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Abstract— The variation of the output power of Ytterbium-doped fiber lasers (YDFLs) with temperature has 
been evaluated. Temperature-dependent rate equations of ytterbium fiber laser based on Fabry-Perot design have 
been discussed. The results demonstrate that the output power decrease with the increase of temperature. The 
effect of the temperature on the output performance increases by increasing the pump power. The effect of 
temperature can be ignored only for lower pump power. The theoretical result is in agreement with the published 
experimental results. 

Index Terms— Ytterbium-doped fiber laser, Temperature-dependent rate equation. 

1. INTRODUCTION

Since the first report in 1962 of laser achievement in ytterbi-

um ion (Yb3+) doped silicate glass [1]. Ytterbium (Yb)-

doped fiber lasers (YDFLs) have attracted great interest be-

cause they offer the advantages of compact size and struc-

ture, high gain, guided mode propagation, highly stable pro-

cesses, their outstanding thermo-optical properties and high 

doping levels are possible [1-6]. Moreover, It does not have 

some of the drawbacks associated with other rare-doped 

fiber such as excited state absorption phenomenon that can 

reduce the pump efficiency and concentration quenching by 

interionic energy transfer. Thus, it offers high output power 

(or gain) with a smaller fiber length. YDFA’s have a simple 

energy level structure and provide amplification over a 

broad wavelength range from 915 to 1200 nm. Furthermore, 

YDFA’s can offer high output power and excellent power 

conversion efficiency [1,7,8].  
 

Lately, interest has been shown in Yb3+ as a laser ion, in the 

form of Yb3+-doped silica and fluoride fiber lasers [9]. YD-

FLs have been widely used in advanced manufacturing, high 

energy physics and military defense [10]. There are several 

theoretical analyses of the YDFL based on rate equations 

and power differential transmission with fixed or variant 

parameters of the fiber laser, the results of which are im-

portant for optimization of fiber lasers. The numerical analy-

sis of thermal distribution and its effects on the high power 

YDFLs have been studied, as thermal damage, refractive 

index variation of the gain fiber, and output wavelength [11]. 

Several papers studied the temperature effects on the output 

performance of YDFLs. It is reported that the central wave-

length of output laser shifts to longer wavelength and the 

output power decrease with increase of temperature [12, 13]. 

Brilliant et. al. showed their experimental results of tempera-

ture tuning in a dual-clad ytterbium fiber laser, they varied 

the temperature of the fiber from 0 to 100◦C and found im-

portant changes in operating wavelength, power and thresh-

old [14].  

Today, the wavelength shift can be controlled with the using 

of fiber grating. Thus the temperature-dependence study 

about fixed wavelength is required. The effect of tempera-

ture on the optical properties of YDF lasing at different 

wavelengths has been analyzed [15]. Nevertheless, to our 

knowledge, there is no articles that discuss the effect of tem-

perature on the best possible conditions of YDFLs theoreti-

cally so far. In this article, the temperature-dependency 

model based on ions’ rearrangement emerging from tem-

perature variation for YDFLs with two-end Fabry-Perot mir-

rors has been presented. In this model, the output perfor-

mance can be studied (slope efficiency and the output pow-

er) depending on the temperature. In addition, the heat dis-

tribution along the laser cavity, and the numerical results of 

slope efficiency are combined. The optimal fiber length is 

obtained by taking into account the variation of temperature.  
  

2- THEORETICAL MODEL  

The energy level system for Yb having possible transitions is 

shown in Figure 1 [16]. The effect of the temperature on the 

ion distribution between upper and lower energy level within 

a manifold is considered. However, the redistribution of ions 

between the excited manifold 2F5/2 and the ground manifold 
2F7/2 is ignored. This can be justified because of the large 

energy gap between these two manifolds, on the basis of 

Boltzmann distribution and the energy level diagram. The 

standard rate equations for two-level systems are used to 

describe the gain and propagation characteristics of the fiber 
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laser because the ASE power is negligible for a high power 

amplifier with sufficient input signal (about 1 mW). After 

the overlap factors are introduced and the fiber loss ignored, 

the simplified two-level rate equations and propagation 

equations are given as follow [17] 
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where W12 and W21 are  the  stimulated absorption and stimu-

lated emission transition probability, respectively. They can 
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where ( , ),  ( , )s pP z t P z t  are the signal and pump power 

respectively.   as esand   are the signal absorption and 

emission  cross  sections.  and 
s p

   are the frequencies of 

signal and pump light, respectively. h is Planck’s constant.  A 

is the doped area of the fiber. A21 is the spontaneous radiation 

transition probability and  is the upper state lifetime. 
s  

and p  are  the overlapping factor of laser power and the 

pump power, respectively. ( )s s  is given by 1- e1-V 

,where V can be obtained by 
22 / sa NA  , where NA is 

the numerical aperture. p  can be approximately got by 

(a/b)2. a and b refer to the radius of the fiber core and the 

radius of the inner cladding of the YDF [18]. 

 

 

 

Figure  1  Energy level diagram of Yb in silica with 976 

nm, 1040 nm, and 1064 nm transitions labeled. 

Source: [24]  

 
The Yb- dopant concentration is  Nt, and given by[19]; 

                          
1 2 tN N N        (4) 

where N1 and N2 are the ground and upper-level populations.  

