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INTRODUCTION

Epilepsy is characterized by occasional, excessive, and 
irregular discharging of neurons in the brain, which can 
be detected by its manifestations, i.e.,  the seizure.[1] 
A seizure (ictal) is induced when a critical mass of nerve cells 
is recruited. The process can be modeled by a system that 
evolves over time, from a non‑epileptic state to a pre‑seizure 
state, to a seizure state, to a post‑seizure state, and finally 
back to a non‑epileptic state. The stay‑time in each state 
is unknown, can fluctuate, and depends on various factors, 
including mental and physical conditions of the patient. 
Moreover, there is enough evidence that transitions from 
one state to the next is not abrupt,[1] meaning that during 
each state (e.g., the pre‑seizure state), different (unknown) 
successive events would cause the system to evolve into the 
next state (e.g., the seizure state). As such, seizure prediction 
means detection of such events (called seizure precursors) 
during the pre‑seizure state prior to the actual transition to 
the seizure state. Seizure treatment and control depends 
on timely prediction of seizures prior to their occurrences.

The basic concept in seizure prediction is that time series 
analysis on EEG recordings may be used for detecting 
seizure precursors, which in turn can be used to trigger 
appropriate actions for safety and well‑being of the patient 
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and/or administering proper treatment for prevention 
and/or control of the forthcoming seizure.[2] Depending on 
the type and modality of control measures or treatments, 
desirable time‑frames for prediction of a forthcoming 
seizure may be different. If treatment is in the form of 
electrical stimulation, only a short interval  (less than 
one minute) is useful, as compared to other forms of 
treatment or control that require relatively long advance 
warning (more than five minutes). Seizure prediction in a 
timely manner is particularly important for drug‑resistant 
epileptic patients, either to avoid harmful situations by the 
patient, or to initiate appropriate treatments that would 
prevent the occurrence of the predicted seizure.[2]

Various approaches have been employed to detect seizure 
precursors in EEG recordings that include detecting changes 
in Lyapunov exponents (LEs) of the EEG signals,[3,4] studying 
spatio‑temporal EEG dynamics,[5] using non‑linear methods 
for intracranial EEG analysis,[6] utilizing wavelet‑based 
methods for similarity analysis of consecutive segments of 
EEG signal with a reference segment of the same EEG signal,[7,8] 
combining energy and wavelet transform of the EEG signal,[9] 
using support vector machines  (SVMs) and convolution 
networks on intracranial EEGs,[10] using an adaptive Weiner 
algorithm on local field potentials  (EEG)[11] and using SVM 
classifier on the auto‑regressive (AR) model of EEG signals.[2]
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The difficulty with the approaches in[3,7,11] is that some 
seizures are predicted at such intervals from their 
occurrences that are either too short for taking precautions 
to avoid harmful situations, or are not useful for 
non‑electrical treatments. In addition, the approaches in[6,8] 
fail to predict many seizures at the expense of fixing 
the maximum acceptable false predictions; hence eroding 
the patient’s confidence on seizure predications. Moreover, 
the methods in[5,9,11] suffer from too many false positive 
alarms. The methods for extracting features in[10] require 
excessive calculations, meaning that the computational cost 
would be prohibitive or the processing time would be too 
long, which is not suited for real‑time seizure prediction. 
Although the proposed scheme in,[2] which is a major step 
forward, provides a high rate of true predictions and a low 
rate of false predictions, but as we will show in this paper, it 
is possible to predict seizures in a time frame that is more 
convenient for patients, with fewer false positive alarms and 
failures and with reasonable (not excessive) calculations.

Considering the fact that we are dealing with a system 
that evolves over time with transitions from one state to 
the next, whose particulars are patient dependent, our 
approach is based on studying system dynamics. In doing 
so, we consider the largest Lyapunov exponent  (LLE) of 
the discrete wavelet packet transform  (DWPT) of the 
segmented EEG signals for each individual as features for 
detecting seizure precursors. Such features are processed 
by a SVM classifier whose output is further processed to 
identify whether the corresponding segment of the EEG 
signal contains a precursor to an epileptic seizure. When 
consecutive EEG segments contain such precursors, 
a decision is made that a precursor is in fact detected. 
We will show that our chosen features can significantly 
improve seizure prediction as compared to utilizing general 
and universal features, without causing inconvenience 
to patients. We will also show that our scheme predicts 
epilepsy seizures in a timely and efficient manner from the 
standard intracranial electroencephalogram (iEEG) recorded 
invasively from the cortex of patients.[12]

This paper is organized as follows. In Section 2, we state the 
problem of seizure prediction and describe performance 
measures. In Section 3, our scheme is explained in detail, 
followed by the results and conclusions in Sections 4 and 5, 
respectively.

