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Abstract 
Due to the substantial need for energy efficiency, the daylight performance of building envelopes is a key issue in sustainable architec-
ture. A frequently used shading system consists of static expanded metal meshes (EM). As a very prominent textural façade element, 
expanded metal is widely used as both a cladding and static shading device. 

One initial aim is to provide a sufficient description of EM, including fabrication, possible usage, and overall properties. This includes 
a set of parameters needed to accurately control the complex geometry of EM. These parameters are also useful in getting reliable 3D 
computer models of EM.

The main objective of this paper is to assess, describe, and compare EM light transmittance performance for a shading device. Deter-
mining the influence of parameters such as geometry, colour, position, and direction of incoming light on the shading performance 
were specific objectives. 

The research is based on BSDF simulations via Radiance (Ward, Mistrick, Lee, McNeil, & Jonsson, J., 2011) and experimental data 
provided at a previous laboratory stage. 

The performance of various EM shading devices has been simulated and compared for a south-facing façade in Madrid for most char-
acteristic times of the year: solstices and equinoxes, as well as midday transmittance throughout the year. 
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1	 INTRODUCTION

  1.1	 IMPORTANCE OF BUILDING ENVELOPES

The building envelope is the first protective barrier between the building and its surroundings, 

which gives it immense possibilities in contributing to the building’s overall performance. One of 

the most notable is its influence on solar energy gains and overall daylight performance. Excessive 

heat gains constitute a serious problem in well-lit modern buildings, leading to higher energy usage, 

which is a serious economic and environmental issue. On the other hand, daylighting is a key issue 

in terms of visual comfort and energy savings through artificial lighting. Due to these circumstances, 

the daylight and thermal performance of building envelopes is a key issue in sustainable 

architecture (Littlefair, 2001).

  1.2	 DAYLIGHT IN BUILDINGS

Daylight is the combination of all direct and indirect sunlight throughout the day. Daylight creates 

the healthiest visual environment in buildings and provides an appropriate amount of illumination 

and all necessary spectral variety (including UV light). Scattered radiation (diffused daylight) does 

not cause major problems because it carries a relatively small amount of energy. In contrast, direct 

radiation (direct solar radiation) is associated with direct high-energy flux (approx. 1000 W per sq. m. 

of horizontal surface depending on the angle of incidence) (Begemann, van den Beld, & Tenner, 1997).

  1.3	 IMPORTANCE OF SHADING DEVICES

Buildings harvest daylight through glazed surfaces, which work as a single direction filter for 

infrared radiation, producing the so-called “greenhouse effect”. The infrared range, from 780 to 1060 

nm, involves heat transfer and causes temperature growth in rooms that too often are serviced by 

energy-consuming mechanical HVAC equipment in modern buildings, and characterised by a high 

percentage of transparent surfaces.

In the context of climate change and the energy use reduction requirements, shading systems are 

one of the most important issues in façade design. Shading devices protect the internal spaces 

from solar radiation, and – consequently – from temperature increase, but such devices should also 

allow for an adequate transmittance of daylight into the interior spaces of buildings. Besides those 

energy-related requirements, when designing continuous translucent layers, one must consider their 

permeability and optical performance for an adequate outward vision and privacy protection.

Another problem to address with shading devices is the appearance of discomfort glare, related to 

the presence in the visual field of excess luminance differences (Perry, 1990). In urban environments, 

façade glare affects visual comfort (discomfort glare) and influences the thermal load of other 

buildings (solar radiation from more than one source) (Brzezicki, 2012). In most buildings, glare 

protection is necessary to maintain proper visual comfort. 
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Fig. 1  Façade EM fixing solutions. Image 9 by Jesus Granada, first published in Tectonica n.22. Images 10,11,12 retrieved from 
https://www.flickr.com/photos/detlefschobert/ https://creativecommons.org/licenses/by-nd/2.0/

As well as with other materials or products, it is common practice to use EM as a sun control layer in 

façades, aiming to contribute both to thermal and visual comfort. If properly designed, EM meshes 

may allow daylight to pass through whenever necessary, as well as reducing cooling costs when 

used as sunshades. While highly effective in blocking direct sunlight, such systems must allow an 

adequate portion of the indirect, eye-friendly daylight through. 
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As EM is a metal product, one might be worried about the temperature it could reach under solar 

radiation and the subsequent radiative effect. As an initial benefit, EM will very often reflect radiation 

upwards, avoiding heat transfer to the ground. We have to consider the effect of colour and finish but, 

in general, EM shadings do not reach very high temperatures, probably due to the high proportion of 

voids and its easy ventilation. 

Regarding wind resistance and acoustic behaviour, EM may need further specific studies relating 

to its behaviour to avoid excessive deformations and noisy turbulences. Those effects could be 

controlled by adjusting the geometry of the shading, size of the ventilated gap, and fixing system. 

In relation to the fixing, the nature of the fixing system must be addressed and many options are 

available, all of which must allow thermal expansion in order to avoid creaking (FIG 1.). 

When calculating the wind load applied to the EM surface, if the voids are small and the percentage 

of voids is low (below around 20-30%), the whole surface of the EM is considered to bear the wind 

load, as if it were an opaque plate, disregarding the voids. This is due to the effect of the wind’s 

sudden hit and the friction created when going through the mesh voids. 

We could intuitively worry about wind whistling through the EM voids but, even if we cannot entirely 

disregard that option, the vast experience of installed EM façades allows that concern to be relaxed.

As EM is mostly installed as the outer layer of complex fenestration systems or ventilated façades, 

the maintenance and cleaning factor must be considered. Due to its geometry, EM can gather dust 

but as it is normally glossy or lacquered and the majority of the dust is washed off by rain, it does 

not require extraordinary maintenance measures. Besides, photocatalytic paints can be employed to 

create self-cleaning surfaces that avoid dirt and stains. 

  1.4	 EXPANDED METAL FAÇADES

Angular selective shading systems such as Expanded Metal (EM) block direct sunlight and admit 

daylight within a specific range of incident solar angles (Fernandes, Lee, McNeil, Jonsson, Nouidui, 

Pang, & Hoffmann, 2015). EM presents a wide range of applications in architecture and the building 

industry but because of its prominent textural aspect, it is widely used as a façade element, both 

as the cladding of opaque surfaces and as a shading device. EM is a great fit for the needs of many 

contemporary architectural designers seeking continuous skins that envelop the whole building, 

blurring the difference between hollow and solid and providing a smooth light filter (FIG 2.) 

