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INTRODUCTION

The human hearing system consists of external, middle 
and inner ear. Sound undergoes a series of transformations 
as it travels through auditory nerve and into the brain 
afterwards. The function of the external ear is to collect the 
sound waves and focusing them on the eardrum, separating 
the external ear from the middle ear, and to convert the 
sound waves into mechanical vibrations. In the inner ear, 
the cochlea, which resembles a snail shell is filled with 
fluid. It transforms the mechanical vibrations to vibrations 
in fluid. Pressure variations within the fluid of the cochlea 
displace the basilar membrane.[1] The displacements of this 
flexible membrane have information about the frequency of 
the acoustic signal.

The hair cells are attached to the basilar membrane and 
bend according to their displacements. These two parts 
translate mechanical vibrations into neural information. 

A B S T R A C T

A cochlear implant is an implanted electronic device used to provide a sensation of hearing to a person who is hard of hearing. The 
cochlear implant is often referred to as a bionic ear. This paper presents an undecimated wavelet‑based speech coding strategy for 
cochlear implants, which gives a novel speech processing strategy. The undecimated wavelet packet transform (UWPT) is computed 
like the wavelet packet transform except that it does not down‑sample the output at each level. The speech data used for the current 
study consists of 30 consonants, sampled at 16 kbps. The performance of our proposed UWPT method was compared to that of infinite 
impulse response (IIR) filter in terms of mean opinion score (MOS), short‑time objective intelligibility (STOI) measure and segmental 
signal‑to‑noise ratio (SNR). Undecimated wavelet had better segmental SNR in about 96% of the input speech data. The MOS of the 
proposed method was twice in comparison with that of the IIR filter‑bank. The statistical analysis revealed that the UWT‑based N‑of‑M 
strategy significantly improved the MOS, STOI and segmental SNR (P < 0.001) compared with what obtained with the IIR filter‑bank 
based strategies. The advantage of UWPT is that it is shift‑invariant which gives a dense approximation to continuous wavelet 
transform. Thus, the information loss is minimal and that is why the UWPT performance was better than that of traditional filter‑bank 
strategies in speech recognition tests. Results showed that the UWPT could be a promising method for speech coding in cochlear 
implants, although its computational complexity is higher than that of traditional filter‑banks.
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Thus, due to damaged hair cells, the auditory system is not 
able to transform mechanical sound signal to electrical nerve 
impulses, resulting in hearing impairment.[1] Researches have 
shown that the most common cause of deafness is the loss 
of hair cells, rather than the loss of auditory neurons.[2] The 
basis of the cochlear implant approach is that the neurons 
could be directly excited through electrical stimulation.

In the last decades, cochlear implant system has been 
improved profoundly.[2] It is a prosthetic device that could 
be implanted in the inner ear thus providing partial hearing. 
The cochlear implant system consists of an external 
processor, which selects and arranges sounds picked up by 
the microphone and an internal element that is implanted 
inside the body by means of a surgical operation.[3]

The main part of a cochlear implant system is the signal 
processor, which converts the signal into electrical pulses 
based on the speech processing strategy. The processing 
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in the speech processor can aim to either preserve either 
waveform or envelope information.[1]

There are several speech processing strategies to drive 
electrical pulses. Most of which use a linear filter‑bank for 
spectral analysis performed in the human cochlea. Since the 
model used for the cochlea is a set of nonlinear overlapping 
band‑pass filters, one possibility is to use nonlinear 
strategies.[4,5] For example, Kim et  al. proposed an active 
nonlinear model of the basilar membrane in the cochlea, 
called the dual resonance nonlinear  (DRNL) model.[6] They 
have also simplified the DRNL to a model called simple dual 
path nonlinear.[7,8]

Albalate et  al. investigated the influence of speech 
intelligibility in cochlear implants users when 
filter‑banks are used with different time‑frequency 
resolutions.[9] Gopalakrishna et  al. have presented the 
real‑time implementation of wavelet‑based advanced 
combination encoder on PDA platforms for cochlear 
implant.[10,11] A new cochlear implant acoustic simulation 
model was proposed by Mahalakshmi and Reddy based on a 
critical band finite‑impulse response (FIR) filter‑bank.[12]

A number of factors must be considered when implementing 
speech processing algorithms in cochlear implant 
applications: First, the complexity of the algorithm must 
be low, so as to minimize the power requirements; second, 
time‑frequency resolution is required to be somehow similar 
to that of healthy ear[10] and third, the implementation must 
provide acceptable temporal resolution, which in turn will 
allow for the possibility of high‑simulation rates.