PROBLEM STATEMENT AND 
PERFORMANCE MEASURES

Figure 1 shows the time‑line of various events that include 
a time‑interval called inter‑ictal, during which, no seizure 
is expected; a time‑interval called pre‑ictal, during which, 
an alarm should be set to indicate a seizure is forthcoming 
after an elapse of time called the seizure prediction 
horizon (SPH). SPH is followed by a time‑interval called the 

seizure occurrence period  (SOP), during which, a seizure 
is expected to occur. SOP begins when SPH ends and ends 
when the actual seizure occurs. The exact time of the seizure 
onset may vary within SOP. The ictal period begins when 
SOP ends and ends when the actual seizure ends, followed 
by a post‑ictal period, during which, no seizure is expected.

We wish to predict seizures in a timely manner that 
would be useful for triggering appropriate actions for 
safety and well‑being of the patient and/or administrating 
proper treatment for prevention and/or control of seizure. 
Specifically, based on the survey that was presented in,[13] we 
wish to detect a precursor to a seizure at least 10 minutes 
prior to the onset of that seizure, i.e., the prediction latency, 
defined as tA≜ SPH + SOP, should be at least 5 minutes. 
However, a relatively longer prediction latency is more 
desirable, and in this paper, we set to achieve a minimum of 
10 minutes (instead of 5 minutes) advance warning.

If a seizure precursor is detected during the pre‑ictal period, 
but there is no seizure within 90 minutes (i.e., when tA is 
longer than 90 minutes), it is called a false positive alarm.[8] 
During inter‑ictal periods, a predicted seizure is also a false 
positive alarm. If a seizure precursor is not detected within 
10 minutes prior to the seizure’s onset, i.e., if a seizure is 
missed, or if tA is less than 10 minutes, it is classified as a false 
negative alarm.[13] The number of false predictions (positive 
and negative) is an indication of the performance of the 
system for a given patient.

Predication sensitivity for a given patient, denoted by S, 
is the ratio of the total number of correctly predicated 
epileptic seizures to the total number of seizures that 
occurred for that patient. False positive rate, denoted by RFP, 
is defined as the number of false positive alarms per hour 
and is an indication of prediction specificity.[2,6,8,11]

PROCESSING

Figure  2 shows the block diagram of our proposed 
system. EEG signals recorded over extensive periods that 
contain precursors to epileptic attacks are inherently 
non‑stationary.[14] In order to avoid complications that are 
associated with non‑stationary signals, we use a sliding 

Figure 1: Different intervals in an electroencephalogram signal pertaining 
to an epilepsy seizure
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window of 4 seconds (each containing 1024 data points) for 
each epoch, during which, the EEG is assumed to be stationary. 
Each epoch is processed individually. In what follows, we 
describe the functionality of each block in Figure 2.

Data Set and Preprocessing

We applied our scheme to invasive EEG recordings from 
21 epilepsy patients suffering from medically intractable 
focal epilepsy. EEG recordings were made during pre‑surgical 
epilepsy monitoring at the Epilepsy Center of the Freiburg 
University Hospital in Germany,[12] containing a total of 
86 labeled seizures for all 21 patients and less than 2 hours 
of pre‑ictal data for each seizure. Besides, for each patient, 
we used a 24 hours non‑seizure recorded data from the 
database in.[12] EEG recordings for Nc = 6 channels, denoted 
by s(t) = [s1(t), s2(t), …, sNc

(t)]T, where Nc = 6 is number of 
channels, were sampled at 256  samples per second. To 
eliminate possible line noise and to preserve the available 
information in the recorded EEG to its maximum extent, 
a 50 Hz notch filter is used.

Feature Extraction: DWPT, SWE, and LEs

Each epoch of EEG recordings denoted by x(n) = [x1(n), x2(n), 
…, xNc

(n)]T carries information related to Nc = 6 channels, 
containing 6 × 1024 samples (corresponding to 4 seconds 
of data) and is passed through a chain of two blocks for 
extracting its features that can be used for detecting seizure 
precursors. The first block involves DWPT and Shannon 
wavelet entropy  (SWE) and the second one involves 
estimating the LLE. The extracted features that delineate 
dynamical dissimilarities are then used to discriminate 
between inter‑ictal and pre‑ictal patterns. In the sequel, we 
describe each block.