Most other contemporary shading systems are constructed mainly for the momentary reduction of 

the energy flux, e.g. rollers, blinds, and shades, which are  frequently integrated as a part of so-called 

adaptive façades (Loonen et al., 2015). Contrary to many complicated, mechanised shading systems, 

EM skins often define the appearance of the whole building, affecting both the building’s physics 

(heat and light transmission) and the tectonics of the envelope. 

As with façade louvres, EM meshes provide different shading patterns, depending on the angle 

of incoming sunlight. This allows for the passive regulation of the amount of transferred daylight 

throughout the year. However, the choice of EM variant will strongly affect the shading performance. 



	 089	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 8 / NUMBER 1 / 2020

Fig. 2  Example of EM continuous skin. New Museum of Contemporary Art, New York. SANAA architecture office, 2007

One of the aims of this paper is to determine which aspects of EM design and manufacture should 

be considered in order to fit the requirements of each architectural design. The focus is on EM as a 

shading device, assessing its performance as an angular selective shading system and the influence 

of several parameters on the resulting daylight transmittance. 

Fig. 3  EM as an angular selective shading
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  1.5	 FABRICATION OF EXPANDED METAL

For an adequate understanding of the geometry of EM, which is necessary to build 3D models for 

simulation, an in-depth analysis of its shape and manufacturing process is needed.

EM is manufactured from metal sheets which have thicknesses usually ranging from 0.4mm to 

6 mm. The manufacture consists of shearing and stretching operations in a press, leaving voids 

surrounded by the stretched strands of metal. Aluminium, mild steel, galvanised steel, stainless steel, 

copper, brass, nickel, titanium, platinum, zinc, silver, and gold are possible materials for manufacture, 

but companies produce 80 - 90 % in steel. Following the mechanical manufacturing operation, the 

resulting mesh can be coated by lacquer finishes or by galvanisation. 

FIG 4. shows a sketch of the described mechanical operation. The metal sheet advances on a 

conveyor belt towards the press. A vertical movement of the blade (move 1) makes a row of cuts 

perpendicular to the advancing movement of the sheet (move 3) and simultaneously distorts the part 

of the sheet that has advanced beyond the cutting-line, pushing it downwards. After this first cut-

and-push operation, the blade rises and moves a certain horizontal distance (move 2) perpendicular 

to the advancing movement of the sheet. This way, two rows of cuts end up displaced one from each 

other in a zigzag pattern.

Fig. 4  The three manufacture movements

There are several kinds of EM, depending on the form and magnitude of the movements of the blade 

and the consequent shape of the holes. The simplest and most common type has rhomboid holes, 

usually known as rhombus-shaped or diamond-shaped; this will be the object of our research.

EM offers some advantages compared to other techniques: it is formed from a single piece of 

metal; no welding or weaving the metal is needed; neither joints nor welded knots are created 

and therefore there is less risk of rupture. Compared to other translucent metal screens such 

as perforated metal or woven metal fabrics, EM can offer greater flexural stiffness because the 

manufactured mesh has a larger overall thickness and therefore a better moment of inertia than the 

initial metal sheet. This feature of EM makes it very appropriate for installation in façades, as wind 

pressure is acting on them.
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EM can be used for outdoor installation with different thicknesses of the departing metal coil, 

depending on the metal used, the geometry of the mesh, its finish and the distance between fixing 

points. Each mesh has a different moment of inertia (flexural strength) depending on the overall 

thickness the mesh achieves after expansion, which ultimately depends on the height of the peaks of 

each rhombus and the strand width. 

In practice, designers and manufacturers do not perform such analysis to achieve a precise design, 

and the vast accumulated experience leads to using metal plates of minimum 2-3 mm in aluminium 

(depending on the alloy and geometry) and 1.5-2 mm in pre-galvanised steel. Even if these two 

materials are a good choice against corrosion, they are usually coated with powder paint in the 

case of pre-galvanised steel and powder paint or anodising in the case of aluminum. It is worth 

considering that for thicknesses of pre-galvanised steel lower than 2mm, the edges that become 

unprotected after the cutting operation are covered by the remaining rusting residues of zinc, as a 

kind of self-protection. 

In terms of regulation, there is no specific regulation for EM. In Europe, projects have to conform to 

Eurocodes regarding loads and, being conservative, the aforementioned thicknesses cover almost 

all cases. In the USA, there is a more conservative approach and it is usual to prescribe larger 

thicknesses because of civil liability concerns. 

  1.6	 EXPANDED METAL GEOMETRY

The geometry of a rhombus-shaped EM mesh can be described using some parameters of the 

mesh and press-machine shown in FIG 5: Long way mesh (LW), short way mesh (SW), strand 

thickness (e), strand width (w), intercut (i), cut width (c), blade bevel width (b), and blade thickness (t). 

The elongated metal strips that form the mesh are called strands and the joining area of four strands 

is called knuckle or bond.

Fig. 5  A: Geometrical parameters of an EM mesh. B: Position and side-references related to the manufacturing process

Taking into consideration the available geometrical parameters and materials, one can get a 

countless number of different types of possible EM manufactures.
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The use of EM as the external envelope in building façades has become more and more common 

in recent decades and designers often choose meshes with bigger nerves and holes than in other 

applications. Many manufacturing companies have a range of products under an architectural or 

decorative heading, including a wider variety of colours and sizes.

Analysis of shadow patterns cast by EM shows that those meshes with large openings are not the 

best option for façades of workspaces as the projected shadow patterns would involve glare and 

visual problems. Anyway, indoor diffusing technical sunscreens are usually used to solve this issue. 

Designers do install EM normally in façades of spaces used for sport, leisure, culture, commercial 

or circulation. EM with finer nerves offers more uniform shading patterns, but also can provide less 

shading performance, and therefore may be less effective in reducing overheating in the space.

EM elements shade rooms, but also act the other way round as a selective filter, that partially blocks 

selected parts of the field of vision. Due to EM geometry, this outward vision depends on the angle 

between the line of vision and the EM panel. If the observer’s line of vision is perpendicular to the EM 

plane, the visual permeability of EM will depend on the EM mesh parameters, mainly strand width, 

as shown in FIG 7. With the change of this angle the permeability will show the angular selective 

performance of EM, meaning basically that at certain angles EM visibility will be minimised (with the 

observer looking down), while at the other, outward vision will be entirely blocked (with the observer 

looking at the steep angle up). This issue of the visibility and perforated envelope is addressed in 

detail in a recent PhD thesis (Alatawneh, Rosario, Germanà, & Reffat, 2016). 

