as Principal Component 
Analysis  (PCA) and Independent Component Analysis  (ICA) 
to select the best features. The answer is that almost these 
methods combine initial features to produce new and more 
discriminative ones, and we did not want that because 
we wanted to preserve neurophysiological interpretation 
of selected features. However, such automated feature 
selection methods are very powerful and may be used in 
future studies, especially to build new features that can be 
used as MCI biomarkers.

Classification

Selected feature, we call them features vector, is now 
ready for classification step. We used Takagi‑Sugeno 
neurofuzzy  (NF) inference system as the main part of 
our classification step. NF refers to combinations of 
artificial neural networks and fuzzy logic which results 
in a hybrid intelligent system that synergizes these two 
techniques by combining the human‑like reasoning style 
of fuzzy systems with the learning structure of neural 
networks. The main strength of NF systems is that they 
are universal approximators with the ability of producing 
interpretable IF‑THEN rules. The strength of NF systems 
involves two contradictory requirements in fuzzy modeling: 
Interpretability versus accuracy. In practice, one of the two 
properties surpasses. The neurofuzzy in fuzzy modeling 
research field is divided into two areas: Linguistic fuzzy 
modeling that is focused on interpretability, mainly the 
Mamdani model; and precise fuzzy modeling that is focused 
on accuracy, mainly the Takagi‑Sugeno model. The structure 
of a typical Takagi‑Sugeno system is shown in Figure 2.[33] 
First to train NF system, feature vectors of train data were 
shown to NF system as inputs and their respected values as 
outputs (MCI = 1, normal = 2). We used two‑third of our 
data to train NF system and gathered final output for each 
case to construct a k‑nearest neighbor (KNN) classifier.

This KNN classifier has two classes with centers specified 
from NF system outputs from training data and will be used 
as a complementary part in our classification step, so outputs 

of NF system will be finally labeled using that. We add this 
part because the outputs of NF system do not exactly match 
the labeled value and has, at least, two benefits; first, there 
is no need to use large number of iterations to force NF 
system’s outputs come closer to exact values, and second, 
it plays the role of a decision making and labeling system 
without any time consuming or complicated rules. Block 
diagram of proposed method including classification step 
is shown in Figure 3.

RESULTS

As stated earlier, feature selection has been performed 
through a pursuit that described in section 2.3. Tables 4 and 5 
show computed correlations between features and desired 
results that were used in our pursuit to find features vector 
for 1 s length segments with 50% overlap. They have been 
color formatted for faster and easier perception. We used 
18 cases (9 MCI and 9 normal) for training NF system, but 
because our dataset was small, we used half‑length of 
them for training and used other half for testing of total 
samples. Because of implementing KNN complementary 
classifier, there was no need for large number of iterations, 
so we set that to 5 and construct KNN based on final 
outputs of training step. After training phase, we cascaded 
KNN classifier to trained NF and began testing phase. 
Feature vectors of all samples are used in testing phase, 
but classification measure, i.e.,  accuracy, sensitivity, and 
specificity are calculated from samples that not proposed 
in training phase.

Figure 2: Typical structure for Takagi‑Sugeno inference system
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after cascading KNN. To have a comparison, classification 
also has been done using a single supervised KNN classifier 
which Table 7 shows its results.

CONCLUSION

In this study, we proposed a reliable and accurate method 
to discriminate MCI versus normal cases using simple 
spectral EEG features. The proposed feature selection 
and classification procedure shows very promising and 
interesting results using these features. Tables  6 and 7 

Table 6: Accuracy, sensitivity, and specificity of proposed 
method, feature selected for each zone individually
Zones Selected features Accuracy 

%
Sensitivity 

%
Specificity 

%

Frontal 6,10, 11, 14, 16, 17 77.78 66.67 83.33
Left temporal 6,10, 11, 14, 16, 17, 18 88.89 66.67 100.00
Central 6, 11, 14, 16, 17 88.89 100.00 83.33
Right temporal 6,11, 14, 16, 17, 18 88.89 100.00 83.33
Occipital 6,11, 14, 16, 17, 18 88.89 100.00 83.33

Figure 4: Classification results for zone individually selected features, before (left) and after cascading k‑nearest neighbor (right)

Repeating whole procedure for different segmenting length 
and different overlap showed that 1 s length segments with 
50% overlap have the best results so only these results have 
been shown and discussed.

As can be seen in Tables 4 and 5, some features have good 
correlations with desired results in one or more channels but 
not in all, so we should find a method to select features and 
channels simultaneously. There were two main problems 
here; first, some of the good features and good channels 
attenuate each other when applied together. Second and the 
most important was that channel based methods are not so 
suitable in real application because they are very sensitive 
to noises, artifacts, or disconnection on base channels. The 
best solution for the last problem was using zone‑based 
approach instead of channel‑based one. Best averaged 
features for each zone were calculated, which are shown in 
Table 6, and it can be seen that some of them are consistent 
with recent similar work.[7] Table 6 indicates selected features 
and their classification results for each zone using proposed 
classifier. Figure  4 shows classification results before and 

Figure 3: Block diagram of proposed method
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show that using NF‑KNN combination has noticeably 
better results compared to KNN. Having accuracy above 
88% proves the hypothesis that EEG signals can be used in 
MCI diagnosing and reaching to 100% sensitivity make the 
proposed method as a suitable tool for large population 
screening. The highest obstacle in this way is generalization 
problem due to small sample size of this study, so one of 
the most important complementary works is to increase 
the number of cases in both normal and MCI group, and 
we have it on the run currently. We also are establishing an 
online biomedical signal and image database to share our 
data with other researchers.

Another interesting aspect this way is applying 
well‑known feature selection techniques  (e.g.  PCA, ICA) 
or using time‑frequency transforms such as wavelet[5,34] 
to produce new reliable and powerful discriminative 
features which can be used as diagnostic biomarkers or 
even as measuring quantities for the degree of MCI/AD. 
Sparse modeling of EEG signal in MCI and normal group 
using overcomplete dictionaries is a new, interesting, and 
almost intact approach that seems to be practical because 
spectral changes in EEG signal due to MCI/AD has been 
proved and evidenced in a wide variety of recent studies. 
In addition, combining data from EEG signals and brain 
images provided via one of the standard brain imaging 
techniques such as positron emission tomography, 
computed tomography scan, fMRI, and especially MRI 
provides a motivating and interesting area for future 
works in MCI diagnosis.
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