DWPT and SWE
To measure variations in filtered EEG signal x(n) that 
may emanate from seizure precursors, we use DWPT. 

This is a powerful tool for characterizing signals, which 
decomposes x(n) into its spectral components with a suitable 
time‑frequency resolution.

Wavelet packet decomposition at level i produces 2i wavelet 
packets, each corresponding to a node. Each wavelet 
packet at each node in level i is represented by a vector of 
its coefficients whose elements are Cm,j, where m and j are 
time‑localization and scale‑parameters, respectively. The 
energy of each vector is
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Obviously, for each m, we have
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To obtain a measure of order/disorder in each time interval 
m, we calculate the SWE[15] defined by

x (m) = -∑jm,j logm,j� (5)

DWPT provides an optimal time‑resolution by subband 
analysis of the original signal, as it uses the lowest cost 
function in building the library functions.[16]

In,[17] it is shown that an epileptic EEG signals do not 
have significant frequency components above 30  Hz, and 

Figure 2: Block diagram of the proposed seizure prediction system
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Phase‑space Reconstruction (Embedding Process)
For the kth epoch with N samples, the embedding process 
constructs a P × (N −  p) matrix A whose ith column is 
ai = [ai, …, ai+p-1]

T where the values of aj, j = 0, …, N − 1are 
the Shannon wavelet entropies for each epoch, as shown 
in Figure 4a and p is the dimension of the embedded space 
(the number of estimated LEs).

Tangent Map Estimation
To estimate the dynamics of a series of points in phase 
space around a specific attractor, a small sphere with radius 
centered at ai is considered, and the nearest K vectors to 
ai that are within this sphere are considered as neighbors 
to ai. The neighborhood matrix denoted by Bi, as shown in 
Figure 4b, is

B

a a

a a

a a

a a
i

T
i
T

T
i
T

K
T

i
T

k i

i

i

i

i

for k
=

−

−

−





















− ≤

∈

1

2

1� �



, ,,K{ }
� (6)

In each step t, the vector ai and its neighborhood ak proceed 
to ai+1 and aki+1

, respectively. The neighborhood matrix Bi+1 is 
estimated as a tangent map in ai as Mi

(t)T = Bi
T Bi+1, where BT

i is 
the transpose of Bi. The value of i is upper bounded to N − K.

QR decomposition
In each step t, QR decomposition uses an upper triangular 
matrix R((t)

i for ai, containing information to describe how an 
orthogonal basis basis Qi for ai is modified by M(t)

i to produce 
a new orthogonal basis Qi+1 for ai+1 so that

M(t)
i Qi= Qi+1R

(t)
i� (7)

where Q0 = I is an identity orthogonal matrix. The matrix 
M(t)

i is also called the trajectory matrix. At each step, an 
upper triangular matrix R(t)

i for ai is formed, whose diagonal 
elements are estimates of p LEs.

Estimating LEs
Having estimated successive upper triangular matrices 
R(t)

i at each step t, we take the average of the estimated 

5‑level wavelet decomposition is sufficient for its analysis. 
Accordingly, we use the Daubechies mother wavelet of order 
4 (db4) with 5‑level decomposition for each EEG channel, 
which decomposes each epoch for each EEG channel into 
5 unequal frequency bands between 0 and 128 Hz. For the 
resulting 62 vectors of wavelet coefficients for each epoch 
in each EEG channel and for the respective epoch itself, 
we obtain Shannon wavelet entropies that constitute a 
feature vector ak of 63 values. In this manner, each epoch of 
1024 samples is reduced to 63 values, which is a significant 
reduction in the number of points that represent each epoch.

Extracting Features: LLE
As stated earlier, since we are dealing with a system that 
evolves over time with transitions from one state to the 
next, our approach is based on studying system dynamics 
using the concept of state movements[5,18,19] and LEs. In 
doing so, for each vector ak, we obtain 3 LEs and take 
the largest one (LLE) that pertains to that vector. In what 
follows, we explain the rationale for our approach.