2	 METHODOLOGY

Chronologically, our conducted research is divided into the following stages:

	– Choice of assessment method and parameters

	– Preparation of 3-d models

	– Radiance simulation

	– Verification of BSDF results comparing with previous lab results 

	– Extraction and processing of BSDF data

	– Result interpretation

  2.1	 MEASUREMENT METHOD

The most popular measure of daylight performance in buildings was the daylight factor (light inside 

space/light outside the space ratio) (Robbins, 1985). This is quite easily measurable and provides 

the daylighting value at a point on a horizontal work plane in the room but does not provide any 

information about the direction of incident light and its distribution after transmission. Daylight 

factor provides information about daylight in the case of evenly overcast sky, and therefore is not 

suitable to assess the momentary values of the illuminance in the room resulting from direct 

sunlight, changing continuously according to the sun path. The development of simulation software 

demonstrated that more complex concepts than daylight factors were necessary.

Daylight Transmittance is the ratio of the amount of light transmitted through a window divided by 

the amount of light incident on its outside surface.
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With Hemispherical Transmittance and Reflectance, one gets an overall amount of light going 

through, and reflected from the material but those magnitudes do not tell us anything about light 

distribution after transmission or reflection. Bidirectional Scattering Distribution Functions (Ward, 

Mistrick, Lee, McNeil, & Jonsson, 2011) describe the behaviour of light when reaching an opaque or 

translucent surface, for various angles of incidence of light on that surface and various angles of 

reflected and transmitted light. Based on Nicodemus and Klems’ works (Klems, 1994; Nicodemus, 

1965) a method was created to compile the directional behaviour of fenestration systems as regards 

reflection and transmission of radiation in a matrix. The BSDF of a surface is a four-dimensional 

function that, in simple words, describes how the surface scatters radiation. In the strict sense, the 

data that will be managed will be the BTDF (Bidirectional Transmittance Distribution Function) as 

the purpose of our work is the assessment of the daylight transmittance of EM. 

Even if BSDF has the potential to provide detailed information about the way a material scatters 

light, the focus in this paper is not to assess the distribution of scattered light, but to assess how the 

overall transmittance or hemispherical transmittance is affected by different parameters of EM. 

  2.2	 SOFTWARE AND SIMULATION RESULTS VERIFICATION 

The 3-D models used for simulation were generated by a custom-made Grasshopper (for Rhino) 

algorithm, based on the parameters described in FIG 5. To ensure the high accuracy of the generated 

models, some of them were compared with 3-d scans of their real-life counterparts, which led to 

further modifications in the algorithm (Rico-Martinez, 2015).

The BSDF simulations were run via the genBSDF command from Radiance software (McNeil, 

Jonsson, & Appelfeld, 2011). This provided us with a large-size data pool, from which the data 

required to assess real-life daylighting situations could be later extracted. 

Values from Klems-based BSDF were verified by comparison with experimental data provided at a 

previous laboratory assessment campaign in the context of a PhD research (Rico-Martinez, 2015). 

One of the main limitations of the lab setup (FIG 11.) used to measure the daylight transmittance of 

physical samples was the ability to measure the illuminance only in a small area and provide only 

specular transmittances. It was a sufficient method for measuring the direct specular transmittance, 

which is normally about 99% of the total, as it provided a uniformly lit constant light pattern, helped 

by a diffuser. However, this is a disadvantage when the indirect transmittance constitutes a more 

significant fraction of overall transmittance; e.g. meshes with bigger openings or extreme angles 

of incoming light directions, nearly parallel to the mesh plane, where interior reflections and 

consequent scattered light can be of greater importance. 

The previous limitations are not an issue in the case of BSDF simulation, as it analyses the full 

spectrum of angles for both income and outcome directions.
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  2.3	 PERFORMANCE COMPARISON - CHOSEN INPUT PARAMETERS

Based on the previous lab results and visual observation of various mesh variants, it was determined 

that the SW/w ratio or EM opening ratio (short way of mesh/strand width), could be used as a 

depictive feature of EM geometry (FIG 6.). 

Fig. 6  Transmittance through a mesh with a low opening ratio (SW/w) ratio

For this paper, strand width (w) will be the main varying parameter, as it directly influences the 

SW/w ratio and the surface of the opaque areas of an EM mesh.  All the geometrical parameters that 

do not rely on strand width will be kept constant, in order to allow for a reliable comparison.

  2.3.1	 Mesh type, time, position and localisation 

In the presented paper, daylight transmittance through diamond-shaped EM shading devices is 

assessed in a vertical position with face “A” (FIG 5) on a south-facing façade, located in Madrid at 

most characteristic times of the year: solstices and equinoxes, as well as midday throughout the year.

	– Mesh type – EM with diamond-shaped holes. Different variants of the most common EM type in 

building envelopes are simulated and compared.

	– Position – south façade. Mesh placed in the typical, vertical position that provides the best 

shading performance. The south-facing position was chosen because it provides the longest sun 

exposure (north hemisphere).
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	– Location – Madrid. (40° 25’ N 3° 42’ W). Madrid has a warm climate (annual temperature during the 

day: 19.9 °C/67.8 °F) and one of the longest durations of sunshine in Europe (2769 hours per year).  

Latitude provides a variety of measurable sun angles throughout the whole year.

  2.3.2	 Mesh variants chosen for simulation. Strand width variation

A set of six modelled meshes (FIG 8.) was prepared, with only one differing 

parameter: strand width (w). 

The following three EM parameters: SW, d, and w, form a right-angled triangle. Consequently, keeping 

the dimension of the Short Way (SW) constant, any variation in strand width (w) results in a change 

in the manufacture’s blade descent (d).

Fig. 7  Parameters of an EM mesh. Long way of mesh (LW), short way of mesh (SW), intercut (i), cut width (c), blade bevel width (b), 
blade thickness (t), blade descent (d), blade tooth’s height (h), bevel’s height (hb), blade’s slope (α)

Besides, the slope of the blade (α) also varies if the strand width (w) is changed and all other 

parameters are fixed.

