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Control of a Direct Current Motor Using Time Scaling
Control de un Motor de Corriente Continua usando Escalamiento

Temporal

José Danilo Rairán Antolines 1

ABSTRACT
Humans naturally control their surrounding space. However, that capacity has not been fully used to build better intelligent controllers,
mainly because the reaction time of a person limits the number of industrial applications. In this paper, the author proposes a method
to overcome the problem of reaction time for a human in the control loop. This method, called Time Scaling Control, starts by
modifying the constant times of the plant’s model to the point where control is comfortable for a human. Then, the controller acquires
the knowledge that was expressed during the human control stage and places it in a Neural Network, which controls both scaled and
original plants. Time Scaling Control highly improves the control performance compared with a PID, in this case demonstrated by
the control of a direct current motor, which cannot be controlled by a human without time scaling control due to the speed of the
system.
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RESUMEN
Los humanos controlan el espacio que los rodea de manera natural. Sin embargo, esta capacidad no se ha usado completamente
para construir mejores controladores inteligentes, principalmente porque el tiempo de reacción de una persona limita el número de
posibles aplicaciones industriales. En este artículo se propone un método para eliminar el problema del tiempo de reacción de un
humano en un lazo de control. Este método, llamado Control con Escalamiento Temporal, comienza por modificar las constantes de
tiempo del modelo de la planta, hasta el punto en el que el control sea cómodo para un humano. Entonces, el controlador adquiere el
conocimiento que fue expresado durante la etapa de control humano y lo ubica en una red neuronal, la cual controla tanto la planta
escalizada como la planta original. El Control con Escalamiento Temporal mejora bastante el desempeño del control en comparación
con un PID, demostrado en este caso por el control de un motor de corriente directa, el cual no puede ser controlado por una
persona sin el uso de escalamiento temporal por la velocidad del motor.
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Introduction
Traditional control strategies look for a control law that
properly satisfies certain conditions, such as stability,
controllability and observability in a control system. These
strategies can be more or less complex, according to the
restrictions and requirements of the problem. However, most
strategies are purely mathematical and ignore the fact that the
human brain is a highly effective adaptive controller (Van der
El, Pool, Van Paassen, and Mulder, 2018). Only recently have
scientists begun to measure human control performance
(Huang, Chen, and Li, 2015; Laurense, Pool, Damveld,
Paassen, and Mulder, 2015; Inga, Flad, and Hohmann, 2017).
These studies show that one of the main limitations to having
a human in a control loop is time delay. Brain and body take
time to provide an actuating signal and that delay could be
too long for some applications.

An area of science that studies the human brain as a controller
is neuroscience. Through this discipline, it is possible to
explain the abilities of humans in motion planning and
decision making (Mackie, Van Dam, and Fan, 2013). The
majority of studies focus on the prefrontal cortex and other

structures like the amygdala (Duverne and Koehlin, 2017).
However, other studies show that there is a coordination
among multiple brain areas, especially when the brain has
last-minute decisions (Xu et al., 2017), as it happens during
the control of dynamic systems. The brain is so prone to
control that a new area called network control theory explains
some aspects of the brain that may help in the treatment
of neurological diseases (Medaglia, Pasqualetti, Hamilton,
Thompson, and Bassett, 2017).

Regardless of the successes or failures of different areas of
science while proving the human capacity to control, people
control their environment and transform it every day. In
addition, it is interesting to see that, when a human influences
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the environment it also affects the human in return. Thus, a
human controlling also becomes the object of control, as can
be seen in Corno, Giani, Tanelli, and Savaresi (2015). Humans
have also served as inspiration for several control strategies,
such as teaching robots how to control articulation to achieve
natural motion (Lee, 2015), or teaching autonomous vehicles
to make better decisions (Suresh and Manivannan, 2016). A
broad area that has generated several proposals is human-
robot collaboration, because a robot working with a human
should predict human behavior, in other words, it should
emulate the control actions of a human (Robla et al., 2017).

