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INTRODUCTION

Tumor growth needs vascular support and causes 
angiogenesis  –  an increase of neovessels and capillaries. 
Therefore an appropriate neovascularization assessment by 
estimation of physiological parameters in pharmacokinetics 
of dynamic contrast‑enhanced magnetic resonance 
imaging  (DCE‑MRI) is a potentially useful and important 
noninvasive biomarker for tumor characterization, staging, 
and therapeutic efficacy monitoring.[1,2] In the literature, 
two kinds of parameters can be derived from DCE‑MRI 
acquisitions: Quantitative and semiquantitative.[1] The former 
is model based, such as tracer transfer constant from plasma 
to tissue Ktrans (volume fraction/min), rate constant of tracer 
refluxing from tissue to plasma Kep  (volume fraction/min), 
plasma volume fraction vp, and extravascular extracellular 
volume fraction ve.

[1‑5] The latter is model‑free, such as 
maximum time intensity ratio  (MTIR),[6] washout gradient, 
upslope gradient, maximum signal intensity, onset time,[7,8] 
and initial area under signal intensity curve  (IAUC).[9,10] 
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In this paper, we propose and investigate distribution of intravascular and extravascular extracellular volume fractions (DIEEF) as a 
noninvasive biomarker for neovascularization assessment by dynamic contrast‑enhanced magnetic resonance imaging (DCE‑MRI). 
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The most important quantitative and semiquantitative 
parameters are Ktrans and IAUC, respectively, which were 
recommended as primary endpoints in phase 1/2a trials for 
anticancer therapeutics.[2] Quantitative parameters have the 
advantage of a clear relation to tissue physiology but are 
more difficult to extract from DCE‑MRI acquisitions;[1] on 
the other hand, semiquantitative parameters are easier to 
calculate but have an unclear relation to tissue physiology.

The two most widely used pharmacokinetic models in 
DCE‑MRI are the Tofts model (TM)[3,4]

′ = −C t K C t K C t( ) ( ) ( )trans
a ep � (1)

and the extended Tofts model (ETM)[5]

′ = ′ + + −C t v C t K v K C t K C t( ) ( ) ( ) ( ) ( )p a
trans

p ep a ep � (2)

where tissue concentration C(t)  (mM) is measurable by 
DCE‑MRI, Ca(t)  (mM) is plasma concentration of a feeding 
artery to tissue, and K K vep

trans
e= . Another popularly used 
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pharmacokinetic model is the Patlak model.[11] If arterial 
input function (AIF) Ca(t) can be obtained, these physiological 
parameters Ktrans, vp, and ve can be estimated by data fitting 
on the basis of the models. However, to obtain AIF directly 
from DCE‑MRI data is very difficult.[12‑16] The common 
practice is to estimate an AIF from a main artery or vein 
near the tissue of interest or from a population of patients 
by average.[12‑14] To avoid estimation of AIF the reference 
region (RR) method[15‑25] can be applied. It assumes that the 
AIF for tissue of interest and tissue of reference is the same 
at any time instant. Then the common AIF Ca(t) can be 
cancelled out from the pharmacokinetic models for both 
tissues. By fitting DCE‑MRI data to the TM or ETM, the 
parameters Ktrans, vp, ve of tissue of interest can be estimated 
as a function of the parameters of tissue of reference.[15‑25]

Dynamic contrast‑enhanced magnetic resonance imaging has 
been recently applied to characterization of atherosclerotic 
plaques on the basis of observation that their pathogenesis 
is associated with inflammation and neovascularization.[26,27] 
The studies in[28‑31] applied a model that is built upon the 
observation that in a short period after tracer injection 
the tracer reflux from tissue to plasma is negligible. It is 
further assumed that the AIF Ca(t) is an exponential function 
parameterized by amplitude and decay rate, which are 
estimated by fitting the function to signal of a main jugular 
vein close to artery of interest. Then parameters Ktrans 
and vp can be estimated from DCE‑MRI data fitting to the 
simplified ETM model. In addition to study of quantitative 
parameters, a study on the semiquantitative parameter of 
IAUC for neovessel detection in atherosclerotic plaques was 
carried out.[32] It was found that the correlation between 
IAUC and histological neovessel count of atherosclerotic 
plaques for a rabbit model is positive.

In this paper, we propose and investigate the distribution 
of intravascular and extravascular extracellular volume 
fractions  (DIEEF) as a noninvasive biomarker for 
neovascularization assessment. An estimation method of 
DIEEF based on the total area under curve  (TAUC) of a 
generalized two‑compartment exchange model (G2CXM)[33] 
is developed. The mean square error  (MSE) of DIEEF is 
analyzed. DIEEF is then tested on a model of atherosclerotic 
rabbits and compared with six semiquantitative parameters. 
The method of DIEEF was partly presented in the previous 
study,[34] but this paper thoroughly presents the theory, 
simulation, and experimental results of DIEEF in a model of 
atherosclerotic rabbits.