To investigate the dynamics of transitions between normal 
and epileptic states, brain is assumed to be a bi‑stable 
system, with two stable states called ictal and inter‑ictal 
that simultaneously co‑exist for the same set of system’s 
parameters.[20] These states correspond to the attractors of 
the underlying dynamical system.[18] After each transition, 
one or more parameter values may gradually change, which 
may facilitate or impede an upcoming transition. It is also 
assumed that transitions between states are relatively fast 
as compared to the times spent by the system in these 
states.[20]

The values of LEs for system parameters that describe 
the dynamics of a system reflect the degree of chaos 
in that system.[14] In our case, a reduction in the LLE 
pertaining to the SWE of each epoch as compared to that 
of the previous epoch is an indication that the system is 
becoming less chaotic, i.e., a seizure may be forthcoming. 
To estimate the LEs for a chaotic time series, we use an 
efficient method in[21] as described below and shown in 
Figure 3.

Figure 3: Flowchart for extracting largest Lyapunov exponent
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i. The number of steps for each 

epoch is upper bounded to N − p − K.

We use the Cao method described in[22] to determine the 
embedding dimension p, resulting in P = 3, and set the 
number of neighboring points K to 20. In this paper, for each 
EEG channel, 3 LEs (features) for each epoch is estimated. 
Noticeable and to some extent abrupt and prolonged 
changes in the steady state  (not short‑term transitions) 
in the feature space for successive epochs emanate from 
loss of coherence due to transitions from non‑seizure 
or inter‑ictal to ictal states. Note that in this way, a SWE 
feature vector of 63 components is mapped into a much 
smaller feature vector of 3 components for each epoch of 
sampled EEG data (1024 points). In order to further reduce 
the number of features, for each EEG channel, we only use 
the largest of the 3 LEs, denoted by yk, for the kth epoch.

Figure 5a‑d show typical variations in the largest estimated 
LE versus time for a randomly selected patient and EEG 
channel for more than 20 hours of inter‑ictal data and for 3 
pre‑ictal periods, each leading to a seizure. Note that when 
a seizure is not forthcoming, e.g., Figure 5a, changes in 
the steady state value of the largest estimated LE are not 
prolonged. Note also that while we can observe prolonged 
changes that might be attributable to a forthcoming seizure, 
e.g., Figure 5b‑d, such changes are not similar for all cases, 
and in some instances, e.g.,  Figure  5b, there is a need 
for further processing to denoise the trend. Specifically, 
Figure 5b‑d show variations for the same patient, but for 
different seizures. Vertical dashed lines to the right of 
the last 3 latter figures show the onsets of the seizures 
as indicated in the database.[12] Note that the time from 
the onset of visible and prolonged changes in the steady 

state value of the largest estimated LE to the onset of the 
corresponding seizure is not the same for all seizures. 
Furthermore, the pattern of changes may be different even 
for the same patient for different seizures. It is evident that 
we need to have a pattern discriminating framework for 
further processing.

SVM

A support vector machine  (SVM) is a machine‑learning 
method that is based on the statistical learning theory, in 
which all training points in each class are equally treated. 
To distinguish between two disjoint feature vectors, the 
training feature vector ui for each yi is mapped into a target 
value li = {−1, +1} via a kernel function and the chosen 
soft margin between two disjoint feature vectors.[2,23] The 
performance of the SVM depends on the choice of its kernel 
function and its respective parameter value, as well as on 
the size of the above mentioned soft margin.

In this paper, as in,[2] our choice for the kernel is the 
Gaussian radial basis function K(ui, uj) = e-g||ui-uj||2, with g > 0 
and a soft margin C.[2] The values of g and C are so chosen 
to yield optimal performance for the SVM. In doing so, 
the k‑fold cross validation is performed to determine the 
values of g and C. In k‑fold cross validation, the training 
set is divided into k subsets of equal size, from which, 
one subset is sequentially used to validate the classifier’s 
performance, and k − 1 remaining subsets are used for 
training.[2] As such, each subset is classified once. Next, to 
obtain optimal values of C and g for each fold, a diadic coarse 
grid search in the parameter’s space for C = [20, 21, …, 210] 
and g = [20, 21, …, 24] (resulting in 55 trials) is performed 
and for each combination of C and g, two performance 
measures of S and RFP are obtained. The values of C and 
g that yield the highest value of S - RFP are considered as 

ba

Figure  4: Largest Lyapunov exponents calculation for a time-limited spectrum-constrained chaotic time series (a) Phase space reconstruction and (b) 
Neighborhood matrix of displacement vectors and estimating the tangent maps
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optimal for that fold. For a rigorous evaluation, the optimal 
values of C and g for all folds are obtained, and then the 
corresponding SVM classifier is used to process the 
incoming test data in each run.