The limits for the strand width (w) are:

A	 w>e. This is an approximate limit due to fabrication conditions.

B	 w<SW/2. Elsewhere, the blade does not descend; therefore, the expansion of the mesh does not occur.

The following table shows the parameters of the EM meshes assessed.
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Table 1  Values of the geometrical parameters defining the assessed EM meshes 

LW SW W E B I D A SW/W

200 73 6 1 7 33 36.00 24.23 12.17

200 73 12 1 7 33 34.47 23.31 6.09

200 73 18 1 7 33 31.75 21.65 4.06

200 73 24 1 7 33 27.50 18.97 3.05

200 73 30 1 7 33 20.79 14.57 2.44

200 73 35 1 7 33 10.36 7.38 2.09

Obviously, the increase of strand width (w) is inversely proportional to the one of the EM 

opening ratio (SW/w). This way, the thinner the EM strands, the wider the mesh expansion and, 

therefore, the openings are larger. Logically, high values of opening ratio should lead to high 

values of transmittance. 

Fig. 8  Front views of EM geometrical variants used for the assessment

  2.3.3	 Mesh variants chosen for simulation. Colour variation

The impact of colour will also be considered, assessing each mesh in three colours: black, 

grey, and white. The same colour and reflectance values will be used, as in the previous lab 

assessments with real meshes. For those lacquers, the following reflectance data through 

spectrophotometry was obtained:

Table 2  Total reflectance and reflectance without specular component of analysed EM meshes finishing lacquers 
(measured with spectrophotometer)

COLOUR REFLECTANCE (%) REFLECTANCE WITHOUT SPECULAR COMPONENT (%)

White 84.1 +/- 0.3 80.9 +/- 0.6

Grey 43.1 +/- 0.2 39.5 +/- 0.3

Black 4.4 +/- 0.1 4.2 +/- 0.1
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  2.4	 EXTRACTION OF BSDF DATA FOR REAL DAYLIGHT SITUATIONS.

  2.4.1	 Data extraction 

In the case of this study, the focus is on the overall percentage of transmitted rays, i.e. hemispherical 

transmittance (specular + scattered), which will be later referred to as transmittance. This paper does 

not differentiate scattered from specular light, as specular transmittance through EM is much higher 

than scattered, and hemispherical data is needed to compare the overall behaviour of different 

meshes at different moments. 

Even if BSDF has the capacity to provide directional information about transmittance, for the aim 

of this paper, comparing overall data in a simplified manner is needed. Anyway, our previous 

experience tells us that, except for incoming light directions nearly tangential to the mesh plane, 

the majority of the light through the wide variety of EM meshes assessed in our computer BSDF 

assessment consists of specular transmittance. The rest of the values, surrounding this peak, refer to 

scattered transmission, which comes from the reflection of light in the mesh’s strands. Among these 

values, we could observe some of the most significant reflection directions where transmittance 

values are higher. Anyway, the specular transmission takes more than 90% of the hemispherical 

transmission (Rico-Martinez, 2015).

In fact, we had to use a logarithmic scale (base 10) for graphs representing transmittance values in 

different directions because the value of the transmittance (ratio of incoming to outgoing light) in 

the specular direction was often bigger than 1% and lower than 0.01% for the scattering directions. 

The use of the logarithms of the transmittance values rather than the actual transmittance values 

reduces a wide range to a more manageable size. Moreover, human senses and perception are 

supposed to work in a logarithmic way (hearing, sight, etc.).

As the shading performance of EM is being assessed, direct sun radiation in real-life cases is 

assumed, i.e. one main incoming light direction. 

One of the challenges was that the data about incoming light directions from BSDF simulation is 

related to each Klems patch and does not correspond precisely to the directions of sunlight obtained 

for real situations (described by linear sun paths, the daily arc-like path that the sun appears to 

follow across the sky). It was necessary to properly adapt the BSDF simulation data to assess the 

mesh’s real-life performance.

BSDF data follow a coordinate system, called the Klems angle basis, which was designed specifically 

to simplify a matrix multiplication to model multi-layer window heat gains. The Klems angle basis 

has 145 input and output directions. Each direction is related to a patch of the hemisphere and all 

the patches have roughly the same cosine-weighted solid angle. Consistency in the cosine-weighted 

solid angle ensures that the contribution to hemispherical transmittance is roughly the same for all 

patches (McNeil, Jonsson, Appelfeld, Ward, & Lee, 2013).
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Extracting the useful data meant selecting the Klems patches involving the desired sun directions. 

This resulted in obtaining patterns of Klems patches (FIG. 8) resembling a pixelated version of the 

actual sun path (FIG 9. S.P.). As the selected sun paths do not necessarily cross the centres of the 

patches, in some cases, it has been necessary to obtain transmittance values for additional regions 

(FIG 9. B) in order to calculate arithmetic averages of transmittance values of the involved patches. 

The following software has been used to obtain the sun paths: Ladybug Tools (Grasshopper plugin for 

Rhino 5) (Sadeghipour Roudsari n.d.) and Curic Sun plugin for Sketch-Up (Curic Studio n.d.). 

Fig. 9  Examples of sun paths (S.P.) related to patch sets on the Klems dome. Midday, winter solstice (22.12), equinox (21.03) and 
summer solstice (21.06)

Procedure for transmittance assessment throughout a day

To obtain the data about transmittance through a particular day, the geolocation and position of the 

mesh, as well as the date, were first specified. One could then obtain the corresponding sun-path, 

which describes the consecutive sun positions throughout that day.

Each Klems patch was described with the direction defined by its geometrical centre (FIG 10. C) 

and the closest point from each patch centre on the sun path was found. That point represents a 

sun position related to a daytime-value (FIG 10. C’). As a side effect, the method resulted in atypical 

values of daytime slots in the abscissa (e.g. 7:12, 9:36, 14:24, and 16:48) but related to quite precise 

transmittance values.
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Procedure for transmittance throughout a year

Likewise, midday transmittance values through the year (FIG 9. midday) were obtained considering 

the 365 days of the year at 12:00, picking the incident patches with centres on that longitude 

fragment, finding the sun positions that match with the patch centres and finally matching the 

date values to those points. Again, this resulted in atypical values of date slots in the abscissa 

(e.g. 21th January, 23rd February, 21st March, 17th April, and 24th May) but related to precise 

transmittance values. 