THEORY AND METHODS

Generalized Two‑compartment Exchange Model

Sourbron and Buckley[35] developed a two‑compartment 
exchange model (2CXM) (Koh et al. recently presented the 
same model[36]) for stationary (time‑invariant) linear tissues 

and proved that the TM and ETM are special instances of the 
2CXM when vp ≅ 0 or Fp ≅ 0 and when vp ≅ 0 or Fp = ∞, 
respectively, where Fp  (1/min) is perfusion  (blood flow). 
Tracer exchange through a capillary wall in the 2CXM is 
assumed to be bi‑directionally symmetric. It is possible that 
a tissue includes an irreversible part as in the Patlak model[11] 
and therefore permeability is effectively asymmetric in two 
directions of capillary wall. To include tissues of asymmetric 
permeability in the model, the 2CXM was generalized to the 
G2CXM[33] defined by the system of equations

v C t F C t P SC t F P S C tp p p a e e p p p′ = + − +( ) ( ) ( ) ( ) ( ) � (3)

v C t P SC t P SC te e p p e e′ = −( ) ( ) ( ) � (4)

C t v C t v C t( ) ( ) ( )= +p p e e � (5)

C t C t C ta p e( ) ( ) ( )= = = 0 , t ≤ 0, or t ≥ Tw� (6)

As illustrated in Figure 1, Pp > 0 and Pe > 0 are permeability 
when tracer diffuses from plasma to extravascular 
extracellular space  (EES) through the capillary wall and 
converse, respectively, S is surface area of capillary and Cp(t) 
and Ce(t)  (mM) are tracer concentration in plasma and in 
EES, respectively. Eq. 6 means that tracer is injected at time 
zero and is completely washed out at time Tw.

The G2CXM allows asymmetric permeability Pp  ≠  Pe and 
therefore uniformly includes the Patlak model  (Pe  =  0), 
TM, ETM, and 2CXM (Pp = Pe = P) as special instances. The 
method of DIEEF estimation developed on the basis of the 
G2CXM is applicable to the Patlak, TM, ETM, and 2CXM as 
well as tissues of asymmetric permeability. All parameters in 
the model are normalized to tissue volume that is assumed 
to be unit throughout and therefore vp + ve ≤ 1.

Like the 2CXM the G2CXM accommodates to a broad range of 
pharmacokinetic parameter values and therefore is suitable 
for characterization of a variety of tissues. In particular, vp, 
ve and Fp in the G2CXM can take various values and hence 

Figure 1: The generalized two-compartment exchange model for a tissue 
of interest (the shaded region). F is blood flux, vp and ve are intravascular 
volume fraction and extravascular extracellular volume fraction, respectively, 
S is surface area of capillary, Pp is permeability from plasma to extravascular 
extracellular space (EES), and Pe is permeability from EES to plasma. Pp and 
Pe can be different
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tumors that are heterogeneous in neovascularization and 
perfusion at different stages[1,37] can be characterized. In 
addition to tumors, it has been evidenced that certain types 
of atherosclerotic plaques are rich in neovasculature[28‑31] 
that is one of the key pathological factors in characterizing 
atherosclerotic plaques and prediction of precipitate acute 
clinic events.[26,27] Hence, the G2CXM is also suitable for 
neovascularization assessment of atherosclerotic plaques.

Definition of Distribution of Intravascular and 
Extravascular Extracellular Volume Fractions

Consider all M tissues in the region of view, of which 
DCE‑MRI signals can be acquired in a scan. Concentration of 
the ith tissue Ci(t) satisfies the G2CXM, i = 1, 2,…, M.

v C t F C t P S C t F P S C tp,i p,i p,i a,i e,i i e,i p,i p,i i p,i′ = + − +( ) ( ) ( ) ( ) ( )) � (7)

v C t P S C t P S C te,i e,i p,i i p,i e,i i e,i′ = −( ) ( ) ( ) � (8)

C t v C t v C ti p,i p,i e,i e,i( ) ( ) ( )= + � (9)

The G2CXM can be applied to tissues of different size and 
shape. However, in general the G2CXM shall be applied to 
a voxel  (or pixel in 2‑D data) tissue, a segment of arterial 
wall, or a tumor consisting of a number of voxels, which is a 
small part in the region of view. A wide‑sense DIEEF for the 
M tissues is defined as

p
v P P v

v P P v
j

Mi
p,i p,i e,i e,i

p,j p,j e,j e,j

=
+

+
=∑

( )

( ( ) )
1

, i = 1, 2,…, M� (10)

The wide‑sense DIEEF defined in Eq. 10 depends only on 
physiological parameters of tissues: Intravascular and 
extravascular extracellular volume fractions  (IEEF) and 
permeabilities of capillary walls of tissues in the region of 
view. Strictly speaking, the wide‑sense DIEEF does not have 
physiological meaning of DIEEF defined by

p
v v

v v
Mi

p,i e,i

p,j e,j

=
+

+
=∑ ( )

j 1

, i = 1, 2,…, M� (11)

that is a special instance when tissues have symmetric 
permeability Pp, i = Pe, i in two directions of capillary wall; in 
this case, the G2CXM is degenerated to the 2CXM. However, 
wide‑sense DIEEF captures effect of asymmetric permeability 
of capillary wall in the total tissue concentration as if a 
tissue had the extravascular extracellular volume fraction 
( )P P vp,i e,i e,i . The larger the ratio P Pp,i e,i  is, the larger the 
effective EES is. Due to this, the wide‑sense DIEEF may be 
useful in characterizing tumors that have poorly formed and 
fragile vessels with high and heterogeneous permeability.[1] 
On the other hand, when applied to tissues that are prior 
known to have a symmetric capillary wall, an estimated 
DIEEF shall be interpreted as Eq. 11. Henceforth, the 

wide‑sense DIEEF will be simply called DIEEF. Summation of 
pi over all tissues equals one as a probability distribution 
does.

