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INTRODUCTION

Due to the drowsiness state  (DS), the drivers’ capability 
for remaining alert and making appropriate decisions 
might drastically decrease. Driving in a drowsy state can 
involve serious risks. As reported by the World Health 
Organization, most road casualties are due to the drivers’ 
drowsiness.[1] Therefore, detection of the DS at the wheel 
and application of a viable tool for the DS prediction is a 
major challenge for different research groups. Numerous 
methods have already been proposed for the DS detection 
based on the behavior and reactions of the drivers.[2,3] 
Some studies have proposed techniques for detection 
of the driver’s drowsiness based on his/her eye and head 
movements.[4,5] In these techniques, a camera is required 
to record the individual’s body movements.[2] Lal and 
Craig[6] recorded individuals’ eye movement and blink. 
Consequently, they found that the fast movements of the 
eyes as well as the natural eye blinks in the awareness 
phase are replaced by the short, fast, and regular eye 
blinks in the DS. Kurylyak et  al.[7] offered a noninvasive 
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visual system for recognition of the eye blink artifact and 
measurement of the tiredness level. In their system, a 
webcam was designed to record the driver’s images. Using 
the technique of frame differences and thresholding, the 
amount of openness or closeness of the driver’s eyes was 
thus determined. McIntire et al.[8] used an eye tracker to 
investigate the eye parameters. They showed that during 
activities and by the pass of the time, the frequency and 
time duration of the individuals’ eye blinks drastically 
change. With the decrease in the individual’s level of 
awareness, the frequency and duration of the eye blink 
increase. Although the image‑based techniques have some 
benefits, most drivers, nevertheless, do not like to be 
always monitored by cameras. Conversely, the methods 
based on the biosignals have proven to be more acceptable.
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Biosignals are especially useful for collecting 
information about the body response during a DS. 
Electroencephalography  (EEG) is the most widely used 
technique for measuring the electric activity of the 
brain.[8] Several researchers have proposed the EEG 
analysis for recognition of the DS.[9,10] Brookhuis and Waard 
showed the inactivation of the cerebral cortex in response 
to the continuous and monotonous driving.[11] Lal and 
Craig demonstrated the relationship among the delta, 
theta, alpha, and beta waves during driving.[12] According 
to them, as a shift to the DS happens, the ranges of the 
delta and theta waves considerably increase throughout 
the individual’s head. Besides, as the DS begins, delta and 
theta activities are observed to be centralized mostly in 
the central, middle, and front parts of the brain. Numerous 
studies have already focused on the changes in the power of 
the EEG signals of the drivers in the theta, alpha, and beta 
or their combinational wavebands.[13] Mardi et  al.[10] used 
statistical properties and chaos theory for the detection 
of the DS among drivers. Using appropriate properties, 
they found an accuracy of 83.3% for the classification of 
the awareness and DSs. Using mathematical approaches, Li 
et  al.[14] attempted to reduce the number of the channels 
required for the detection of DS during driving. They 
performed signal record using 16 channels. Moreover, 
through the application of the kernel principal component 
analysis method, they introduced O1 and Fp1 channels as the 
most valuable channels in recognition of DS during driving. 
Simon et al.[15] offered the EEG alpha spindles as a criterion 
for judgment about the driver’s drowsiness during driving. 
Alpha spindles are defined as short time occurrences in the 
alpha band. According to these researchers, the EEG alpha 
spindle parameters increase the sensitivity and specificity 
of recognizing DSs as compared to the power of the alpha 
band.

In addition to the use of the biosignals for DS recognition 
during driving, some researchers have deployed signals 
obtained from the vehicle as well as the individual’s driving 
quality (DQ) signals.[16] In these studies, the driving patterns 
of the driver are assumed to be different in the awareness 
and DSs. At present, to detect DS during driving, some 
products have been produced based on DQ parameters 
such as steer angle, velocity, speed, and distance from the 
road lines. However, further studies are required to be 
conducted on the use of such DQ parameters for detection 
of the drivers’ DS during driving.[16]

In the present study, using a simple and realistic protocol, 
EEG, electrooculography (EOG), DQ, and Karolinska sleepiness 
scale (KSS) signals have been recorded during driving. After 
reduction of the eye blink artifact, a new combined method 
has been proposed for selection of the best‑extracted 
feature from the signals. Then, a novel idea based on the 
self‑organized map (SOM) networks was implemented. One 
objective of the present study is to find differences among the 

data samples related to the awareness state, the passing from 
awareness to sleepiness state, and DSs regardless of their 
corresponding scales. Implementation of this idea can be 
considered an invaluable step toward a more straightforward 
detection of DS at the wheel while the need for the use of 
an external observer and teaching is considerably removed. 
Furthermore, the aforesaid idea makes it possible to evaluate 
the results of KSS. The obtained results have then been 
discussed in next steps.