The use of Fourier transform provides an excellent 
frequency resolution, but at the cost of limited temporal 
resolution. This is partially solved through the short‑time 
Fourier transform (STFT) by using sliding analysis windows. 
However, the STFT uses a fixed window length and still 
cannot always simultaneously resolve short events and 
closely spaced long‑duration tones in speech. Gopalakrishna 
et al. presented a real‑time, and interactive implementation 
of the recursive Fourier transform approach on personal 
digital assistant (PDA) platforms for cochlear implant signal 
processing applications.[13]

The wavelet transform minimizes the limitation of the 
uncertainty principle by varying the length of the moving 
window with variant scaling factor. Wavelet transform is a 
time‑frequency analysis for nonstationary signals, such as 
speech, electroencephalography, electrocardiography and 
so on.[14] The wavelet transform can be regarded as a bank 
of band‑pass filters with constant Q‑factor (the ratio of the 
bandwidth and the central frequency). The wavelet analysis 
has a distinct ability to detect local features of the signal in 
both time and frequency, such as the plosive fine structures 
of the speech and other transients. The speech processing 

property of cochlea is similar to that of wavelet transform; 
Since the cochlea is composed of a number of band‑pass 
filters with constant Q‑factors.[15] A damaged cochlea is 
not able to analyze the input speech into proper frequency 
bands. A  speech processor is designed to overcome this 
defect and simulate the function of a healthy cochlea. 
The speech processor decomposes the input signal into 
different frequency bands,[2] and creates appropriate signals 
for application in the electrode array.

In the present study, we proposed the use of a speech 
processing strategy based on undecimated wavelet 
transform for frequency decomposition. To provide a denser 
approximation and to preserve the translation invariance, 
the undecimated wavelet packet transform  (UWPT) 
has been introduced and was invented several times 
with different names as shift‑invariant discrete wavelet 
transform  (DWT),[16,17] algorithm à trous  (with holes) and 
redundant discrete wavelet transform.[18] The UWPT is 
computed in a similar manner as the wavelet packet 
transform except that it does not down‑sample the 
output at each level.[19] In Starck et  al.,[20] it was shown 
that thresholding using an undecimated transform rather 
than a decimated one can improve the result in de‑noising 
applications.

This paper is organized as follows. In the next section, 
information about speech processing strategies in cochlear 
implants is provided, and an undecimated wavelet-
based strategy is described. The results are presented in 
Section III, where the performance of the method is assessed 
in terms of mean opinion score (MOS), short‑time objective 
intelligibility (STOI) and segmental signal‑to‑noise ratio 
(SNR). Finally in Section IV the discussion and conclusion 
are given respectively.

MATERIALS AND METHODS

Speech Processing Strategies in Cochlear Implants

Processing strategies are used to translate incoming acoustic 
stimuli into electrical pulses that stimulate auditory nerve 
fibers. The various speech processing strategies developed 
for cochlear implants can be divided into three categories: 
Waveform strategies  (e.g.  compressed analog and 
continuous interleaved sampling  (CIS), feature‑extraction 
strategies  (e.g.  F0/F2, F0/F1/F2 and MPEAK) and “N‑of‑M” 
strategies.[21]

Continuous Interleaved Sampling

Researchers at the Research Triangle Institute developed 
the CIS approach to avoid the deformity of speech caused 
due to channel interaction by the summation of the current 
fields. It is referred to the channel interaction issue by using 
nonsimultaneous, interleaved pulses. In the CIS strategy, 
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the acoustic signal passes through a set of band‑pass filters 
that divide the waveform into four channels. Then, the 
envelopes of the band‑passed waveforms are extracted by 
rectification and low-pass filtering.[21]