If all tissues have very low vasculature vp, i  ≅  0, DIEEF 
degenerates to distribution of extravascular extracellular 
volume fractions (DEEF)

p
p p v

p p v
Mi

p,i e,i e,i

p,j e,j e,j

=
=∑

( )

( )
j 1

, i = 1, 2,…, M� (12)

and if moreover all tissues have symmetric permeability 
Pp, i = Pe, i, then

p
v

v
Mi

e,i

e,j

=
=∑ j 1

, i = 1, 2,…, M� (13)

in this case, the G2CXM is degenerated to the TM in Eq. 1 

with K F PS F PSp
trans

p= +( ) .[35]

Distribution of intravascular and extravascular extracellular 
volume fractions pi of a tissue measures IEEF v p p vp,i p,i e,i e,i+ ( )  
relative to all other tissues in the region of view. Like Ktrans, 
IEEF is a composite of physiological parameters and hence 
is DIEEF. However, unlike a quantitative parameter, DIEEF 
does not measure the absolute value of IEEF but the value 
relative to others.

We hypothesize that DIEEF pi of a tissue is positively 
correlated to its neovessel count in histology and therefore 
indicates degree of neovascularization and inflammation. 
A  reason is that a high intravascular volume fraction vp, i 
indicates a large count of neovessels and capillaries and 
therefore indicates a high degree of neovascularization. 
However, how ( )p p vp,i e,i e,i  is correlated to neovascularization 
is worthy to be studied for various types of tissues. The 
hypothesis is tested on a model of atherosclerotic rabbits in 
this study.

Method of Estimation

The TAUC of the ith tissue is defined as ∫ w

i0
( )

T
C t dt . Due to 

the boundary condition in Eq. 6, taking integral over Eqs. 7, 
and  (8), respectively, we can obtain that tissue TAUC and 
plasma TAUC are related by

C t dt v p p v C t dt
T Tw

i p,i p,i e,i e,i a,i

w

( ) ( ) ( )
0 0
∫ ∫= +( ) � (14)

If plasma TAUCs are the same for all tissues, that is,

C t dt C t dt
T T

a,i a

w w

( ) ( )
0 0
∫ ∫=  for all i,� (15)
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then DIEEF can be determined by tissue TAUCs as

p
C t dt

C t dt

T

TMi

i

j

w

w
= ∫

∫∑ =

( )

( )

0

01j

, i = 1, 2,…, M.� (16)

The condition in Eq. 15 can be approximately satisfied if all 
tissues are close to each other or if feeding arteries of all 
tissues are braches of a main artery. This condition means 
that all tissues experience the same amount of average 
plasma concentration, but not necessarily the same AIF at 
each time instant. In comparison, the RR method assumes 
that AIF’s of tissue and reference are equal at each time 
instant t.

In practice, DCE‑MRI signal is usually acquired in a period 
[0, T] of time before tracer is completely washed out, that 
is, T < Tw. Let the time average of acquired signal Ci(t) be

< >≡ ∫C
T

C t dt
T

i i

1

0

( ) � (17)

Then DIEEF is estimated by

p
C

C
Mi

i

j

=
< >

< >
=∑ j 1

, i = 1, 2,…, M� (18)

An incomplete data acquisition yields a residual error 
that will be analyzed in the next subsection. Removal of 
the constant 1/T in Eq. 17 does not change the estimate; 
however, for the purpose of analysis and understanding of 
estimation error we use the time average instead of integral 
in estimate.

In practice, Ci(t) in  [0, T] is sampled at discrete time Δk 
for k = 0, 1,…, N – 1 where Δ  (s) is temporal resolution. 
The differential equations in Eqs. 7-9 become difference 
equations

C k
F

v
C k

P S

v
C k

F P

p,i
p,i

p,i
a,i

e,i i

p,i
e,i

p,i p,

( ) ( ) ( )

(

+ = +

+ −
+

1

1

∆ ∆

∆ ii i

p,i
p,i

S

v
C k

)
( )







� (19)

C k
P S

v
C k

P S

v
C ke,i

p,i i

e,i
p,i

e,i i

e,i
e,i( ) ( ) ( )+ = + −







1 1

∆ ∆
� (20)

C k v C k v C ki p,i p,i e,i e,i( ) ( ) ( )= + � (21)

where Ci (k + 1) denotes Ci(Δ(k + 1)) and hence accordingly 
do other concentrations. The time average in Eq. 17 
becomes < >=

=

−∑C C kN

N

i i
1

0

1
( )

k
. In practice, only noisy tissue 

concentration

y k C k n ki i i( ) ( ) ( )= + � (22)

can be acquired where ni(k) represents noise. The time 
average of noisy yi(k) is actually used in the estimation of 
DIEEF

=

< >
=

< >∑
i

i

j1

ˆ
M

y
p

y
j

, i = 1, 2,…, M� (23)

The time average of noisy tissue concentration is

< >=< > + < >y C ni i i � (24)

where <ni> denotes time average of ni(k)

Estimation Error

To better understand how to obtain a reliable estimate of 
DIEEF, analysis of estimation error is necessary. The 
estimation error between ip̂  and pi is incurred by two 
factors. First, when a DCE‑MRI signal used in DIEEF 
estimation is incomplete, that is, T < Tw, there is a residual 
error between pi  and pi. Second, in the presence of noise 
there is an error between ip̂  and pi . Since the error caused 
by noise is random, we can use MSE to measure error of 
DIEEF estimate for the ith tissue as

= − 2
i i i

ˆMSE [( ) ]E p p � (25)

where E denotes probabilistic mean. The MSE indicates an 
error of DIEEF estimate different from its true value. The 
MSE can be decomposed into

= − + − − + −2 2
i i i i i i i i i

ˆ ˆMSE [( ) ] 2( ) ( ) ( )E p p p p E p p p p � (26)

The first term is the MSE between ip̂  and pi  due to noise 
and the last term is called square residual error (SRE) that is 
nonzero when a DCE‑MRI signal is incomplete. By MSEi 
Eq. 25 the root MSE

RMSE MSEi i i= p � (27)

and the error over all tissues

RMSE MSEi i=
= =∑ ∑i

M

i

M
p

1

2

1
� (28)

can also be calculated.