This proposal, as well as other techniques in intelligent control,
aims to build better controllers by the emulation of a human
during a control task. However, and first of all, the author
proposes a method to eliminate the limitations caused by the
time delay from the brain and body. That delay makes some
systems too fast to control, whereas systems that are too slow
may cause attention problems. In both cases, there may be a
reduction in control performance, which limits the number
of dynamic systems that a human can control. Instead, and
using the proposal in this paper, a person can control any
dynamic system by properly changing its speed.

The intuitive idea of the proposal, called Time Scaling Control
(TSC), consists of changing the constant times of a plant until
its control is comfortable enough for humans. In general,
this is impossible to do with a real plant, but it is possible
through the use of this model. Thus, a human controls a
scaled version of the model instead of the real plant. Finally,
the knowledge that was captured during the control task is
learned by a neural network. An important feature of some
neural network architectures, such as a Multilayer Perceptron,
is that they are blind to changes in the time scale (as will be
explained later), so they can be equally used for the scaled
model and in the real plant.

There are three main advantages of Time Scaling Control
compared with any other intelligent controller:

1. TSC captures the ability of the human brain to control
dynamic systems, even when that knowledge remains
hidden for the human controller, since most of the
motor control activity happens unconsciously. In
contrast, for instance, in Fuzzy Control, the so-called
expert must be able to verbalize the knowledge to
achieve control, but that is not always possible.

2. TSC allows a person to control any system, fast or slow.
Current uses of the computational power of the human
brain are limited to systems that evolve at a pace that
matches human possibilities. Those limits disappear
when using the model.

3. TSC not only allows the human to control any system,
even when the person can not consciously describe
the control rule, but also provides a method to transfer
that knowledge into an automatic algorithm, which
makes TSC ready to use in industrial applications.

The implementation of TSC requires the following three steps:
Scaling, Training, Running:

1. Scaling starts by defining a model of the plant, which is
then scaled, as defined in Equation 1. The application
of this Equation is the only math operation during the
whole control process, which is part of the beauty of
this proposal.

2. During Training, the person controls the scaled model
of the plant, and those control actions are recorded as
data to train a neural network.

3. During the Running step, the neural network with
encapsulated knowledge controls not only the scaled
version of the model, but the plant itself. The three
main sections of this paper (Scaling, Training, Running)
detail those three steps to implement a Time Scaling
Controller.

The author uses an example to show the application of the
proposed control strategy: the control of the angular position
of a shaft. This problem required the construction of a position
sensor, as explained in the next Section. The following
Section presents a central procedure in the controller design;
it is the identification of the plant. The next three sections
thoroughly show the step by step of the design for the
proposed controller: the Scaling (S), the Training (T), and
the Running of the controller (R). This paper ends with a
discussion section, conclusions, and future work.

Angular Position Measurement
The basic configuration of a system to control the angular
position of a motor requires, in addition to the controller,
three components: a driver, the motor, and a sensor. The
driver uses two operational LM386 amplifiers set as a bridge
to allow the motor to rotate clockwise or counter clockwise.
The actuating signal coming from the controller feeds the
amplifier card, so that, in the steady state, the motor rotates
at a speed proportional to the actuating signal.

There is a huge variety of sensors used to measure the angular
position of a motor. The usual selection is an incremental
encoder, but other popular choices are the absolute optical
encoder and the resolver. Applications with low precision
requirements, as well as small angle variations, can be
measured using potentiometers. Given the high cost of
an absolute encoder or a resolver, the low precision of a
potentiometer, and the undesirable dependency on the initial
conditions of an incremental encoder, this paper presents the
design of a sensor based on the Hall effect. This sensor aims
to be absolute, as well as cheap and precise.

The sensor has two components: one rotates while the other
remains still. The static part has two Hall effect sensors
in quadrature, plus the electronic to normalize the signal.
The rotating part uses two magnets in the shaft, which
produces sine and cosine type output signals in the sensors,
as described in (Rapos, Mechefske, and Timusk, 2016), which
is the configuration used in this paper. However, there are
other interesting proposals to explore in future applications.
For instance, Wu and Wang (2016) use three or six hall
sensors instead of two to improve accuracy at the expense
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of increasing the complexity of signal processing. On the
other hand, Anoop and George (2013) use two hall sensors,
but propose the use of linear outputs instead of sinusoidal
outputs, which may boost measurement accuracy.