Some devices for instance use the fast Fourier transform (FFT) 
for spectral analysis while others use the Hilbert transform 
to extract the envelope instead of full‑wave rectification 
and low‑pass filtering. The envelope outputs are finally 
compressed and then used to modulate biphasic pulses. 
The compression is done by using a logarithmic function 
to fit the patient’s dynamic range of electrically evoked 
hearing. The channel interaction problem is minimized by 
using nonsimultaneous, interleaved pulses. The CIS strategy 
is implemented in several implants: Clarion, Nucleus and 
Med‑EL. The difference between these implants using CIS is 
mainly the number of channels (8 for Clarion, 22 for Nucleus 
and 12 for Med‑EL).

N‑of‑M Strategy

N‑of‑M strategy divides the speech signal into M sub‑bands 
and extracts the envelope information from each band of 
the signal. N bands that have the largest amplitude are then 
selected for stimulation (N out of M).[3] Only the electrodes 
corresponding to the N selected outputs are stimulated 
at each cycle. Thus, the bandwidth of a cochlear implant 
is limited by the number of channels  (electrodes) and the 
overall stimulation rate. The channel stimulation rate 
represents the temporal resolution of the implant, while 
the total number of electrodes M represents the frequency 
resolution.

The basic aim here is to increase the temporal resolution 
by neglecting the least important spectral components and 
to concentrate on the more important features. Advanced 
combinational encoder (ACE) and SPEAK strategies, both of 
which are N‑of‑M type.[22] The SPEAK strategy uses a 20‑channel 
band‑pass filter‑bank to perform a spectral analysis. The ACE 
strategy is similar to the SPEAK strategy but uses 22 channels 
and has the capability to provide stimulation at higher pulse 
rates of up to 2400 pps per channel.

Undecimated Wavelet‑based Method

The UWPT is a translation invariant and redundant transform, 
where no decimation is done after the filtering. The key 
advantage of UWPT is that it is redundant and shift‑invariant 
and gives a dense approximation to the continuous wavelet 
transform  (CWT) than that provided by the orthonormal 
discrete wavelet transform.[23] Undecimated DWT  (UDWT) 
coefficients are a collection of all DWT coefficients of 
different shifts of the signal. There is no down‑sampling 
at all in the multi‑resolution algorithm.[20] We can also 
consider UDWT coefficients as a collection of coefficients 
of DWTs with different down‑sampling schemes. In the 
filter‑bank implementation, this means both even samples 
and odd samples of the filtering output are kept and 
separately filtered at the next stage of iteration. The UWT 
W using the filter‑bank (h, g) of a 1‑D signal c0 leads to a set 
W ={w1,w2,...,wj,cj} where wj are the wavelet coefficients at 
scale j and cj are the coefficients at coarsest resolution. Each 
new resolution is iteratively calculated using the Eqs.  (1) 
and (2):[20]

+ = +∑1[ ] [ ] [ 2 ]j
j j

k

c l h k c l k � (1)

+ = +∑1[ ] [ ] [ 2 ]j
j j

k

w l g k c l k � (2)

Note that in the UWPT, the coarsest resolution is also 
iteratively decomposed like the fine resolution. The 
undecimated wavelet approach can be used to decompose 
the input speech signal into a number of frequency bands. 
Similar to the FFT‑based N‑of‑M strategy, the number 
of maximum amplitude channel output, can be selected 
using a logarithmic compression map and stimulation. 
A  second‑order Butterworth low-pass filter  (cut‑off 
frequency 400  Hz) was used to obtain smooth envelopes 
of speech signals. The block diagram of the undecimated 
wavelet‑based N‑of‑M strategy is shown in Figure  1. In 
this strategy, input speech signals are passed through a 
6‑stage wavelet packet decomposition yielding a 64‑band 
output. A channel output is computed by summing up all 
the frequency‑band output falling within the frequency 
range of the channel and is passed through a rectifier and 