As will be seen, estimation errors are determined by signal 
to noise ratio (SNR) of an acquired DCE‑MRI signal. To this 
end, we first discuss noise statistics and define SNR of 
related signals. It is known that the noise in magnitude of 
MRI data has a Rician distribution. When signal to noise 
amplitude ratio is  >2, a Rician distribution can be well 
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approximated by a Gaussian distribution.[38] Since tracer 
significantly increases signal amplitude, it is rational to 
assume that noise ni(k) is Gaussian distributed with mean 
zero and variance σ2; and due to whiteness of noise 
process,[38] noise samples ni(k) across tissue i and time k are 
mutually independent.

Signal to noise ratio measures quality of an acquired 
DCE‑MRI signal. Although DIEEF estimation does not need a 
measurement of AIF, the SNR of AIF can be used as an index 
of signal quality when errors of DIEEFs are evaluated. Hence, 
we consider the scenario that in a scan of noisy tissue 
concentration yi(k), a noisy AIF was also measured. where 
noise mi(k) has the same statistics of ni(k) due to the same 
scanner. The signal power is < >Ca,i

2  that is time average of 
C ka,i

2 ( )  and the noise power is E m( )< > =i
2 2σ . By adapting 

the standard definition,[39] SNR of AIF ya,i(k) is

SNRa,i
a,i

i

=
< >
< >
C

E m

2

2( )

=
< >





10 10

2

2log
Ca,i

σ
(dB)� (29)

Similarly, SNR of noisy concentration of tissues yi(k) is

SNRi
i

i

=
< >
< >
C

E n

2

2( )

=
< >





10 10

2

2log
Ci

σ
(dB)� (30)

As a convention, unit of decibel (dB) is used in SNR so that a 
wide range of SNR can be considered.

Note that SNRa, i and SNRi are for raw DCE‑MRI data without 
processing. After the processing of time averaging, < >yi  

has signal power < >Ci
2  and noise power E n N( )< > =i

2 2σ  
where the equality is due to independence of noise samples. 
Then SNR of < >yi  is

SNRi
ave i

i

i=
< >
< >

=
< >C

E n
N C2

2

2

2( ) σ

=
< >





10 10

2

2log
N Ci

σ
(dB)� (31)

It is clear that SNRa,i does not depend on the tissue 
parameters but SNRi and SNRi

ave  do. Given AIF Ca,i(k), SNRa,i 
is determined; and given AIF Ca,i(k) and tissue parameters, 
SNRi and SNRi

ave  are determined via the G2CXM.

An AIF Ca, i(t) is usually proportional to the concentration of 
tracer injection. Since the G2CXM is linear, tissue 

concentration Ci(t) is also proportional to concentration of 
tracer injection. Consequently, if the concentration of tracer 
injection is increased by a factor of α >1, then all three 
SNRs are increased by 20 10log α  dB. For example, doubling 
the concentration of tracer injection increases all SNRs by 
6 dB.

We can show that ≤ ≤ave
i i iSNR SNR SNRN  where the second 

equality holds if and only if Ci(k) = Ci is a constant for all k. 
The first inequality is obtained by Ci(k) ≥0 and the second 
inequality is due to the convexity of a square function. This 
implies that average of tissue concentration always increases 
SNR and the maximum increase is 10 log10(N) dB.

Based on the statistics of noise and definition of SNR, we 
can obtain that

MSE
SNR

SNR
i

i
ave

j
ave i=

+

+ − +
−



























=∑

E
u

u M z
p

j

M
( )1

1

2

� (32)

where u and z are independent standard Gaussian random 
variables with zero mean and unit variance. MSEi, root mean 
square error (RMSEi) and RMSE can be numerically evaluated 
by Eqs. 32, 27, and 28. Eq. 32 shows how AIF, physiological 
parameters, number of samples N or acquisition time T, and 
noise power σ2 affect MSEi. In general, as plasma TAUC, vp, i, 
ve,i, pp,i, and N (or T) increase or pe, i and σ2 decrease, SNRi

ave  
increases and then MSEi decreases. However, these changes 
only reduce the effect of noise. As SNRi

ave  increases, MSEi 
eventually approaches its SRE ( )p pi i− 2 , and RMSEi and 
RMSE converge to the root SRE RSREi i i i= −| |p p p  and 
overall SRE by the root square residual error (RSRE)

RSRE i i i= −
= =∑ ∑( )p p p
i

M

i

M2

1

2

1

for all tissues, respectively. SRE is > 0 when an acquired 
DCE‑MRI signal is incomplete. It follows from Eqs. 7-9 that

< >= +( ) < > −C t v P P v C t wi p,i p,i e,i e,i a,i i( ) ( ) ( ) � (33)

where

w v P P v
F v

P S
C T
TF

v
i p,i p,i e,i e,i

p,i e,i

e,i i

i

p,i

p,i= + +






−( )

( ) vv C T

P S T
e,i p,i

e,i i

( )
� (34)

Denote A v p p v Ci p,i p,i e,i e,i a,i= +( ) < >( )  Then SRE can be 

calculated by

( )
( )

p p
A w w A

A A w

j

M

j

M

k

M

j

Mi i

i j i j

k j j

− =
−

−













= =

= =

∑ ∑
∑ ∑

2 1 1

1 1

2

� (35)
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Post the transient time, tracer concentrations in all 
compartments decay to wash out through the kidney and so 
Ci(T) and Cp, i(T) monotonically decreases as T increases. Eq. 34 
indicates that the residual error decreases as T increases. If 
an acquired signal of tissue concentration Ci(t) is complete, 
that is, T = Tw, SRE is equal to zero due to Ci(Tw) = Cp, i(Tw) =0. 
Note that, the TAUC used in DIEEF estimation is different from 
the conventional IAUC.[9,10] First, a physiological meaning of 
IAUC is unclear. Second, the conventional IAUC emphasizes 
use of the initial signal of tissue concentration, but the TAUC 
requires use of all acquired signal and the acquisition time T 
is as long as possible. Using the IAUC in estimation of DIEEF 
would cause a large estimation error. This is verified by the 
simulation in the next section.