DATABASE

The research data have been recorded based the driving 
simulator at Shahed University, Tehran. To record the EEG 
and EOG data, a 16 channel bio‑signal amplifier (g.USBamp, 
gtec, Austria) has been used. Moreover, DQ data have been 
recorded using a driving simulation software (accessible at 
http://opends.de/). The signal recording has been peformed 
from seven male volunteer students who had experienced 
around 20 h of sleep deprivation before the test. For 
consideration of the drowsiness habits of subjects, the 
Epworth sleepiness scale  (ESS) questionnaire has been 
employed. ESS is an 8‑stage questionnaire for recognition 
of the general state of daily sleepiness.[17] Based on 
reference,[18] since the average ESS result for our considered 
volunteers is found to be 11.42, these volunteers are all 
assumed to be highly sleepy individuals.

During the test, for a better evaluation of DS, KSS has 
been applied.[19] According to this scale, the span between 
awakening and beginning of sleep can be divided into 9 
stages  (shown by the numbers 1–9). Accordingly, number 
1 shows the highly aware state, whereas number 9 
demonstrates the highly sleepy state. Every 10 min, from the 
start of the driving, by popping up a rectangle at the bottom 
of the driving monitor, the driver announces a number 
from 1 to 9 as KSS test. Fifteen channels of EEG signals 
were recorded based on the 10–20 electrode standards. 
Moreover, one channel was assumed for the EOG signal from 
the left eye. Sampling frequency was set to 256 Hz. The EEG 
channels are CZ, PZ, O2, P4, F4, FPZ, C4, T6, F8, O1, O3, 
FP1, T5, T3, and F7. FZ was used as the device ground, and 
A2 was the signal recording reference. The internal filters of 
the device for signal recording involved a band‑pass filter 
with the cut‑off frequencies of 0.5 Hz and 30 Hz and a notch 
filter of 50 Hz. The notch filter of 50 Hz has been used to 
further weaken the signals in the frequency range of the 
town power. The duration of signal recording per individual 
was about 50  min. DQ signals obtained from the driving 
simulation software involve three position signals, four 
vehicle direction signals, steering angle, gas pedal position, 
and brake pedal position. The recording frequency of these 
signals has been about 17 Hz. These signals have then been 
upsampled to 256  Hz so that they can be synchronized 
with the biosignals. The driving route is here a rectangular 
monotonic road with a perimeter of about 1.5 km. There is 
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no other vehicle or obstacle to induce a more natural DS. 
Thus, the used protocol is straightforward, cost‑effective, 
and based on the real conditions. To enhance the storage of 
events during the records, the driver’s face image, as well 
as the road image, has been recorded using a webcam. For 
labeling the data gathered from the results of KSS test, the 
aforementioned two footages and the notes made during 
the test have been used. These notes included the abrupt 
movements of the driver and his specific body postures. 
After labeling the recorded data, a data set containing 641 
observations of both AS and DS classes, as well as 311 
observations in AS/DS class, has been used and analyzed.

PREPROCESSING

In the preprocessing stage, we tried to reduce the eye blink 
artifact as much as possible. To this end, Samavati et al.’s 
approach have been taken into account.[20] This study 
proposes a method based on Higuchi’s fractal dimension for 
recognition of the eye blink artifact. This can be explained 
by the fact that the eye blink artifact production system 
is different from the dynamic system of generating brain 
activities. As expected, the system dynamics of the eye 
blink is simpler than the generation dynamics of the brain 
activities; hence, the eye blink system dynamics has a lower 
fractal dimension. The pseudo‑code for reduction of the eye 
blink artifact is as follows:
•	 Calculate independent component analysis  (ICA) for 

each observation
•	 Calculate Higuchi’s fractal dimension of each 

independent component (IC)
•	 Normalize the dimensions
•	 Select IC with the smallest Higuchi’s fractal dimension 

as the main source of the eye blink artifact
•	 Set this IC to zero
•	 Apply reversed ICA on the ICs and find the EEG and EOG 

channels with reduced eye blink artifact.