The signal conditioning component shown in Figure 1 starts
by filtering the noise that may appear due to mechanical
vibrations or electrical interferences. The implementation of
this filtering uses a traditional low-pass filter of the first
order 𝑜𝑢𝑡/𝑖𝑛 = 1/(𝑠𝜏 + 1), which can be written using
a discrete set of blocks in Simulink, following the rule
𝑜𝑢𝑡 = (1/𝑠) (1/𝜏) (𝑖𝑛 − 𝑜𝑢𝑡). This configuration allows the
definition of an initial output for the filter as the initial
condition of the Integrator (1/𝑠). That initial condition
equals the initial measurement in each sensor, whereas
the subtraction 𝑖𝑛 − 𝑜𝑢𝑡 corresponds to a negative feedback
connection, which passes through the constant 1/𝜏 in order
to define the cut frequency of the filter (𝜏 = 2 ms). On the
other hand, the constants in the signal conditioning section
in Figure 1 serve to set the average signal to zero and the
amplitude to one. These values were experimentally set
at 𝑐1 = 1,094, 𝑐2 = 1,0144, 𝑐3 = 0,277, 𝑐4 = 0,664. This
normalization facilitates the computation of the angle made
by means of a 𝑎𝑡𝑎𝑛2 function. This function uses 𝑥 and
𝑦 to come up with and angle between ±𝜋, instead of the
traditional ±𝜋/2 with the function 𝑎𝑡𝑎𝑛.

Figure 1. Block diagram of the angle estimation.
Source: Authors

Any mechanical misalignment in the measurement
configuration or between the sensor gains causes a
discrepancy between the actual angle, 𝜃, and the output
of the function 𝑎𝑡𝑎𝑛2, also called 𝜃𝑚. This difference was
as high as 10%, so the author used a neural network (NN)
to reduce that error. The basic idea to reduce the error is
to train a NN to learn the inverse relationship between 𝜃

and 𝜃𝑚. Thus, when a mechanical position 𝜃 produces an
estimation equal to 𝜃𝑚, that estimation ideally produces an

output equal to 𝜃 in the NN. The author used a feed-forward
backpropagation network with 8 neurons in the input layer
and 4 neurons in the hidden layer. The input data 𝜃 cover
angles between −180◦ and 180◦, with data points every 1◦.
Figure 2 shows the error in the estimation using the NN to
linearize the angle measurement. The error always remains
under 0,3◦.

Figure 2. Error in the angle estimation.
Source: Authors

The estimation of the angle covers a single turn from -180◦
to 180◦. Going further means generating discontinuities in
the approximation due to the behavior of the function 𝑎𝑡𝑎𝑛2.
The final step in angle approximation implies avoiding those
discontinuities, as depicted in Figure 1 by the block “No
jumps”. The author starts by using two new variables to
detect the discontinuities: 𝑐𝑑 for jumps from 180◦ to −180◦,
and 𝑐𝑢 in the other case. Those constants start at zero and
increase by one every time the difference between the current
and the previous angle goes under −300◦ for 𝑐𝑑, or over 300◦
for 𝑐𝑢. The value ±300◦ was defined experimentally under
the consideration that it should be higher than the delta angle
produced at the maximum speed between two consecutive
angle samples. Thus, the final approximation can be written
as 𝜃𝑎 ← 360(𝑐𝑑 − 𝑐𝑢) + 𝜃𝑎.

System Identification
The plant in this application is a permanent magnet direct
current motor (PMDC) with a nominal current of 500 mA and
nominal voltage of 12 V. This motor is widely used in robotics
and it is the most popular option to test control algorithms.
However, its parameters are unknown to the author. We
could apply some tests to approximate the parameters of
the motor, but we preferred to use the approach in this
section. Firstly, because those parameters assume a linear
system, when they do not; the motor can be seen as linear
only around the nominal values of current, voltage, speed,
and temperature. Secondly, the process used in this paper
requires a single set of data to capture a model that resembles
the whole dynamic instead of running several tests to obtain
a model.