Both tracer infusion and bolus injection can be used in 
estimation of DIEEF. However, bolus injection can make 
washout time slightly shorter and therefore is slightly better 
regarding reducing the effect of incompleteness of data.

Experiments

Simulation
Simulations are carried out to demonstrate effect of 
physiological parameters vp, i, ve, i, Pp, iS, Pe, iS, Fp, i, acquisition 
time T, and SNR on estimation error. To simplify the 
simulations and without loss of generality, all tissues are 
considered to have the same AIF; therefore, AIF SNRa in 
Eq. 29 is equal for all tissues. Given an AIF, tissue 
concentrations are iteratively obtained by Eqs. 19-21 with 
Ci(0) =0 and ∆ =2 s. In each trial yi(k) is generated by adding 
independent Gaussian noise samples ni(k) to Ci(k) and then 
DIEEF is estimated by Eq. 23, resulting in a sample square 
error − 2

i i
ˆ( )p p . At each SNRa the sample MSEi is obtained by 

averaging − 2
i i

ˆ( )p p  over one thousand trials; that is, the 
simulation is run one thousand times with randomly 
generated noise samples. The theoretical MSEi is also 
calculated by Eq. 32 and is compared with the sample MSEi. 
RMSEi and RMSE in both simulation and theory are then 
obtained by Eqs. 27 and 28.

Two AIFs are considered, simulating an infusion and a 
bolus injection, respectively. In both cases, 36 tissues with 
all combinations of (vp, ve) ∈ {(0.15, 0.2), (0.15, 0.5), (0.15, 
0.85),  (0.4, 0.2),  (0.5, 0.5),  (0.7, 0.25)},  (PpS, PeS) ∈ {(0.65, 
0.65), (0.85, 0.65), (0.85, 0.85)} (/min,/min), and Fp ∈ {0.75, 
1.8} (/min) are considered. These values cover most range 
of the parameters. The results of five representative 
tissues  (out of 36) are illustrated in figures with the 
parameters given in Table 1 where their IEEFs are purposely 
listed in the descent order.

Infusion
In the simulation of an infusion, the AIF exponentially 
increases immediately after tracer injection, holds a 
constant, and then exponentially decays to washout

C t

a b t t b t b

a b t c

a c t d t c
a ( )

( / ) exp( / ), ,

, ,

exp(( ) / ), ,

=
− ≤ ≤

< ≤
− >





1 0


� (36)

where a = 1.2 mM, b = 1 min, c = 6 min, d = 40 min. 
Figure 2 shows the AIF Ca(t) for T = 16 min, concentrations 
Ci(k) and their noisy observations yi(k) of the five 
representative tissues. To respond to the AIF, tissue 
concentrations quickly rise in the transient period of 
about [0, 5] min, reach a plateau and then decay slowly to 
wash out. In the total period [0, 16] min of acquisition, AIF 
power is equal to < >≅Ca

2 1 210.  and noise power is 
purposely set to σ 2 21 210 10≅ × −.  so that AIF SNRa in 
Eq. 29 is 20  dB. Correspondingly, the five representative 
tissues have SNRi = 20.84, 20.00, 19.47, 16.06, 10.67 dB for 
i = 1,…, 5, which decrease as IEEF decreases, accordingly 
to Eq. 14.

Figure  3 illustrates estimation errors RMSE and RMSEi 
versus AIF SNRa when DIEEF is estimated using yi(k) for 
[0, 16] min. RMSEi varies with tissue since SNRi of a tissue 
concentration varies with IEEF. In the low SNRa regime, 
RMSE and RMSEi are dominated by noise, particularly 
for those tissues with a small IEEF. However, even when 
AIF SNRa is only 5  dB, DIEEF overall is reliably estimated 
with RMSE ≅ 5% and therefore is robust to noise. As SNRa 
increases, RMSE and RMSEi monotonically decrease and 

Table 1: Parameters of five representative tissues
i vp, i ve, i Pp, iS Pe, iS Fp, i IEEF

1 0.50 0.50 0.85 0.65 1.80 1.15
2 0.70 0.25 0.85 0.65 1.80 1.03
3 0.15 0.85 0.85 0.85 1.80 1.00
4 0.40 0.20 0.85 0.65 0.75 0.66
5 0.15 0.20 0.65 0.65 0.75 0.35
IEEF – Intravascular and extravascular extracellular volume fraction

Figure 2: Case of infusion: Arterial input function Ca(t) and Ci(t) for i = 1, 
2, 3, 4, 5 as well as their noisy observations yi(k) of the five representative 
tissues in Table 1. Stars are part of yi(k) samples
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eventually approach, respectively, RSRE and RSREi  (4% and 
lower) when SNR = ∞, which is due only to incompleteness 
of data used in the DIEEF estimation. Figure  4 illustrates 
how estimation errors RMSE and RMSEi (and RSRE and RSREi 
as well) vary with acquisition time T. When acquisition 
time is within the transient period prior to 5 min, all RMSE 
and RMSEi are large, particularly for those having a small 
IEEF. This indicates that use of IAUC to replace TAUC in 
the DIEEF estimation would yield large errors. In the low 
SNRa regime, RMSE and RMSEi are dominated by noise 
and so are monotonically decreasing; and in the high SNRa 
regime, errors are convex down in most cases. However, 
post the transient time, as T increases, errors in all SNRa 
monotonically decrease to a small value about 5%. Hence, 
performance of DIEEF is low and improves quickly during 
the transient time and is eventually high and stable post the 
transient time. Figures 3 and 4 also demonstrate that the 
theoretical formula in Eq. 32 predicts estimation errors in 
the simulation.