Fig. 10  Geometrical centre of a single patch. [C] patch centre [C’] the closest point on the sun path

3	 PREVIOUS RESEARCH AND EXPERIMENT 

  3.1	 COMPARISON OF LAB DATA AND BSDF SIMULATION RESULTS  

In the aforementioned research (Rico-Martinez, 2015), the BSDF data running simulations were 

validated for models that were previously assessed in the laboratory (FIG. 11 ) with real samples. 

Overall, apart from those directions with the most extreme angles, the BSDF simulation results 

didn’t show much deviation from lab results with an average of 4.96%  (considering all incident light 

angles, including the most extreme, tangential ones, the overall average of deviation was 10.17%). 

For those specific extreme angles, transmittance values were significantly higher for the computer 

simulation data and it was concluded that the physical model readings were significantly lower than 

the real ones, due to the lab setup limitations. However, the BSDF data obtained were consistent, 

as has been proven by the work and practice of many authors. (McNeil, Jonsson, Appelfeld, Ward, 

& Lee, 2013) (De Michele, Loonen, Saini, Favoino, Avesani, Papaiz & Gasparella, 2018) (Saini, 

Loonen, & Hensen, 2018).
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Fig. 11  [a] Scheme of Lab assessment setup [B] Picture of the setup 

Fig. 12  Lit EM meshes in the lab setup

4	 RESULTS AND DISCUSSION

In the following sections, the data obtained through simulation is presented in the form of graphs for 

the aforementioned colours, dates, and six types of EM.

The first three sets of graphs deal with the transmittance through the day.

The subsequent set of graphs shows midday transmittance values throughout the year.

Then, two sets of graphs are included using the same data but rearranging it. This way the influence 

of strand width on daily transmittance is described, by times of the day, and the influence of strand 

width on midday transmittance, by dates.

This section finishes with a table that quantifies the influence of colour on transmittance.

It is worth remembering that the following charts offer hemispherical transmittance data, the sum 

of scattered and specular light transmittance. For each incoming light direction, we obtain a unique 

value of transmittance expressed as a percentage (percentage of the incoming light transmitted 

through the EM mesh).

Likewise, it is important to remember that only direct incoming light is considered, i.e. clear sky 

conditions, which are the raison d’être of solar shadings.
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  4.1	 TRANSMITTANCE VALUES THROUGH THE DAY BY 
STRAND WIDTH FOR SPECIFIC COLORS AND DATES

  4.1.1	 Winter Solstice

Besides being the shortest day of the year, the lowest solar angles are characteristic of the winter 

solstice (FIG 13.). In such conditions, all simulated variants of EM seem to function as expected, 

with transmittance values dropping very slightly towards midday as solar height increases. 

The only visible divergence seems to be a slight increase in transmittance around midday for the 

12 mm strand width mesh (w=12mm). This can be due to the complex geometry of EM or to method 

inaccuracies like the ones described in 2.4.1 about the relation between the real sun path and the 

available light directions from the Klems basis. 

Fig. 13  Transmittance data throughout the day for the winter solstice. Each curve corresponds to a given strand-width, w (mm). 
The first three graphs correspond to each colour: white, grey and black. The fourth graph shows the superposition of curves for 
the three colours and three strand-widths: 6, 24 and 35mm

It also worth noticing, that for most of the day, the transmittance curve of w=35mm mesh seems to 

run almost flat, with transmittance below 10% for white and 4% for black finish.

In any case, all the curves present low amplitudes and moderate variations throughout the day due 

to colour. Almost all the curves show an upwards concavity with maximum values at dawn/dusk and 

minimum at noon. The 24 mm and 25 mm strand width meshes show the biggest amplitudes.



	 102	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 8 / NUMBER 1 / 2020

Bigger increases regarding noon values appear for the intermediate meshes (w=24 mm, 

w=30mm). Those increases approach 20 percent points, whereas for the extreme meshes, with 

maximum and minimum translucency (w=6 mm and w=35mm), those differences drop to around 

eight percent points. 

In general, there is a great transmittance increase from w=35mm to w=6mm (around 70-75 percent 

points), which shows that the effect of modifying the strand width in winter is substantial. 

The transmittance increase due to the colour of the mesh is greater for the intermediate meshes 

(w=24 mm, w=30mm), which present an increase of 10 percent points at 12:00 when it changes 

from black to white. The difference between black and grey is low, almost half of the difference 

between grey and white.

  4.1.2	 Spring/Autumn Equinox

At the equinox (FIG 14.), EM meshes with strand width w=18mm and higher seem to perform 

as expected with lowest transmittance values at midday, and rise towards dawn/dusk. It is also 

worth noticing that for a significant portion of the day (even around 8:30-15:30 for 35mm mesh) 

transmittance values seem to remain roughly constant. 

Fig. 14  Transmittance data through the day for spring/autumn equinox (21 March / 22 September). Each curve corresponds to a 
given strand-width, w (mm). The first three graphs correspond to each colour: white, grey and black. The fourth graph shows the 
superposition of curves for the three colours and three strand-widths: 6, 24, and 35mm
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12mm mesh seems to maintain quite similar values throughout the day. 

With the exception of the 6 mm strand width mesh, again the curves show upwards concavities but 

with higher differences between dawn/dusk and midday than in the winter (FIG 13.) and summer 

solstices (FIG 15.). The maximum amplitude is about 30 percent points. This agrees with the sun 

path, as it is rising towards midday and the EM strands are blocking a greater amount of rays. 

However, when the strand width value is low, those differences are blurred. 

If one pays attention to the effect of colour, it can be noticed that it is more noticeable at dawn/

dusk with a variation of around 10 percent points from black to white. This is more evident 

for the intermediate meshes (w=12 mm, w=18 mm, w=24 mm) and gets lower as strand with 

increases. For w=35 mm the colour effect is around three percent points at midday and seven 

points at dawn/dusk.

For the rest of the daytime, in general, the effect of colour is less evident.  

No noticeable difference arises in the jumps from black to grey and from grey to white.

  4.1.3	 Summer Solstice

Fig. 15  Transmittance data through the day for the summer solstice (21st June). Each curve corresponds to a given strand-width, 
w (mm). The first three graphs correspond to each colour: white, grey, and black. The fourth graph shows the superposition of 
curves for the three colours and three strand-widths: 6, 24, and 35mm
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Summer solstice means the highest sun angles and the longest day of the year but the 

shortest exposure of the southern façades. That is why the graphs (FIG 15) show quite a 

narrow daytime spectrum.