In the proposed method by Samavati et  al., after 
normalization of the dimensions, based on training data, 
a threshold is defined, and ICs with dimensions under the 
threshold are removed as sources of eye blink artifact. For 
simplicity of calculations alleviate of the need for training 
and thresholding procedures, in this study, IC with the 
smallest Higuchi’s fractal dimension is considered the main 
source of eye blink artifact and removed. For ICA calculation, 
the FASTICA toolbox (accessible at http://research.ics.aalto.
fi/ica/fastica) has been employed. Furthermore, calculations 
related to the Higuchi’s fractal dimension are done using 
the method.[20]

FEATURE EXTRACTION

To ensure that the signal is stationary, it is divided into 3‑s 
segments, and 756 features are extracted from the whole 

27 channels of EEG, EOG, and DQ. Time domain features 
involve maximum, minimum, standard deviation  (SD), 
and average values. For extraction of the features related 
to the frequency domain, first, the average of each 3‑s 
segment is removed. Next, power spectral density (PSD) of 
each segment is estimated using Burg’s method  (with an 
AR model of order 20).[21] The extracted features from PSD 
involve the central frequency, peak frequency, ratio of H to 
L (RH/L) with H and L standing for absolute value integral of 
the signal for the frequency ranges of 7–30 Hz and 0–7 Hz, 
first quarter frequency (Q1F), third quarter frequency (Q3F), 
SD, interquartile range, skewness coefficient, and kurtosis 
coefficient.

Wavelet transform is a popular method for extracting 
different signal dynamics.[22] Using wavelet transform, 15 
features have been extracted for each part. The parts have 
been analyzed using the second order Daubechies discrete 
wavelet transform which gives a better classification than 
the other conventional wavelets.[9] The features obtained 
from subbands D4, D5, and A5 involve zero crossing (ZC), 
integral of the absolute data (ID), average, SD, and subband 
wavelet entropy (SWE).[21,22]

FEATURE SELECTION AND 
CLASSIFICATION

One common method for feature selection is the sequential 
forward selection  (SFS).[23] SFS algorithm starts with an 
empty subset. The features are singularly added to the 
considered subset and the new subset is then evaluated. 
Feature selection is subject to the maximization of the 
classification accuracy. In the present study, the sum of 
Mahalanobis distances of the data in each class from the 
center of the other classes is used as the evaluation function 
to be maximized.

Using the amount of class separability based on the scattering 
matrix with respect to the ratio of the corresponding values 
in between class scattering matrix, Sb, to the values in 
within class scattering matrix, Sw, is a well‑known method 
for selecting a subset of features. A  subset of features 
which provides high‑class separability is assumed as the 
desired subset. Han and Liu[24] proposed an efficient method 
for selecting a subset of features  (channels), called class 
separability feature selection  (CSFS). This method is based 
on a new criterion, between variable scattering matrix, Sf, 
that is defined preventing the features with redundancy be 
selected. Sf expresses the capability for class separability 
between the channels that are not selected and the subsets 
associated with the selected channels. As Sf becomes larger, 
the amount of redundancy between the channels decreases. 
In what follows, the steps in this method are explained as 
pseudo‑codes.
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Step 1: Feature extraction: Calculate MI[25] using MIToolbox[26] 
for each pair of the channels and then extract MI  (I), 
according to Eq.1, for the signals of the size m × m.
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assumed to be the ith feature from the jth observation. The 
obtained average for each feature is a vector.

Step 2: Selection of the first onward feature: Calculate 
Sbi and Swi for each feature using MI matrix obtained from 
step 1. Then, arrange all channels based on the ratio of Sbi to Swi.
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w i
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According to Eq. 2, select the variable with the largest 
value for Jmi as the first member of the subset of S optimal 
features. Selection of the ith feature as an optimal feature 
indeed corresponds to the selection of the ith channel as the 
optimal channel.

Step 3: Select the second, the third, etc., features: For 
selection of the next channel, it is required to estimate the 
redundancy between channels. The redundancy value of Sfi 
can quantitatively be introduced using Eq. 3.
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As Jri is larger, more importance is attached to the ith channel 
for classification. The channel with the largest value of Jri 
enters the S value.