Bolus injection
In the simulation of a bolus injection, the following 
exponential AIF ordinary in the literature[25] is used

C t at t c d t g t ha
b( ) exp( / ) ( exp( / ))exp( / )= − + − − −1 � (37)

where a = 18.0 mM, b = 1, c = 0.25 min, d = 1.1 mM, 
g = 0.2 min, h = 25 min with Δ =2 s.

As illustrated in Figure  5, the AIF Ca(t) with T  =  16  min 
presents a narrow and high peak and then decays slowly to 
wash out. To respond to the AIF, tissue concentrations Ci(t) 
increase rapidly in the short transient time of about [0, 3] 
min and then present a plateau decaying slowly. In the 

entire period of  [0, 16] min, AIF power is equal to 
< >≅Ca

2 0 859.  and noise power is purposely set to 

σ 2 38 59 10≅ × −.  so that AIF SNRa is 20  dB. The five 
representative tissues have correspondingly SNRi = 20.44, 
19.67, 19.03, 15.67, 10.35 dB for i = 1,…, 5.

As demonstrated in Figures 6 and 7, all results are similar to 
those in the case of infusion. However, the bolus injection 
takes slightly shorter time to washout and with given T the 
data in the bolus injection are closer to completeness; and 
therefore all errors are smaller than those in the case of 
infusion. This suggests that DIEEF estimation favors a bolus 
injection.

Test on a model of atherosclerotic rabbits
The animal data used in this study is in,[32] including the 
MRI data and histological neovessel counts of aorta plaques 
in five rabbits. The reader is referred to[32] for technical 
details in animal treatment and data acquisition. The MRI 
data were acquired using a bolus injection. For each of five 
rabbits, a sequence of 150 images with a size of 256 × 256 
were acquired at a temporal resolution of 4.8 s and a spatial 
resolution of 470 µm × 470 µm. Figure 8 shows MRI images 
of a representative rabbit acquired at time 0.4 and 3.6 min, 
respectively. Since tracer was injected after acquisition of 
the 5th image at time 0.4 min, the left image does not show 
tracer and the right does.

A DIEEF image for each rabbit shall be produced, which 
references neovascularization of aorta  –  the tissue of 
interest – and the DIEEF value of aorta shall be comparable 
with those of other rabbits in neovascularization assessment. 
To this end, the following steps were taken.

Figure  3: Distribution of intravascular and extravascular extracellular 
volume fractions (DIEEF) is estimated by using yi(k) for [0, 16] min in 
Figure  2. Dashed lines are root mean square error (RMSE) (for all 36 
tissues) and RMSEi of the five representative tissues, respectively, calculated 
by Eq. 32, versus arterial input function signal to noise ratio (SNRa). Stars 
are simulation results. Solid lines are root square residual error (RSRE) and 
RSREi corresponding to the RMSE and RMSEi at SNRa = ∞ dB, respectively

Figure 4: RSRE, RSREi, RMSE and RMSEi are versus acquisition time T for 
the signal in Figure 2. Dashed lines are RMSE and RMSEi calculated by Eq. 32 
with arterial input function signal to noise ratio (SNRa) = 5 dB, and stars 
are the corresponding simulation results. Solid lines are RSRE and RSREi 
corresponding to SNR = ∞ dB. For 5 ≤ SNRa < ∞ dB, RMSE and RMSEi 
are between the dashed and solid lines. For T ≥ 6 min, RMSE and RMSEi are 
already small and monotonically decrease 
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•	 Step 1: Produce DCE‑MRI image sequence. Tracer 
emerged in the tissue around 0.8  min. The first ten 
MRI images that apparently show no effect of tracer 
were averaged to form a base image that has 10  dB 
higher SNR than the original images and hence is 
reliable. A sequence of DCE‑MRI images was obtained 
by subtracting the base image from each of the 
150 images. A  DCE‑MRI image  (not presented) shows 
the trace concentrations Ci(t) in each pixel i at a time 
instant t.

•	 Step 2: Select region of view. Data in region of view will 
be used in DIEEF estimation. In general, region of view 
shall be relatively large and can provide a stable and 
reasonable reference to the tissue of interest  (i.e.  the 
aorta). In a homogeneous population such as rabbits, 
region of view can include all tissues except the kidney. 
In a heterogeneous population, region of view can be 
smaller and enclose tissue of interest, or a fixed region 
of muscle enclosing or nearby tissue of interest. The 

reasons here to exclude the kidney from region of 
view are (a) the G2CXM is not applicable to the kidney 
that allows tracer washout from EES and therefore is 
modeled differently;[40]  (b) since a large amount of 
tracer is collected by the kidney, if included in the 
region of view, a minor variation of kidney data would 
significantly bias DIEEF estimate. Hence, in this study 
the region of view is chosen to include all tissues in 
the scan except the kidney. Figure 9 demonstrates the 
curves of averages over the region of view for the five 
rabbits.