Figure 1: Block diagram of the N‑of‑M strategy using undecimated wavelet transform
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then low-pass filtered to extract the channel envelope. The 
number of channels can be varied. The block diagrams of 
the traditional base CIS and N‑of‑M strategies were shown in 
Figures 1 and 2 of the manuscript written by Gopalakrishna 
et al.[10] Comparing with our proposed N‑of‑M structure, the 
FFT block was replaced with the undecimated wavelet and 
the rectifier and LPF was taken from the CIS strategy.[3]

With this undecimated wavelet‑decomposition tree, the 
bandwidths of the channels become exactly the same as 
the frequency bands used in the Nucleus device.[10] The 
same approach can be applied to any other implant device 
with different frequency spacing and different number 
of channels.[24] Table 1 gives the cutoff frequencies of the 
channels corresponding to the binary tree structures for the 
input sampling rate of 16 kbps.

In our implementation, 512  sample windows were used 
to compute the undecimated wavelet‑decomposition 
coefficient for six‑stage decomposition. Both the Symmlet 
and Daubechies wavelet basis functions produced similar 
outputs.

Validation

The function of the proposed speech processing in cochlear 
implant devices was primarily to decompose the input 
speech signal into a number of frequency bands to extract 
8 bands which have the largest amplitude for stimulation. 
The input speech was analyzed using undecimated 
wavelet‑based on the specifications discussed in Section II. 
The envelope of the signal was derived by obtaining the 
absolute value of the signal at each time instant, that is, 
performing full‑wave rectification. A  second order infinite 
impulse response  (IIR) low-pass filter with the cut‑off 
frequency of 400 Hz was used to obtain smooth envelopes 
of the speech signals. To verify the function of the proposed 
method in the speech processor in cochlear implant, three 
validation criteria  (MOS, STOI and segmental SNR) were 
used. The speech data used for the current study consisted 
of 30 consonants,[25] sampled at 16 kbps.

Mean opinion score
The MOS test is widely known as an index for speech quality 
rating.[26] In recent years, some objectives MOS assessment 
methods were developed, such as perceptual evaluation of 
speech quality  (PESQ). It evaluates the audible distortions 
based on the perceptual domain representation of two 
signals, namely, an original signal and a reduced signal 
which is the output of the system under test. On the other 
hand, ITU‑T G.107 defines the E‑model, a computational 
model combining all the impairment parameters into 
a total value. The principle of the E‑model is based on 
the suppositions that transmission impairments can be 
transformed into psychological factors. The fundamental 
output of the E‑model is a transmission rating factor R‑value 
which is directly converted to a MOS estimate.[27] It is given 
by the Eq. (3):

= − − − +0R R Ie Id Is A � (3)

where Ro depicts the basic SNR, ‘Is’ represents the 
impairments occurring simultaneously with the voice signal, 
‘Id’ represents the impairments caused by delay, and ‘Ie’ 
represents the impairments caused by low bit rate codecs.[28] 
The advantage factor A can be used for compensation when 
there are other advantages of access to the user. R can be 
transformed into a MOS scale by the Eq. (4):[29]
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Figure 2: Comparison of mean opinion score for undecimated wavelet, and 
infinite impulse response filter‑bank, both with N‑of‑M, implementations

Table 1: Lower and upper cutoff frequencies of the channels 
(input sampling rate is 16 kbps)
Channel number Cutoff frequency (Hz) Node’s number

1 7000-8000 [6,56]-[6,63]
2 6000-7000 [6,48]-[6,55]
3 5250-6000 [6,42]-[6,47]
4 4625-5250 [6,37]-[6,41]
5 4000-4625 [6,32]-[6,36]
6 3500-4000 [6,28]-[6,31]
7 3000-3500 [6,24]-[6,27]
8 2625-3000 [6,21]-[6,23]
9 2250-2625 [6,18]-[6,20]
10 2000-2250 [6,16]-[6,17]
11 1750-2000 [6,14]-[6,15]
12 1500-1750 [6,12]-[6,13]
13 1250-1500 [6,10]-[6,11]
14 1125-1250 [6,9]
15 1000-1125 [6,8]
16 875-1000 [6,7]
17 750-875 [6,6]
18 625-750 [6,5]
19 500-625 [6,4]
20 375-500 [6,3]
21 250-375 [6,2]
22 125-250 [6,1]



Hajiaghababa, et al.: A new speech processing method for CI based on UWT

Journal of Medical Signals & Sensors

251Vol 4  | Issue 4  |  Oct-Dec 2014

A version of PESQ known as P. 862.1 MOS‑listening quality 
objective  (MOS‑LQO) optimized on a large corpus of 
subjective data representing different applications and 
languages, performs better than the original PESQ.