Besides, observing the Klems patch pattern obtained to fit the summer solstice sun path in Madrid 

(FIG 9. ), it’s evident that the sun path crosses very few patches. This is clearly one of the limitations 

of using the classic Klems dome method and it can be solved through the Tensor Tree method 

possibilities (De Michele et al., 2018).

EM meshes with strand width w=18 mm and higher seem to perform as expected, with the lowest 

transmittance values at midday. The flattening of the curves does not appear, but that might be due 

to a low number of control points. 

In general, the upwards concavity remains with maximum values at dawn/dusk except for 

the 6 mm strand width mesh. This striking inversion of curvature can be explained by the 

shadow patterns of the mesh for corresponding lightning directions (FIG 16A). For the direction 

corresponding to the hour 9:45, see-through openings constitute below 15% of the overall mesh area, 

while for the angle at 12:00 they occupy over 31%. 

Fig. 16  [a] Shadow pattern analysis and transmittance analysis for the summer solstice (6mm strand width mesh) [b] Previously 
conducted lab results graph for a similar EM mesh, also showing maximum transmittance at midday. 

In addition, a transmittance curve based on our physical lab measurements of a similar EM mesh 

seems to confirm that direct transmittance increases close to midday when it is normally expected to 

be at its lowest (FIG 16B)

The maximum transmittances, for white colour, were around 70%, with w=6mm in winter and 72% at 

the equinox. In summer, that maximum value drops to 46% due to the solar height. 

The minimum values in summer are higher than in winter or the equinoxes. 

The effect of the strand width is more noticeable on white coloured meshes than on black ones. 

For instance, at 10:00 and 14:00 the transmittance from w=6mm to w=35mm leaps 23 points on 

black, 27 points on grey and 30 points on white coloured meshes.
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  4.2	 MIDDAY TRANSMITTANCE VALUES THROUGH THE 
YEAR BY STRAND WIDTH FOR SPECIFIC COLOURS

Fig. 17  Midday transmittance data throughout the year. Each curve corresponds to a given strand-width, w (mm). The first three 
graphs correspond to each colour: white, grey, and black. The fourth graph shows the superposition of curves for the three colours 
and three strand-widths: 6, 24, and 35mm

This set of graphs (FIG 17) analyses how the date of the year affects transmittance at midday (12:00). 

As previously indicated (section 2.3.2), high values of opening ratio should involve bigger apertures 

and lead to higher transmittances and, consequently, the increase of strand width is inversely 

proportional to the transmittance.

The results shown here are coherent with this logic: on white meshes at the winter solstice one can 

observe transmittance values of 77% for w=6mm and 7% for w=35mm. 

At the summer solstice, the transmittance differences drop because of the higher sun position, which 

reaches the façades tangentially and finds fewer openings for direct transmission.

Following the same logic, 35 mm strand width meshes show very few variations throughout the year, 

since their transmittance is very low.

The 6mm strand width mesh differs clearly from the rest at the summer solstice, with a 

transmittance nearly 25% higher than the following mesh. The transmittances of the rest of the 

meshes in summer show much smaller differences.
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In winter, the increase of transmittance values is quite homogeneously proportional 

to the opening ratio.

For summer and lower opening ratios, midday-transmittances are actually higher than for winter. 

Similar data has been registered from lab assessment for meshes with low opening ratios as well 

(FIG 18). The hypothetical cause of this increase in transmittance in summer might be the additional 

transmission of incoming light after interior reflections on the surfaces of the mesh. The fact that 

darker colours of the mesh seem to amplify this trend seems to back it up.

Fig. 18  Lab and BSDF results for EM meshes with similar proportions (Both meshes have an opening ratio of SW/w=2.08) 	
[a] Lab results [b]. BSDF results  

  4.3	 INFLUENCE OF STRAND WIDTH ON DAILY TRANSMITTANCE, BY 
TIMES OF THE DAY, FOR DIFFERENT DATES AND WHITE COLOUR

These curves (FIG 19) have been traced in order to directly show the relation between strand width 

and transmittance variation. Overall, it can be stated that the relation (the slope of the curves) is 

similar for different daytimes except for the dawn in the equinoxes. 

Coherently, the amplitude of the curves is higher for the winter solstice with big transmittance 

differences for different strand widths. As seen before, these differences attenuate when passing to 

the equinoxes and reaching the summer. 

Focusing on the winter solstice and excluding the dawn (7:21) data, simplified generalist statements 

like the following can be done: For a south-facing mesh located in Madrid, the variation of daylight 

transmittance is inversely proportional to the variation of strand width. That relation is practically 

linear with such a slope that an increase of 5 mm in strand width implies a decrease of around 12-

15% of the transmittance.
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Fig. 19  Transmittance data versus EM strand width for white coloured meshes. Each curve corresponds to a given time of the 
day. The three graphs correspond to different dates: equinox, summer solstice, and winter solstice

  4.4	 INFLUENCE OF STRAND WIDTH ON MIDDAY 
TRANSMITTANCE, BY DATE FOR SPECIFIC COLOURS

In the same direction as that of the previous graphs, the midday transmittance - strand width 

relation has been expressed, but collecting in each graph the curves corresponding to several dates 

of the year (FIG 20). 

It is noticed that, for the winter dates, the decline in transmittance as strand width increases is 

almost linear and with a similar slope until a certain value of the strand width. From w=24 mm, 

the curves show some curvature towards a horizontal asymptote that responds to the fact that it 

is getting close to zero transmittance. Nevertheless, moving away from winter, the curves show an 

increase of the slope (higher transmittance fall-offs for given strand width growths) and an inflection 

point. Getting closer to the summer, the inflection point moves to higher values of the strand width. 

A noticeably horizontal stretch is also observed where transmittance does not vary with the strand 

width. Those curves recover a certain slope to drop towards zero transmittance for high values of w 

(low values of the opening ratio).
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Fig. 20  Midday transmittance data versus EM strand width. Each curve corresponds to a given date. The three first graphs 
correspond to different colours: white, grey and black. The fourth graph shows the superposition of curves for the three colours 
and three dates: Winter solstice, equinox and summer solstice

  4.5	 INFLUENCE OF COLOUR ON TRANSMITTANCE

As could have been expected, the colour of the EM device affects the transmittance to a certain 

degree. The highest transmittance values were achieved for the white meshes and lowest 

for the black ones. 