A traditional DC motor model uses linear differential equations
to represent the relationship between the states in the
motor. In this linear model, the input voltage produces
an electrical current which generates a mechanical torque
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resulting in the rotation of the motor. Identification, in
addition to the equations, requires the computation of
electrical, electromechanical, and mechanical constants, such
as resistance, inductance, the constant of friction, and the
constant of inertia, as is presented in Wahyunggoro and Saad
(2010). This type of model is used to study the motor as
a dynamic system. It can also be part of a first attempt to
design a controller. However the approximation given by a
set of linear equations cannot fully emulate the richness of
the dynamic in a real machine.

Instead of a pure linear model, Aquino and Velez (2006)
propose a gray-box model. In this model, the electrical
part is linear and known, whereas the mechanical part is
nonlinear and unknown, as a result of the effect of changes
in the load. The author proposes the use of Radial Basis
Neural Networks to capture the nonlinear behavior of the
model, and compare the results using a recursive two-stage
method. Another approach in the identification assumes that
the whole model is unknown. Thus, the linear part of the
model can be represented by an ARX model, whereas the
nonlinear part is chosen to be a polynomial of known order,
as presented in Kara and Eker (2004). These authors study
the effect of nonlinear friction and other nonlinearities in the
model under the assumption that it is possible to separate the
nonlinearities in two groups: static and dynamic. Another
proposal by Rios and Makableh (2011) uses a Feed Forward
Neural Network to capture the nonlinearities of the motor.
That model is then used to simulate the effect of another
neural network working as a controller of the motor. This last
proposal focuses on two of the main nonlinearities studied in
this paper: dead zone and saturation.

The identification of the motor in this paper uses some
characteristics of the proposals in the references above, but
instead of looking for a very accurate model, this paper shows
that a model that approximately captures the main features of
the dynamic is enough to get good control performances using
time scaling. The core of the model presented in Figure 3
emulates the transient behavior of the motor using two linear
blocks: one for the relation between the input voltage and the
speed in the shaft (a second order transfer function, 𝐻 (𝑠)),
and the other for the relation between speed and angular
position (an Integrator, 1/𝑠). Given the author’ experience
controlling the motor, there are two main nonlinearities that
should be included in its model: 1) the dead zone, and 2) the
gain of the steady-state as a function of the rotation sense.
The dead zone is represented by the first block in Figure
3, while the gains correspond to the triangles. The model
includes another nonlinearity, the saturation of the Integrator,
in other words, the natural limits for the rotation of the motor.
The block between the gains and the Integrator symbolizes
the selection of one gain or the other depending on the sense
of rotation. If the speed is greater than or equal to zero, then
the gain for the model is 𝑘𝑐𝑐𝑤 ; if the speed is negative, the
gain is 𝑘𝑐𝑤 .

This is the list of parameters for the model, according to the
model in Figure 3:

Figure 3. Motor model scheme.
Source: Authors

• Inside the block “Dead Zone”, the start of dead zone,
𝑠𝑑𝑧, and the end of the dead zone, 𝑒𝑑𝑧.

• Transient, in the block “Transfer Fcn”: natural
frequency, 𝜔𝑛, damping ratio, 𝑧 = 𝜁 .

• Gains: counter clockwise sense, 𝑘𝑐𝑐𝑤 , clockwise sense,
𝑘𝑐𝑤 .

• Saturation, inside the block “Integrator”, the upper
limit, 𝑢𝑙, and the lower limit, 𝑙𝑙.

The computation of these parameters starts by defining the
last two: 𝑢𝑙 and 𝑙𝑙. Even when the control rank equals ±90◦,
the limits are greater than that rank. A first extra 10◦ allows
the human controller to make mistakes at the ends of the rank
and still generate good data to train the controller. A second
extra 10◦ bounds the parameter estimation algorithm to vary
the parameters of the model. Thus, the control rank is ±90◦,
but the human control covers ±100◦, while the estimation
algorithm has a window of ±110◦. Thus, 𝑢𝑙 = 110◦ and
𝑙𝑙 = −110◦. The next two parameters correspond to the
transfer function 𝐻 (𝑠) in the block “Transfer Fcn”. These
two parameters define the shape of the transient when the
input of the model changes. A way to evaluate these values
implies generating sudden changes in the input of the motor
and then measuring the speed of the shaft. The values that
match those transients better are rounded to 𝜔𝑛 = 100 rad/s,
and 𝜁 = 1.