Thus, P. 862.1 MOS‑LQO could be used as the estimate of 
the subjective MOS. It is obtained by first running the PESQ 
algorithm via a hardware toolbox called digital speech level 
analyzer  (DSLA) and then mapping the measured PESQ 
result by:

y
e x= +

+ − +0 999
4

1 1 4945 4 6607. . . � (5)

Where x and y represent the raw PESQ score and the 
mapped P. 862.1 MOS‑LQO score, respectively.[26] Also, DSLA 
is a measurement tool manufactured by Malden Electronics 
Ltd., Surrey, U.K. to perform MOS measurement.

Short‑time objective intelligibility
In the development process of noise‑reduction algorithms, 
objective measures are an essential tool for predicting 
quality and intelligibility of degraded speech signals. 
Otherwise, its quality or intelligibility would have been 
predicted using subjective listening that is costly and time 
consuming.

Some objective measures showed promising results for noisy 
speech subjected to reverberation and spectral subtraction, 
but has only been evaluated for stationary speech‑shaped 
noise. They are less suitable for speech signals distorted by 
nonstationary noise sources and processed by time‑varying 
and nonlinear filtering systems. To better take this type of 
distortions into account, STOI measure[30] by Taal et al. has 
proposed. This measure is the average linear correlation 
coefficient between a time‑frequency representation of 
clean and noisy speech over time frames.

Among all objective measures, the STOI measure has the 
highest ability in predicting speech intelligibility because it 
provides highest correlation between objective prediction 
and subjective listening scores. This is different from other 
measures, which typically consider the complete signal 
at once, or use a very short analysis length. In general, 
STOI showed better correlation with speech intelligibility 
compared with other reference objective intelligibility 
models. STOI is the method that works well in most 
conditions.[31]

Time‑domain signal‑to‑noise ratio
The time domain measures are usually applicable to analog 
or waveform coding systems. Their target is to reproduce the 
waveform itself. Acknowledge of SNR have an important role 
for system optimization. SNR and segmental SNR (SNRseg) 
are the usual performance measures used.[32,33] However, 
SNR is a poor assessor of subjective voice quality for a large 
range of speech distortion and therefore is of little interest 

as a general objective measure of voice quality. On the other 
hand, SNRseg represents one of the most popular classes of 
the time domain measures.

Segmental SNR calculates the average of the SNR values of 
short segments (15-20 ms). It is given as the following:
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M

x i

x i
i

N

i

Ni N

N

m

m=
−













=

=

=

+ ∑
∑

1
10 10

2

1

2

1

log
( )

( ( ) y(i))

NN

m

M −

=

− ∑∑ 1

0

1
� (6)

where x (i) and y (i) are the original and processed speech 
samples indexed by i is the number of samples, N and M 
are the segment length and the number of segments, 
respectively. Only frames with SNRseg in the range of − 10 
to 35 dB were considered in the average.

RESULTS

The validation of the proposed method in terms of MOS, 
STOI and SNRseg quality measures were presented in the 
[Figures  2‑4]. Also,  [Figure  5] showed the comparison 
of MOS for CIS and N‑of‑M undecimated wavelet 
implementations.

Figure  2 shows the MOS scores obtained by each input 
speech for undecimated wavelet and IIR filter‑bank base 
N‑of‑M strategy. In the N‑of‑M strategy, eight maximum 
amplitude analysis channels were selected out of 22. 
Figure  2 represented the oscillatory behavior of MOS 
according to the N‑of‑M strategy. Our proposed method had 
MOS values about two times than those of the IIR filter‑bank 
indicating good performance score for the undecimated 
wavelet compared with IIR filter‑bank. The average MOS 
values for the undecimated wavelet and the IIR filter‑bank 
N‑of‑M implementations were 1.42 ± 0.16 and 1.26 ± 0.09, 
respectively.