An overall difference of transmittance between black and white EM stayed between the range of 

1.13% and 13.52%, with an average of 7.67%, which is notable. As seen in the comparison (TABLE 

3), the overall influence of colour relies on the opening ratio and sun angles. One could attribute 

that reliance on the amount of light transmitted by interior reflections from the surface of the mesh, 

which varies due to the complex geometry of EM (FIG 21). Overall, for a given location, the influence 

of colour on transmittance seems to be the strongest for diamond shaped EM meshes with SW/w 

ratios between 0.25 and 0.33.
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Table 3  Influence of colour on transmittance decrease (compared to white mesh)

DATE 22.06                      

colour grey           black          

time/w 6 12 18 24 30 35 6 12 18 24 30 35

8:39 4.01% 4.87% 4.29% 3.34% 2.23% 0.82% 7.01% 8.12% 6.95% 5.28% 3.42% 1.27%

9:45 4.24% 4.74% 4.07% 3.12% 2.06% 0.74% 7.38% 7.84% 6.53% 4.88% 3.17% 1.13%

12:00 4.33% 5.84% 5.22% 4.07% 2.70% 1.03% 7.49% 9.59% 8.26% 6.25% 4.05% 1.50%

14:15 4.24% 4.74% 4.07% 3.12% 2.06% 0.74% 7.38% 7.84% 6.53% 4.88% 3.17% 1.13%

15:21 4.01% 4.87% 4.29% 3.34% 2.23% 0.82% 7.01% 8.12% 6.95% 5.28% 3.42% 1.27%

average 4.16% 5.01% 4.39% 3.40% 2.26% 0.83% 7.25% 8.30% 7.04% 5.31% 3.44% 1.26%

summary min 0.74% max 5.84% avg total 3.34% min 1.13% max 9.59% avg total 5.43%

DATE 21.03                      

colour grey           black          

time/w 6 12 18 24 30 35 6 12 18 24 30 35

6:19 6.06% 7.63% 8.13% 7.34% 5.69% 4.84% 10.48% 13.04% 13.52% 11.88% 8.80% 6.85%

7:59 2.90% 5.07% 6.33% 6.53% 4.73% 2.09% 4.48% 7.84% 9.72% 9.83% 6.95% 2.98%

9:29 2.16% 4.51% 6.44% 6.80% 4.66% 2.08% 3.70% 7.48% 10.26% 10.39% 6.85% 2.90%

11:14 2.18% 4.60% 6.58% 7.18% 5.02% 2.21% 3.71% 7.53% 10.44% 10.92% 7.33% 3.06%

12:00 2.10% 4.85% 6.45% 7.09% 4.85% 2.14% 3.58% 8.04% 10.25% 10.78% 7.09% 2.98%

12:46 2.18% 4.60% 6.58% 7.18% 5.02% 2.21% 3.71% 7.53% 10.44% 10.92% 7.33% 3.06%

14:31 2.16% 4.51% 6.44% 6.80% 4.66% 2.08% 3.70% 7.48% 10.26% 10.39% 6.85% 2.90%

16:01 2.90% 5.07% 6.33% 6.53% 4.73% 2.09% 4.48% 7.84% 9.72% 9.83% 6.95% 2.98%

17:41 6.06% 7.63% 8.13% 7.34% 5.69% 4.84% 10.48% 13.04% 13.52% 11.88% 8.80% 6.85%

average 3.19% 5.38% 6.82% 6.98% 5.01% 2.73% 5.37% 8.87% 10.91% 10.76% 7.44% 3.84%

summary min 2.08% max 8.13% avg total 5.02% min 2.90% max 13.52% avg total 7.86%

DATE 22.12                      

colour grey           black          

time/w 6 12 18 24 30 35 6 12 18 24 30 35

7:21 1.92% 3.54% 4.80% 6.31% 6.65% 3.57% 2.58% 4.95% 6.67% 8.43% 8.64% 4.78%

8:29 1.61% 3.79% 5.42% 6.09% 5.43% 3.43% 2.51% 5.57% 7.82% 8.72% 7.80% 4.68%

9:32 1.61% 3.37% 4.82% 5.56% 5.56% 3.45% 2.58% 5.38% 7.50% 8.42% 8.04% 4.69%

10:45 1.47% 3.20% 4.70% 5.62% 5.61% 3.19% 2.43% 5.25% 7.42% 8.54% 8.12% 4.34%

12:00 1.48% 3.11% 4.61% 5.68% 5.85% 3.36% 2.43% 5.06% 7.32% 8.67% 8.43% 4.56%

13:15 1.47% 3.20% 4.70% 5.62% 5.61% 3.19% 2.43% 5.25% 7.42% 8.54% 8.12% 4.34%

14:28 1.61% 3.37% 4.82% 5.56% 5.56% 3.45% 2.58% 5.38% 7.50% 8.42% 8.04% 4.69%

15:31 1.61% 3.79% 5.42% 6.09% 5.43% 3.43% 2.51% 5.57% 7.82% 8.72% 7.80% 4.68%

16:39 1.92% 3.54% 4.80% 6.31% 6.65% 3.57% 2.58% 4.95% 6.67% 8.43% 8.64% 4.78%

average 1.63% 3.44% 4.90% 5.87% 5.82% 3.41% 2.52% 5.26% 7.35% 8.54% 8.18% 4.61%

summary min 1.47% max 6.65% avg total 4.18% min 2.43% max 8.72% avg total 6.08%

DATE YEAR  AVERAGE (AT NOON)                  

colour grey           black          

w 6 12 18 24 30 35 6 12 18 24 30 35

average 2.90% 4.78% 5.90% 6.11% 4.80% 2.62% 4.86% 7.77% 9.30% 9.28% 7.02% 3.65%

summary min 0.74% max 8.13% avg total 4.52% min 1.13% max 13.52% avg total 6.98%
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Fig. 21  Examples of simplified interior reflections (considering specular reflectance) 

5	 CONCLUSIONS

  5.1	 PARAMETERS AFFECTING TRANSMITTANCE - SUMMARY

The parameters affecting transmittance are divided into three general groups: 

	– EM mesh geometry: shape and proportions

	– Incoming light direction (in relation to mesh face): sun azimuth (longitude) and solar height (latitude)

	– EM mesh colour

To assess real-life situations it is necessary to refer the light direction to mesh localisation and 

position, time, and date. Overall, the impact of each parameter on transmittance depends on other 

parameters. As seen, transmittance depends on both mesh geometry and sun angle; it must be 

considered to what extent the decrease of the opening ratio (SW/w) of Expanded Metal meshes 

results in lower transmittances for given solar heights. 