•	 Step 3: Produce DIEEF image. The DCE‑MRI images 
used in DIEEF estimation are the 141 images from 
image 10 (0.8 min) through 150 (12 min). The effective 
acquisition time from the emergence of tracer to the 
end of acquisition is T = 11.2 min. DIEEF value of each 
pixel was estimated by Eq. 23, which produces the 
DIEEF image for a rabbit. Different from a DCE‑MRI 
image Ci(t), a DIEEF image shows the DIEEF pi at each 
pixel i. Figure  10 illustrates the DIEEF image of the 
representative rabbit. A pixel intensity in a DIEEF image 
is the IEEF relative to others and therefore indicates 

Figure  8: The magnetic resonance images of a representative rabbit 
acquired at time 0.4 (left) and 3.6 (right) min, respectively. The palette from 
top to bottom shows intensity descent. The left image does not show effect 
of tracer and the right does. The bright region in the right image is the kidney 
showing collection of a large amount of tracer

Figure 7: RSRE, RSREi, RMSE and RMSEi are versus acquisition time T for 
the signal in Figure 5. The meanings of the curves are the same as those in 
Figure 4

Figure 6: DIEEF is estimated by using yi(k) in Figure 5 during [0, 16] min. 
The meanings of the curves are the same as those in Figure 3 

Figure 5: Case of bolus injection: The meanings of the curves are the same 
as those in Figure 2
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neovascularization relative to others in the sense of 
added variation by extravascular extracellular volume 
fraction.

•	 Step 4: Calculate DIEEF value of tissue of interest. DIEEF 
value of atherosclerotic plaque of a rabbit was obtained 
by averaging the pixels of DIEEF image over the aorta 
wall shown at the bottom‑left corner in Figure 10.

To examine efficacy of DIEEF in neovascularization 
assessment, the correlation coefficient between DIEEF 
and histological neovessel count of aorta plaques in the 
five rabbits was calculated using all data in 12 min, which 
is r  =  0.940 with P  =  0.017, showing a high positive 
correlation. Figure  11 illustrates DIEEFs of aorta plaques 
versus histological neovessel counts, linear regression, and 
95% confidence interval.

Effect of acquisition time
To examine how acquisition time affects performance of 
DIEEF, Table 2 presents the correlation coefficients between 
DIEEF of aorta plaques and neovessel counts and P values 
for 11 acquisition times where the effective acquisition 
time T′ starts at 0.8 min when tracer emerges. It illustrates 
that during the transient time at the total time of about 
3 min, the correlation coefficient is small and then increases 
quickly, and is relatively high and stable post the transient 
time. This confirms the simulation result that estimation 
error is large and decreases quickly during the transient 
time and reaches a small value post the transient time.

Meanwhile, it is found that as acquisition time increases, the 
estimate of plaque DIEEF for all five rabbits increases slowly 
with certain variations. It is interesting to test performance 
of DIEEF in the simulation case that a number of medical 
centers estimate plaque DIEEF by randomly selecting one 
of 10 acquisition times of T = 2.96, 4.00, 4.96, 6.00, 6.96, 

8.00, 8.96, 10.00, 10.96, 12.00, all longer than the transient 
time, and a center uses the same selected acquisition time 
for all five rabbits. It is obtained that using all the 50 plaque 
DIEEF values (10 for each rabbit), the correlation coefficient 
between plaque DIEEF and neovessel count is 0.924, which 
is high and slightly lower than 0.940, with P = 1.02 × 10-21. 
This implies that DIEEF estimate, though increasing slowly 
with acquisition time, is robust to random selection of 
acquisition time if acquisition time is longer than transient 
time. Nevertheless, to enhance comparability among 
patients and centers, a standardized acquisition time must 
be used for all patients and centers.

Performance comparison with semiquantitative 
parameters
By using the rabbit data, the six semiquantitative parameters 
MTIR, washout gradient, upslope gradient, IAUC, 
maximum signal intensity, and onset time are evaluated 
for neovascularization assessment of atherosclerotic 
plaques and compared with performance of DIEEF plaques. 
The reader is referred to the references indicated in the 
introduction section for the technical details of these 
parameters. The correlation between each of the six 
semiquantitative parameters and neovessel count of aorta 
plaques of the five rabbits with corresponding P value was 
calculated. The MTIR of each rabbit was obtained by the 
maximum average plaque concentration y(k) divided by the 
time reaching the maximum, and the correlation coefficient 
with the neovessel count is r = 0.50 with P = 0.39. The 
washout gradient a was estimated by the least square (LS) 
between y(k) and a line ak + b for time k = 8, 8.08, 8.16,…, 
12 min and then r = −0.30 with P = 0.63. The upslope 
gradient a was estimated by the LS between y(k) and a line 
ak + b for time k = 0.88, 0.96, 1.04, 1.12, 1.2 min and then 
r = 0.72 with P = 0.17. The IAUC was obtained by summation 
of y(k) for k = 0.16, 0.24,…, 2.16 min and then r = 0.91 
with P = 0.029. The maximum signal intensity was obtained 
by taking the maximum y(k) for all k and then r = 0.83 with 

Figure  9: Concentration spatially averaged over all tissues except the 
kidney versus time, each shown by a color curve for one of the five rabbits. 
The vertical dashed line indicates the time of tracer emergence at 0.8 min 
(image 10)

Figure  10: The DIEEF image of the representative rabbit. The arrow 
indicates the aorta with its magnified image at the bottom-left corner 
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P = 0.082. The onset time was obtained by measuring the 
time interval from 0.4 min to the time when y(k) just reaches 
5, and then r = −0.89 with P = 0.043. Thus, the upslope 
gradient, maximum intensity, onset time, and IAUC have 
high r and low P value and are good indicators for plaque 
neovascularization whereas the MTIR and washout gradient 
have low r and high P value. With r = 0.940 and P = 0.017, 
DIEEF outperforms the six semiquantitative parameters in 
neovascularization assessment of atherosclerotic plaques in 
this test.