The other objective measure of speech quality, the STOI, was 
used for comparing both methods implementations. Figure 3 
shows the results in terms of the STOI for undecimated 

Figure 3: Comparison of short‑time objective intelligibility for undecimated 
wavelet, and infinite impulse response filter‑bank, both with N‑of‑M, 
implementations
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scores in about 96% of the input speech data. The average 
SNRseg values for the undecimated wavelet and the IIR 
filter‑bank N‑of‑M implementations were 7.47 ± 5.09 and 
−0.26 ± 3.33, respectively.

The MOS of 30 input speech data for the undecimated 
wavelet were showed in Figure 5 based on N-of-M and CIS 
strategies. The number of frequency bands was taken to be 
22 for both strategies to ensure a fair comparison.[34] Eight 
frequency bands with the largest amplitude were extracted 
for stimulation in the N‑of‑M strategy. The average MOS 
values for the undecimated wavelet with N‑of‑M and CIS 
implementations were 1.42  ±  0.16 and 1.45  ±  0.19, 
respectively.

The electrode stimulation patterns  (electrodograms) 
represent the activity of the electrode array for a given 
input signal. Figure 6 demonstrates the spectrogram of the 
input word “test” and the corresponding electrodogram. 
The spectrogram shows the amount of energy in a 
frequency versus time. Time is represented on the X‑axis, 
and frequency on the Y‑axis. In electrodogram, the X‑axis 
represents time and the Y‑axis is the exciting electrodes of 
the CI, and the colors indicate the level of energy for each 
electrode. The comparable color mapping was used for both 
spectrogram and electrodogram. White and black colors 
indicate the maximum and minimum energy intensities, 
respectively. As the bandwidths are not the same for all 
channels, the comparison between the spectrogram and 
electrodogram must be made with caution. For example, 
the bandwidth frequency of channel 1 is 7000-8000  Hz, 
while it is 125-250 Hz for channel 22.

DISCUSSIONS AND CONCLUSION

In this article, we presented an undecimated wavelet‑based 
strategy to decompose the input speech signal into 
different frequency bands. The speech data used in our 
method consisted of 30 consonants that could be increased 

Figure 4: Comparison of segmental signal to noise ratio for undecimated 
wavelet and infinite impulse response filter‑bank, both with N‑of‑M, 
implementations

Figure 5: Comparison of mean opinion score for continuous interleaved 
sampling and N‑of‑M undecimated wavelet implementations

Figure 6: The spectrogram of the original acoustic signal (the word “test”) at the microphone input of the sound processor (left). And the corresponding 
electrodogram using results obtained from undecimated wavelet strategy (right). The decomposition was done by N‑of‑M strategy (8 channels out of 22). 
The colormap shows the intensity

wavelet and IIR filter‑bank based N‑of‑M strategy. The STOI 
values for the undecimated wavelet and the IIR filter‑bank 
N‑of‑M implementations were 0.76 ± 0.03 and 0.65 ± 0.04, 
respectively.

Figure  4 shows the SNRseg for undecimated wavelet as 
another validation index and compared it with that of IIR 
filter‑bank. Although the IIR filter‑bank is a conventional 
and commercial method, undecimated wavelet has better 
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to achieve more generalized results. In the undecimated 
wavelet transform, Sym2 wavelet was selected since 
it is suited for speech analysis. Also we compared the 
performance of the proposed undecimated wavelet‑based 
N‑of‑M strategy with that of IIR filter‑bank based N‑of‑M 
strategy, in terms of MOS, STOI and SNRseg.