The energy level diagram for Yb in silica may vary with each 

individual fiber. Because of the splitting of the levels depends on 

the glass composition, concentration of dopants and co-dopants, 

and the degree of structure disorder of the glass network. The 

absorption and emission cross-sections for Yb in silica are 

related to the temperature and the energy of the levels[20]. The 

saturation of ytterbium absorbing transition occurs when 

population of two stark levels involving in the transition are 

matched. The photon energy is the energy difference between 

the highest Stark level of the ground state 2F7/2 (4) and the lowest 

Stark level of the excited state 2F5/2 (1) of the Yb3+ ion in 

phosphate glass. Therefore, we assume in the model that just 

these two sublevels and calculate the Boltzmann occupation 

factors fli and fui of lower  and  upper  manifolds for lower and 

upper levels from measured stark splitting  Ei and Ej and  they 

can be expressed as [21-23] 
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KB is Boltzmann’s constant and equals 
231.38 10  J/K.  At 

steady state, 2 / 0dN dt  , then 
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where the subscripts s and p represent laser and pump, respec-

tively. 

At the same time, by considering the scattering losses both for 

pump and laser, and then the power time independency differ-

ential transmission equations considering temperature by ignor-

ing the amplified spontaneous emission (ASE) can be expressed 

as follows: 
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with the boundary condition 
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where the superscript of 
sP 

 and Pp represent the propagation 

direction for the power along the fiber, the positive superscript 

represents forward direction and the negative superscript repre-

sents backward direction of laser beam and L is the fiber length. 

p  and 
s  are scattering loss coefficients of pump light and 

laser light respectively. R1 and R2 are the power reflectivity of 

Fabry Perot reflectors at laser wavelength at z = 0 and z = L, 

respectively. From above equations, the numerical results of 

power distribution along the fiber laser can be calculated. 

The temperature distribution of fiber core T1 and fiber cladding 

T2 respectively, as a function of fiber radius and fiber length and 

can be given as [24]: 
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where Q(z) is the heat power density,  represents thermal 

conductivity, Tc is environment temperature and hc is the heat 

transmission coefficient of the fiber surface. 

 

3- RESULTS AND DISCUSSION 

 Numerical simulations are carried out by solving the rate equa-

tions to study the effects of temperature variation on the per-

formance of high power YDFLs. The parameters used in the 

simulations are included in Table 1. The variations of output 

power with pump power for 915 nm and 970 nm signals at dif-

ferent temperatures 253k, 293k and 333k are shown in Figure 2 

and 3 respectively. It is clear from the results that increasing the 

pump power will increase the output power. At the same time 

the output power decreases with increasing temperature from 

253k to 333k which agrees with previous results and can be 

explained by the fact that as the population of the sublevel “a” 

decreases with the increase in temperature, while the population 

of sublevel “c” increases, that is the absorption of pump de-

clines and the absorption of laser rises [13,14].  

The variations of output power with fiber length for 915 nm and 

970 nm signals at different temperatures (243k & 363k) with 

the pump power of 1500 W are shown in Figure 4 and 5 respec-

tively. It is clear from the results that the optimal fiber length is 

about 12 m. According to Figs. 3 and 4, when the fiber length is 

longer, the difference of output power at difference temperature 

becomes smaller and smaller as shown in Figures 4 and 5 re-

spectively. This indicates that the effect of temperature is the 

smallest when the pump power is absorbed entirely.  

Table 1   Parameters used in the simulation. 

Parameters Value 

Signal wavelength (λs) 1100nm 

Pump wavelength (λp)  915,970nm 

Yb ion density (N) 80 x 1024 m-3 

Numerical aperture (NA) 0.2nm 

Excited-state lifetime (τ) 0.8ms 

Core radius 2.5µm 

Environment temperature 

(Tc) 

298k 

Heat transmission coef-

ficent (hc) 

17W/(m2K) 

Thermal conductivity ( ) 1.38 W/(mK) 

Scattering loss coefficient 

of laser light ( ) 

5 x 10-3 

Scattering loss coefficient 

of pump light ( ) 

3 x 10-3 

Absorption cross section 

at pump wavelength (σap) 

2.5 x 10-24 m2 

Absorption cross section 

at laser wavelength (σas) 

1.5 x 10-26 m2 

Emission cross section at 

pump wavelength (σep) 

2.5 x 10-24 m2 

Emission cross section at 

laser wavelength (σes) 

3.2 x 10-25 m2 
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Figure 2 Output power as a function of pump power 

(915nm) for different temperature when L = 3 m. 

Figure 3 Output power as a function of pump power 

(970nm) for different temperature when L = 3 m. 

 

Figure 4 The output power as a function of fiber 

length for different temperature when Pump power = 

1500 W for 915nm signal 

 

 

 

 

 

 

 

 

 

 

Figure 5 The output power as a function of fiber 

length for different temperature when Pump power = 

1500 W for 970nm signal 

 

The variation of the output power with the fiber length for 

different pump power for 915nm and 970nm signals are 

shown in Figures 6 and 7 respectively. It is clear from the 

results that the output power increases with increasing pump 

power. The optimal length for different pump power is 

around 12m. 

Figure 6 The output power as a function of fiber 

length at room temperature (273k) for 915nm signal. 

 

 
Figure 7 The output power as a function of fiber 

length at room temperature (273k) for 970nm signal. 
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4- CONCLUSION  

This paper has described in detail a temperature-dependent 

model for (YDFL) based on Fabry-Perot design. The output 

performance mainly the output power of YDFL variation with 

temperature is investigated. It is clear from the results that the 

output power decreases with the increase of temperature. More-

over, the variation of output power with temperature increases 

with the increase of the pump power. The theoretical results 

obtained here is in agreement with the published experimental 

result. These results show that the temperature effect must be 

considered especially when the laser is operated at higher pump 

power. 
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