In a data set, some samples may be outliers, and some 
may be corrupted by noise. Such samples may negatively 
affect the SVM’s performance. In order to alleviate this, in 
addition to the SVM’s label, we also utilize the probability 
P (class|input) of the corresponding label. In what follows, 
we explain how to combine the SVM’s outputs (labels and 
probability estimates) to obtain a measure of rapid changes 
in successive epochs, which can be used to detect a seizure 
precursor.

The dimension of feature vector fed to the SVM is the 
number of EEG channels Nc. This is because for each epoch 
in each EEG channel, we only consider one feature, namely 
the LLE, representing a negligible computational load 

Figure 5: Calculated yk(t) for an epileptic electroencephalograms of a patient during (a) More than 20 hours of inter-ictal data and (b-d) The available pre-ictal 
data for 3 seizures

a

c d

b

compared to that of[2] for training/testing the classifier, 
making the approach suitable for real time use.

Post‑processing

For each epoch of 4 seconds duration (indexed by k), a feature 
vector consisting of 6 components (the LLE for each channel) 
is fed to the SVM, for which the SVM’s output denoted by 
bk and its probability denoted by pk are obtained. The value 
of bk = −1 indicates that the respective epoch belongs to 
pre‑ictal/ictal phase with pk > 0.5, and bk = +1 corresponds 
to an epoch not in the pre‑ictal/ictal phase with pk > 0.5.

For a window containing five consecutive 4‑second 
epochs (a total of 20 seconds of recorded EEG signals for 

6 channels), we obtain B b
k

k =
=
∑

1

5

 and P p b
k

k k = ×
=
∑

1

5

, where 

is the epoch index for each epoch in each window, and is the 
window index. The value of Bk shows the degree by which 
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the population of epochs in each window belongs to a 
pre‑ictal/ictal mode. In calculating the value of Pk, weighting 
the SVM output by its respective probability reduces the 
impact of outliers or noisy values due to the fact that their 
corresponding probabilities are smaller. Note that when the 
probability is either 0 or 1, the values of Bk and Pk are the 
same.

The above is repeated by indexing through k and κ, 
providing the values of Bk and Pk versus time, as shown in 
Figures 6 and 7 for the same patient as in Figure 5. As can 
be seen, the patterns for inter‑ictal and pre‑ictal periods are 
visibly different, and seem suitable for further processing as 
compared to the direct binary output of the SVM. Note that 
−5 < Bk < +5 and −5 < Pk < +0.5.

At the end of each window indexed by κ, two binary values 
of cBk

 and cPk
 that correspond to Bk and Pk, respectively, 

are set as follows. The value of cBk
 is set to +1 when the 

majority of epochs in that window belong to the pre‑ictal/
ictal phase (i.e., when Bk < -2). Otherwise, cBk

 is set to 0. 
Similarly, the value of cP is set to +1 when the majority 
of epochs in that window belong to the pre‑ictal/ictal 
phase (i.e., when Pk < 0). Otherwise, cPk

 is set to 0.

Next, the stay time in each state  (+1 or 0) for 
cBk

 and cPk
, denoted by xPk

 and xBk
, respectively, are obtained 

for consecutive windows, as shown in Figures  8 and 9, 
respectively. Note the visible difference between the values 
of xPk

 and xBk
 for inter‑ictal, and pre‑ictal periods. Note also 

that a chattering behavior in xBk
 and xPk

 indicates that the 
nervous system is rapidly changing, which can be regarded 
as an indication that a seizure is forthcoming. However, care 
must be exercised in setting the alarm, as the nervous system 
may experience rapid changes as well when no seizure is 
forthcoming. We observed that variations in stay times in 

ba

Figure 6: The calculated Bk(t) over successive windows of 5 samples for (a) Inter-ictal and (b) Pre-ictal states. Horizontal lines are in minutes

ba

Figure 7: The calculated Pk(t) over successive windows of 5 samples for (a) Inter-ictal and (b) Pre-ictal states. Horizontal lines are in minutes
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ba

Figure 8: The output xBk
(t) of support vector machine for (a) Inter-ictal and (b) Pre-ictal states. Both horizontal and vertical lines are in minutes

ba

Figure 9: The output xPk
(t) of support vector machine for (a) Inter-ictal and (b) Pre-ictal states. Both horizontal and vertical lines are in minutes

each state for xBk
 and xPk

 can be used in developing a simple 
algorithm for detecting seizure pre‑cursers. In doing so, we 
experimented with different options and parameter values, 
and chose the one that can identify seizure pre‑cursers 
reliably and in a time frame that is convenient to patients. 
Our proposed algorithm is described below.