Step 4: Stop criterion: If = ,S K  then the algorithm is 
stopped; otherwise, it starts over from step 3.

In this work, a new method has been developed for selection 
of optimal features. This method is a combination of the 
aforementioned SFS and CSFS methods, and hence called 
CSFS‑SFS. In the proposed method, first, a subset of optimal 
channels is selected based on CSFS. Then, the said features 
are extracted from the chosen channels. Subsequently, 
using SFS, a subset of the best features among the best 
channels is selected.

For classification, a classifier with linear discrimination 
function has been used. It is assumed that the data from both 
classes follow a Gaussian distribution. About 75% and 25% 
of the data have been used for training and testing of the 
classifier, respectively.

SELF‑ORGANIZED MAP NETWORK

Kohonen introduced a nonlinear projection called SOM.[27,28] 
SOM weights are related to regular neurons arranged in a 
two‑dimensional network. SOM algorithm regulates the 
structure weights so that the more similar weights are 
connected to the neighboring neurons in the network and 
vice versa. Training of SOM network can be divided into two 
separate phases. First, in which competition occurs, and 
the winning neuron is determined, the degree of similarity 
of the inlet data to all neurons is estimated. The neuron 
with the most similarity to the input data is selected as the 
winning neuron. Then, the weights related to the winning 
neuron and the neurons in its neighborhood are updated. In 
our problem, when data of different classes are designated 
to an SOM network, the labeling criteria and the results of 
the KSS test can be evaluated since the SOM network is 
unsupervised.

RESULTS

In this section, the results of the suggested CSFS‑SFS method 
for feature selection are compared with the conventional 
SFS method. In the next part, the results obtained from 
implementation of the new SOM idea are given in two 
phases. In the first phase, through the application of the 
data from two classes of AS and DS to the SOM network and 
investigation of the classification results, the criteria related 
to the labeling of the said data, which are largely based on 
the films and reports during the test, are evaluated. Then, 
using the data of three classes of AS, AS/DS, and DS, the 
SOM network is trained and tested. Algorithms have been 
implemented using MATLAB 2013 (The MathWorks, Inc) 
running on a PC with 3.01 GHz AMD CPU and 1 GB Ram.

Feature Selection Results

First, using SFS method, a subset of optimal features has 
been selected and the classification results have been found. 
Then, using CSFS‑SFS method, a 13‑member subset of 
optimum channels has been selected. Then, the introduced 
features among the selected channels have been extracted 
and an optimum subset has been chosen from them.

Figure  1 shows the results for the accuracy of the 
linear classification versus the number of the selected 
features using SFS  (the right‑hand diagram) and CSFS‑SFS 
(the left‑hand diagram). The reported results are associated 
with the average of 15 times of training and testing of the 
classifier. The best accuracy, in both methods, is achieved 
by selecting a 100‑member subset of the features. For this 
subset of features, in SFS method, the median value and 
first‑  and third‑quarters are 70.41%, 67.99%, and 73.61%, 
respectively. The corresponding values in CSFS‑SFS 
method are 69.60%, 71.00%, and 67.56%, respectively. The 
calculations times for obtaining a 100‑member subset of 
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features using the SFS and CSFS‑SFS methods are 6807 s 
and 2096 s, respectively. The 69.21% decrease in the time 
of calculations under the CSFS‑SFS method can be ascribed 
to the substantial decrease in the repeated calculations 
by selection of the best channels in the first phase of the 
calculations. From the 100 selected features, in SFS method, 
an average number of 67.46 and 32.54 features among the 
biosignals and DQ signals, respectively, have been selected. 
The results for the CSFS‑SFS method show that an average 
number of 8.33 channels and 4.66 channels are related 
to the biosignals and the DQ signals, respectively. These 
results show that, in both methods, the informative value 
of the extracted features from the biosignals is two times 
as great as the informative value of the extracted features 
from the DQ signals.

For investigation and comparison of the informative values 
of the 28 calculated features, the selection percentage 
of each of these two methods is calculated and shown 
in Figure  2. In the SFS method, the features of STD_D4, 
SWE_D5, F_Q1F, ID_A5, and SWE_D4 are ranked 1–3 and 
have the most informative value. In the suggested CSFS‑SFS 
method, the three best features are the ID_D5, ZC_D5, and 
ID_D4. It can be observed that in these three best features, 
in both methods, the most selected feature is related to 
the wavelet transform domain. In the biosignals, the 
approximations and details used in the wavelet transform 

are associated with the frequency bands of delta, theta, and 
alpha, and the features obtained from them are the most 
important.