Mesh proportions - The most significant factor in terms of mesh geometry is definitely the opening 

ratio (SW/w), although, as seen in the results, this is not a linear, easy-to-describe general correlation 

between the opening ratio and daylight transmittance. The change of strand width also influences 

other proportions. It is worth remembering, those other parameters can also strongly influence the 

mesh geometry, affecting the shading performance. The complex geometry of the EM also makes its 

shading performance less predictable in terms of light direction.

In general, greater transmittance increases have been observed due to the variation of strand width 

of EM meshes at the winter solstice (70 to 75 percent points from w=35 to w=6 mm).

As stated in section 4.3, on the winter solstice, for most times of day, a south-facing mesh in 

Madrid presents a nearly linear variation of daylight-transmittance inversely proportional to the 

variation of strand width; an increase of 5 mm in strand width implies a decrease of around 12-15% 

of the transmittance.
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It is worth mentioning that low values of the opening ratio lead to meshes that almost totally prevent 

direct vision through them. This is a very limiting condition for an element to be included in a 

complex fenestration system. 

Solar Height

This is the most obvious and one of the most important factors affecting the transmittance values. 

As a rule, the higher the position of the sun, the lower the transmittance. However, as seen on the 

graphs that show transmittance throughout the year (section 4.2), the relationship is not linear and 

once the solar height and SW/w ratio are high enough, an inversion of the curvature may occur.

Solar height is related to the season, of course. 

The maximum transmittances, for white colour, were around 70% with w=6mm in winter and 72% at 

the equinox. In summer, that maximum value drops to 46% of the solar height.

The minimum values in summer are higher than in winter or the equinoxes. Minimum summer 

transmittance with black colour is around 7%, while at the equinox it drops to 2% and in winter to 

1%. These values always appear at midday. 

Sun Azimuth 

Similarly to the solar height, the transmittance is at its maximum when the sun azimuth is 

perpendicular to the mesh plane and decreases as it moves towards the mesh plane. Although, 

in general, solar height seems to be slightly more influential on the transmittance, overall sun 

direction is always a sum of both latitude and longitude.  This sometimes leads to counterintuitive 

outcomes, such as the temporary rise of transmittance towards midday, as seen for the summer 

solstice in FIG 15. 

Colour

Colour influences the indirect transmittance (transmittance through internal reflection). Therefore, 

the influence of colour relies on SW/w and the direction of incoming light. As expected, darker 

colours led to a decrease of transmittance. 
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  5.2	 GENERAL ASPECTS FOR FAÇADE DESIGNERS.

  5.2.1	 Position and tilt of the building envelope

The data shown in this paper relates to an envelope facing directly south, and perpendicular to 

the ground. Change of either orientation or tilt of the EM’s surface obviously changes the relative 

sun angles, strongly affecting the performance. Therefore, it is essential to consider each aspect.  

In general, an upwards tilt of the envelope usually causes an increase of transmittance while a 

downward tilt decreases it. A change of orientation for the façade changes the timeslot in which the 

direct sunlight reaches it, which, of course, also affects the performance.

  5.2.2	 The necessity of detailed research and on purpose simulation

Due to the multiple variable conditions of the issue it is not possible to state strictly linear relations 

between any particular parameter (or group of parameters) and the shading performance of 

EM. While most assumptions about the influence of those parameters are correct, they are too 

general to reliably predict the real-life performance. For proper assessment, it is necessary to run 

a specific simulation, which takes into account the specific mesh model and colour, as well as its 

position and location.

  5.2.3	 Presence of shadow patterns 

Due to the visible shading patterns, EM meshes are generally not suitable for any spaces in which 

precision work is done, such as labs, workshops, or offices. For such spaces, it is recommended 

to use either fine (densely distributed, small openings) EM meshes, or an additional layer 

of diffuse material.

  5.2.4	 The complexity of façade systems 

It is worth remembering that EM meshes are usually just a part of a façade/fenestration system, 

with its different layers working as a whole. Therefore, to analyse the whole behaviour it is necessary 

to include all layers and elements of the façade. Furthermore, to obtain real-life performance it is 

also crucial to take into account the environmental data, such as the intensity of light, or amount 

of incoming diffused light. Only then can the illumination of the building’s interior and solar 

energy gains be closely predicted and balanced.
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  5.3	 OBSERVATIONS ON BSDF DATA FOR REAL LIFE 
DAYLIGHT TRANSMITTANCE ASSESSMENT.

  5.3.1	 Potential usage

Thanks to previously conducted lab measurements (Rico-Martinez, 2015), statements that one could 

intuitively predict, without analysis, were proved valid and expressed measurably.

In particular, the ratio SW/w appeared as a depictive feature of EM meshes. However, they have also 

shown that it is difficult to predict and summarise transmittance behaviour for EM and one cannot 

relate it simply and directly to geometrical mesh features such as SW/w ratio or the surface of the 

openings. Therefore, to predict the EM performance more closely it is necessary to consider tools that 

take into account multiple factors such as specific geometry and outside finish of mesh or specific 

directions of incoming light. One of the advantages is that, once the simulation for a particular EM 

shading is done and saved, it provides a large database, allowing the device shading performance 

to be simulated for every possible position or location. Such data can also be part of more in-

depth analysis, considering the complete complex fenestration and façades systems, diffused 

light transmittance, and the influence of other environmental factors to allow for detailed and 

accurate performance analysis. Even as is, the data can be useful for designers needing to choose 

adequate EM shading systems.

  5.3.2	 Usage of classic Klems dome as a source of inaccuracies

In the classic Klems pattern, each patch represents a range of directions and transmittance values 

are calculated for the sum of those directions. Decreasing the size of the patches as with Tensor 

tree BSDF (Ward, Kurt, & Bonneel, 2012) would also reduce the inaccuracies (the lower the patch, 

the more accurate the results). Another option could be to use custom ray-tracing simulations for 

particular directions.
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