If the stay time in state 1 for cBk
 (i.e.,  the value xBk 

) 
exceeds 10  minutes, it is an indication that the nervous 
system is undergoing a noticeable synchronization period, 
i.e., a seizure is forthcoming, and an alarm is set to indicate 
that a seizure precursor is detected. If, however, in the 
meantime, 4 consecutive values of cBk

 are not the same, we 
focus on stay times in state 1 for cPk

 (i.e., the value of  xPk
) 

for the next 20 minutes. During this period of 20 minutes, 
we begin by looking at a sequence of four non‑overlapping 
windows each containing 3 consecutive non‑zero values 

of xPk
. Only when the values of xPk

 are not the same in each 
of the four sequential windows, i.e., when the 3 consecutive 
non‑zero values of xPk

 are not the same 4 times in a row, 
we take it that the nervous system is reliably evolving into 
a seizure state, and an alarm is set to indicate that a seizure 
precursor is detected. Otherwise, we look at the next 
sequence of four non‑overlapping windows each containing 
3 consecutive non‑zero values of xPk

, and repeat the above. 
This cycle continues until all non‑zero values of xPk

 in each 
period of 20 minutes are taken into account.

EXPERIMENTAL RESULTS

The Freiburg EEG Database

We apply our scheme to the data set in[12] that includes 
a total of 86 seizures with 2‑5 seizures for each patient and 
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at least 50 minutes of pre‑ictal data for each seizures, and 
21 × 24 = 504 hours of inter‑ictal data for 21 epileptic 
patients.

Using a Neurofile NT digital video system with 128 channels, 
EEG recordings were acquired at the sampling rate of 
256  samples/s via a 16‑bit analog‑to‑digital converter. 
Implanted grid, strip, and depth electrodes with six contacts 
were used, resulting in 6 recording channels.

For the same reason mentioned in,[2] we selected a subgroup 
of 9  patients from the 21 available ones, each having 
electrocorticography recordings and more than two seizures.

Numerical Results and Discussion

Numerical results are shown in Table  1. Note that by 
applying our proposed scheme, all seizure precursors 
were successfully detected (i.e., similar to,[2] sensitivity of 
100% was achieved for all patients) but within the time 
frame that was very much convenient to patients (from 90 
to 10 minutes prior to the onset of a seizure) as compared 
to the prediction time frame of 115 to 2 minutes prior to 
the onset of a seizure in.[2]

Moreover, on the average, a false alarm rate of 0.08/h for 
the inter‑ictal period (as compared to the false alarm rate 
of 0.16/h for the inter‑ictal period in[2]) and a false alarm 
rate of 0.10/h for the whole (ictal and inter‑ictal) period as 
compared to the false alarm rate of 0.36/h for the whole 
period in[2]) were obtained, meaning that in very few cases, 
other events were falsely detected as seizure precursors. 
Note that the results obtained in[2] are superior to other 
existing works (e.g.,[10]). Hence, the fact that our proposed 
scheme produces better results as compared to[2] indicates 
that our proposed scheme significantly outperforms other 
existing schemes. Processing time for implementing our 
proposed scheme to generate feature vectors for a 24 hours 
data segment using Matlab 7.0 on a 2.00 GHz Intel dual 
core CPU with 2 GB of RAM is below 20 minutes. Note that 

when feature vectors are obtained, incoming EEG signals 
are processed on‑line, and seizure precursors are detected 
in real time.

It is evident that the proposed scheme yields improved 
performances for all patients, in terms of significantly lower 
false alarm rates and more convenient detection times.

CONCLUSIONS

We presented a novel approach for detecting epileptic seizure 
precursors that is based on the analysis of system dynamics 
obtained from intracranial electroencephalogram  (iEEG). 
In doing so, we used the discrete wavelet packet 
transform (DWPT) and the Shannon wavelet entropy (SWE), 
together with the largest Lyapunov exponent  (LLE), and 
non‑linear dynamics to obtain a set of patient‑specific 
discriminating features. We showed that such features 
can be utilized to detect epileptic seizure precursors in 
a timely and efficient manner. The sensitivity of 100% and 
a negligible false positive rate were achieved. The results 
are significantly better than those of existing methods.
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