Self‑organized Map Network Results

In the first phase for implementation of the idea of using 
the SOM network, the number of data for either of the 
classes of AS and DS is 641. Using 75% of the involved 
data, the 9  ×  9 SOM network is trained. These data are 
described with 100 selected features using the CSFS‑SFS 
method. The network setups are considered in compliance 
with the default setups in the MATLAB software toolbox. 
After the unsupervised SOM network is trained, any single 
neuron can be labeled based on the available labels from 
the training data. It should be emphasized that these labels 
were not used for the training of the SOM. The neuron 
is labeled by the class with the most number of times of 
selecting the said neuron. Figure 3 shows the designation 
of the labels related to each neuron in the SOM network for 
both classes of AS (1) and DS (2) after training procedure. 
To test the network, test data from class AS and class DS 
were applied to the network, and we compared the label 
of the selected neuron with the real input label. For 5 times 
of training and testing of the network, the accuracy of 
76.51 ± 3.43% has been obtained. SOM network training 
is unsupervised, and so it can be regarded as a criterion for 
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evaluation of the procedure defined for labeling. The high 
compatibility between the results of the SOM network and 
those of the performed labeling is indicative of the accuracy 
of our defined labeling system. For labeling of the AS and 
DS data, decision priority is given to the criterion related to 
the films and reports.

Under the assumption that the results related to the 
feature selection are reliable for three classes of AS, AS/DS, 
and DS, 75% of observations are separated and a number 
of 100 features are selected using the CSFS‑SFS method. 
For equality of the number of data, 310 observations are 
considered for each class. These data are applied to an SOM 
network with dimensions of 8 × 8. After the SOM network 
is trained, the neurons are labeled [Figure 4]. After training, 
the test data related to each class are separately applied to it, 
for which a detection accuracy of 62.70 ± 3.65% is obtained. 
This result shows that the drowsiness trend during driving 
is detectable and can be determined calculation methods. 
As long as the driver’s state is at the place of neurons 1, 
the driving condition is safe. By entering into the place of 
neurons 2, the driver is indeed in an alert state. If the driver 
enters the location of neurons 3, the driving is highly risky, 
and decisions should be made to avoid problems. Since in 
the labeling procedure of the AS/DS data, decision‑making 
about the KSS criterion is prioritized, the results of the SOM 
network are thus a verification of the KSS results. This also 
demonstrates a bilateral agreement between the said test 
and the mathematical calculations from the unsupervised 
SOM procedure.

DISCUSSION

In this study, an analysis of the existing patterns in the 
recorded EEG, EOG, and DQ signals for detection of 
drowsiness during driving has been provided. Advantages 
of the defined protocol are shown the reliability and the 
realistic nature of the data involved. The monotonous and 

repetitive nature of the road, along with the nonexistence 
of any other vehicle or traffic signs in the track, might 
contribute to the passing from AS to DS. In addition, by 
simultaneous recording of three signal groups, we tried 
to produce complete datasets. Previous studies have 
simply been conducted on a single group of signals. Due 
to the ESS test, obtained dataset is related to a group of 
nonprofessional drivers, for whom are subsumed under the 
highly sleepy group of individuals. The homogeneity of the 
daily drowsiness record of the considered participants in the 
recording procedure can be regarded as another strongpoint 
of proposed protocol. To reduce the eye blink artifact, it has 
been attempted to determine the main source of the artifact 
based on ICA and Higuchi’s fractal dimension. The advantage 
of this method is its automaticity and alleviation of the 
need for training procedure. Moreover, in this method, the 
detection of eye blink artifact is performed quickly and just 
through one single observation. These advantages allow for 
the easy hardware implementation of the system.

In the proposed CSFS‑SFS method, CSFS and SFS methods 
are combined, and thus, the best features among the best 
channels are selected. This is a strategically important 
consideration since any decrease in the number of the 
required sensors for equipment production might result 
in the decrease in the calculation time and production 
costs. In this method, redundant calculations drastically 
decrease and a 69.21% reduction in the time of calculations 
is achieved, compared to SFS method. The average accuracy 
per a 100‑member subset in the SFS and CSFS‑SFS methods 
are 70.33 ± 3.45% and 69.73 ± 3.45%, respectively. The 0.6% 
reduction in the classification accuracy of the suggested 
method is not significant considering the SD of 3.45%. 
Accordingly, the implementation of the proposed method 
and its use in the practical systems is easier since, in these 
systems, great importance is attached to the low volume of 
calculations, processor occupancy level, and power losses.