The discrete wavelet transform is very efficient from 
the computational point of view.[24] The computational 
complexities of UDWT, WT and FFT are O  (Nlog2N), O  (N) 
and O  (Nlog2N), respectively for a signal of length N.[16] 
The only drawback of WT is that it is not translation 
invariant. Translations of the original signal lead to different 
wavelet coefficients. In order to overcome this and to get 
more complete characteristic of the analyzed signal the 
undecimated wavelet transform was proposed. The UDWT 
has been independently discovered several times, for 
different purposes and under different names, e.g.  shift/
translation invariant wavelet transforms, redundant 
wavelet transform, or stationary wavelet transform. 
To grain noise reduction in ultrasonic nondestructive 
testing of materials, redundant wavelet processing was 
applied.[35] For various test signals and SNRs undecimated 
wavelet de‑noising  (UWD) performed considerably better 
than CWT. In contrast to CWT, UWD is shifted‑invariant. 
Also, in contrast to continuous wavelet de‑noising, smooth 
and accurate estimates can be computed simultaneously.[16]

The paired‑samples t‑test showed that the MOS, STOI 
and SNRseg scores obtained by the input speech data for 
undecimated wavelet‑based N‑of‑M strategy yielded to a 
performance significantly higher that what obtained with 
filter‑bank  (t  =  7.68, 15.88, 8.97 respectively; df  =  29; 
P < 0.001). This finding showed that the proposed method 
outperformed the classical filter‑bank implementation in 
terms of all of the performance criteria considered in this 
study.

A similar analysis showed that most of the performance 
indices used in this study for undecimated wavelet with 
N‑of‑M implantation were statistically different from those 
of CIS  (t = −5.74, −10.60, −1.52 respectively; df  =  29; 
P = 0, 0, 0.138). Thus, the results obtained based on CIS 
strategy in terms of MOS and STOI are significantly higher 
than N‑of‑M implantation.

Since the performance indices followed the normal 
distribution  (one‑sample Kolmogorov–Smirnov test; 
P  >  0.05), parametric test t‑test was applied for the 
inferential statistical analysis. The high power of the 
parametric tests in addition with the controlled Type‑I 
error  (α =0.05), could provide the fact that the results 
of this study could be generalized to any similar speech 
dataset. Thus, it could be deduced that the cochlear 
implant speech processing strategies using undecimated 
wavelet achieve a good performance in terms of MOS, 

STOI and SNRseg when compared with strategies using 
an IIR filter‑bank. Although, our results have only been 
compared with the filter‑bank, it is a conventional method 
commonly used in commercial strategies. Also, the 
computational complexity in the filter‑bank is less than 
the wavelet method.

The main advantage of this type of decomposition of the 
input speech signal into frequency components compared 
with that of the IIR filter‑bank is improving the deaf patients 
hearing ability. The basic advantage of IIR or FIR band‑pass 
filters will lead to a simple design in filter configuration. 
Figure  5 illustrates the comparison of MOS for CIS and 
N‑of‑M, undecimated wavelet, implementations. The 
number of analysis channels is taken to be 22 for both 
strategies to ensure a reasonable comparison. When 8 
channels or less were selected, significant differences were 
found between the N‑of‑M and CIS strategies.

In Figure 6 the areas with a white color, having the highest 
energies, are formants. In our example, they are near 625, 
1900 and 3000  Hz. The white area on the spectrogram 
for 625 Hz formant is distributed in 0.16-0.29 s. This is in 
consistent with the strongest stimulation in electrodes 19 
and 21. The next formant occurred in 0.15-0.28 s in the 
spectrogram, which is in consistent with the stimulation 
of electrode 10. Finally, the third 3000  Hz formant 
was provided by the electrode 8. Meanwhile, the main 
distinguished features, formants and variety of intensities 
of the speech signal were transferred and presented by 
using the proposed sound coding and speech processing.

To summarize, the implementation of filter‑bank using 
undecimated wavelet transform presented a novel method 
to analyze speech signals in cochlear implant. Simulation 
results indicated that applying undecimated wavelet 
transform on speech processor for cochlear implant is 
feasible.

The UWT has the advantages of fast calculation, 
programmable filter parameters, and the same filter 
structures. The property of WT is in good agreement with 
the function of cochlea, so the method discussed in this 
paper might give a novel speech processing strategy for 
cochlear implants based on wavelet analysis. Furthermore, 
the implementation of speech processing in cochlear implant 
with wavelet transform might provide a new method for 
researches on hearing restoration for totally deaf people. 
Further studies on the application of wavelet transform to 
practical cochlear implant should be investigated in the 
future works.
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