Table  3 compares characteristics of DIEEF, quantitative 
parameters and semiquantitative parameters. The 
quantitative parameters have the advantages of clear 
physiological relation, high reproducibility with low 
dependencies on scanner, patient, and center and the 
disadvantages of difficulty in model fitting, strong 
assumption, high computational complexity, and 
susceptibility to noise; whereas semiquantitative parameters 
have the advantages of modeling free, weak assumption, low 
computational complexity and the disadvantages of unclear 
physiological relation and low reproducibility.[1] In contrast, 
DIEEF possesses the advantages of both quantitative and 
semiquantitative parameters.

DISCUSSION

A DIEEF image depends only on physiological 
parameters – bidirectional permeabilities of capillary, IEEF 
of tissues in the region of view, and has a clear physiological 
meaning. Consequently, like a quantitative parameter, DIEEF 
is reproducible. For the same reason, the dose of tracer 
injection is unlikely to affect considerably performance of 
DIEEF in neovascularization assessment except that decrease 
of dose will decrease SNR. In practice, a tissue of interest 
shall be a small portion (e.g. a segment of arterial wall) in the 
region of view that is relatively large and stable to make the 
DIEEF of tissue of interest more reliable and reproducible.

The proposed method of DIEEF estimation does not require 
knowledge of AIF but assumes that all tissues in the region 
of view have the same average AIF. This assumption is 
satisfied when capillaries of tissues in the region of view are 
branches of a main artery. When data are incomplete, that 
is, acquisition ends before tracer is completely washed out 
through the kidney, a residual error is incurred. However, 
as illustrated by the simulation and the test on the model 
of atherosclerotic rabbits, impact of incomplete data on 
accuracy and performance of DIEEF is significant only during 
the transient time in which performance of DIEEF improves 
quickly as acquisition time increases. Performance of DIEEF 
is eventually high and stable post the transient time. This is 
true for both the tracer infusion and bolus injections, and 
DIEEF slightly favors the bolus injection.

Estimation of a quantitative parameter usually needs to fit 
a DCE‑MRI curve to a pharmacokinetic model at each time 
instant, which might result in an invalid solution. In contrast, 
DIEEF estimation needs only the average of DCE‑MRI curve, 
and therefore like a semiquantitative parameter, DIEEF does 
not have the model‑fitting problem.

The averaging nature in DIEEF estimation also brings DIEEF 
several other advantages. Average of N samples increases SNR 
by the maximum of 10log10(N) dB and therefore DIEEF can be 
reliably estimated in the presence of noise. Without incurring 
a significant decrease of DIEEF image quality the temporal 
resolution of DCE‑MRI data can be large and in return the 
spatial resolution can be small. This suggests that DIEEF is 

Table 3: Comparison of DIEEF, quantitative and 
semiquantitative parameters
Charateristics Quantitative Semiquantitative DIEEF

Physiological relation Clear Unclear Clear
Model fitting problem Difficult No No
Assumption strength High Low Low
Computational complexity High Low Low
Reproducibility High Low High
Estimation reliability Low High/low High
DIEEF – Distribution of intravascular and extravascular extracellular volume fractions

Table 2: Performance versus total acquisition time T and 
effective acquisition time T´
T (min) T´ (min) r P

1.04 0.24 0.571 0.315
1.20 0.40 0.849 0.069
1.36 0.56 0.884 0.046
1.52 0.72 0.908 0.033
2.00 1.20 0.933 0.021
2.96 2.16 0.944 0.016
4.00 3.20 0.945 0.015
4.96 4.16 0.947 0.015
6.00 5.20 0.947 0.014
6.96 6.16 0.942 0.017
8.00 7.20 0.941 0.017

Figure  11: The DIEEF of aorta plaques versus neovessel count, linear 
regression, and 95% confidence interval
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promising in viewing and analyzing fine details of arterial 
plaques, which is important in diagnosis and treatment of 
atherosclerosis disease at the early‑stage as the dimension of 
arterial plaques is small. This is also important for early‑stage 
diagnosis and prognosis of tumor when tumor size is small. For 
the same reason a small spatial resolution may be traded off 
with increasing concentration of tracer injection. For example, 
doubling concentration of tracer injection increases SNR by a 
factor of four. To retain the same SNR, temporal resolution can 
be increased by a factor of four and therefore spatial resolution 
can be decreased accordingly. The effect of large temporal 
resolution and the tradeoff between spatial resolution and 
concentration of tracer injection are worth of further analysis 
and examination in animal and patient experiments. The 
averaging nature also makes DIEEF computationally simple 
and feasible for real‑time clinical utilization.

The animal experiment result demonstrates that performance 
of DIEEF is robust to a random selection of acquisition time 
post the transient time but in this case is slightly worse 
than a fixed acquisition time. To enhance objectiveness, 
reproducibility and comparability among patients and 
scanners, standardization of acquisition time, tracer injection 
and region of view on the basis of a number of experiments is 
necessary for a particular type of tissues or organ.

CONCLUSION

A DIEEF image characterizes the distribution of 
neovascularization, permeability asymmetry of capillaries, 
and extravascular extracellular volume fractions. DIEEF has 
a clear physiological meaning, can be easily and reliably 
estimated without knowing the artery input function, 
is applicable to various types of tissues, and is positively 
correlated to neovessel count in the animal experiment. Post 
the transient time, performance of DIEEF is high and stable 
in both tracer infusion and bolus injections. DIEEF might 
be useful as a biomarker for noninvasive neovascularization 
assessment by DCE‑MRI.
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