Figure  3: Neurons’ labels in self‑organizing map network for awareness 
state (1) and drowsiness state (2) classes after training procedure

Figure  4: Neurons’ labels in self‑organizing map network for alert state 
(1), alert state/drowsiness state (2), and drowsiness state (3), classes after 
training procedure
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Through a statistical comparison of the selected channels 
in the SFS method and the selected channels in the first 
stage of our proposed method, it can be observed that, in 
both methods, a number of selected channels associated 
with the biosignals are approximately two times as large 
as the selected channels related to the DQ signals. This 
result shows that the informational value of the biosignals 
is twice greater than the informational value of the DQ 
signals. Statistically viewed, as indicated by the recorded 
literature, most previous studies on the drowsiness during 
driving have already focused on the investigation of the 
biosignals. These two statistical results demonstrate that 
the information obtained from the biosignals is more 
reliable that the information from DQ signals. However, 
better detection can be achieved through the combination 
of the gathered information from both signal groups. 
In this study, the three channels of C4, O1, and T3 are, 
respectively, the best channels among the biosignals. Mardi 
et  al.[10] suggested the channels of T3, F7, and O1 as the 
most valuable channels in diagnosis of drowsiness during 
driving. However, Li et al.[14] assumed Fp1 and O1 to be the 
most valuable channels. Although the present study makes 
use of the DQ signals, in addition to the biosignals  (in 
previous studies, only the biosignals were considered), 
nevertheless, the close correspondence between the best 
channels for biosignals indicates that the presence of the 
DQ signals along with the biosignals has not produced 
fundamental changes in the order of importance for the 
biosignal channels. Based on the results of the present 
study and those of the two previous works,[11,15] it can be 
seen that, in diagnosis of the DS during driving, the data 
from the left brain hemisphere have more informative value 
than the data obtained from the right cerebral hemisphere. 
Figure 2 shows that in both methods, almost all superior 
features are related to the field of wavelet transform. Due 
to the best features and the double value of the biosignals 
compared to the DQ signals, it can be understood that the 
extracted features from the approximation A5 and details 
D5 and D4, which are equal to the frequency bands of delta, 
theta, and alpha in biosignals, respectively, are of the most 
informative importance. Last, the wavelet transform has 
successfully afforded to diagnose and extract the different 
dynamics in the signals and has thus provided the most 
valuable diagnostic information.

The implemented idea based on the SOM network is an 
intervention, which permits the visualization and diagnosis 
of the drowsiness trend. As the first step of this idea, 
the data of classes AS and DS have been applied to the 
SOM network. The accuracy of 76.51  ±  3.43% obtained 
completely verifies the labeling criteria of the two classes. 
In general, one important challenge to the studies on the 
diagnosis of the DS during driving is to show how the data 
can be labeled. Therefore, some researchers prefer to use 
the recorded data related to the study of the sleep process. 
Due to the differences such as the voluntary and involuntary 

sleep conditions,[29] these groups of studies do not have any 
considerable functional value for the diagnosis of the DS 
during driving. By the second step of the suggested idea 
concerning the use of the SOM network, the data of three 
classes of AS, AS/DS, and DS are applied to the network. The 
results with an accuracy of 62.70 ± 3.66% show that these 
data select different neurons in the network. Consequently, 
the movement from the AS to the DS state can be diagnosed, 
and thus, proper decisions are made to control the driver’s 
conditions. Besides, this mapping can be projected on a 
screen, which is continually shown to the driver. This tactic 
can help the drivers to have a better understanding of their 
mental states in practice. One concern by the researchers 
in the field of the signal processing is to determine the 
reliability of the tests used as the subjective indexes for the 
DS diagnosis. In this study, for the data labeling, especially 
the data related to class AS/DS, priority is given to the KSS 
results. SOM results and their agreement with the KSS ones 
verify the reliability of the KSS results.

This study can be considered a reliable attempt to develop 
a comprehensive system for the diagnosis of the drivers’ 
DSs. In this context, it is hoped that our obtained results 
will be used as a basis for the conduction of further studies 
in this field.
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