The four remaining parameters of the model were computed
using the tool Parameter Estimation of Simulink. Given that
the main goal of the model is to emulate the system when
the controller is working, then a proportional controller with
𝑘 𝑝 = 1/10 leads the motor during the acquisition of the input
and output data. The whole experiment lasts a minute and
uses samples every millisecond, so there are 60 001 data
points for the input and the same number for the output. The
reference for the control system is a step function randomly
changing from 0,3 to 0,7 s with also random amplitude
from −100◦ to 100◦. This signal was smoothed using a
first order filter with constant time of 0,1 s, which better
emulates the work of the motor during normal conditions.
The optimization method is the Nonlinear Least Squares and
the algorithm is Levenberg-Marquardt. The tolerance in the
optimization is 0,001. A final estimation was run, including all
the parameters except the saturation constants. The natural
frequency changes to 𝜔𝑛 = 300 rad/s. It is important to
report that the change from 100 to 300 in 𝜔𝑛 didn’t alter
the quality of the approximation in more than 0,1%, which
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means that the nonlinearities affect the dynamic of the motor
more than the linear part. The results of the optimization are
shown in Figure 4, where the lower part corresponds to the
input voltage, while the upper part is the output of the plant
and the model.

A traditional modelling process for a DC motor defines the
model as a linear transfer function, and that approximation
may be useful when working around the nominal conditions
of the machine. However, the DC motor for this application
changes the nominal speed depending on the rotation sense,
as expressed by means of the gains 𝑘𝑐𝑤 and 𝑘𝑐𝑐𝑤 . These
gains can be evaluated as the quotient between the speed
in ◦/s at nominal voltage in V, for both positive and negative
cases of voltage, but, in this case, Simulink made the
approximation based on the data in Figure 4. The result
is that 𝑘𝑐𝑤 = 940◦/𝑠/𝑉 whereas 𝑘𝑐𝑐𝑤 = 530◦/𝑠/𝑉 . Thus, the
motor is almost two times faster in a clockwise sense than in
the counter clockwise sense.

The last two constants of the model express the fact that
the voltage in the motor requires to pass a certain threshold
before the shaft starts to rotate, mainly given the friction
effect. An initial estimation of those constants can be made
by increasing the voltage to the point that the shaft starts
to rotate, but, once more, that approximation was made by
Simulink based on the data in Figure 4. The rotation sense
changes the threshold, so the model requires the estimation
of that value in both senses, as defined by using the gains
𝑠𝑑𝑧 and 𝑒𝑑𝑧 inside the block “Dead Zone”. The values for
those gains are 𝑠𝑑𝑧 = −0,9 V and 𝑒𝑑𝑧 = 0,6 V.

Figure 4. Output data and simulated output under the same input.
Source: Authors

In summary, the model in Figure 3 has dead zone
𝑠𝑑𝑧 = −0,9, 𝑒𝑑𝑧 = 0,6; transient 𝜔𝑛 = 300, 𝜁 = 1; gains
𝑘𝑐𝑤 = 940, 𝑘𝑐𝑐𝑤 = 530; and saturation: 𝑢𝑙 = 110◦,
𝑙𝑙 = −110◦.

Scaling Stage (S)
The model in Figure 3 uses the traditional definition of time,
but that dynamic is too fast for a human to control. Thus, this
section starts by scaling the linear components of the motor,
as defined in Equation (1), according to the presentation in
Rairán (2017). It can be seen that the nonlinear components
are not time-dependent, but constant, so the nonlinear part

remains equal regardless of the time scale. The constant 𝑘𝑡 in
Equation (1) corresponds to the scaling factor. For instance,
𝑘𝑡 = 5 means that the new dynamic 𝐻 ′ is five times faster
than the dynamic 𝐻. The new plant, 𝐻 ′, keeps amplitude
and shape of 𝐻 and only changes how long a transient lasts.

𝐻 =
𝑎𝑛𝑆

𝑛 + 𝑎𝑛−1𝑆
𝑛−1 + · · · + 𝑎1𝑆 + 𝑎0

𝑏𝑛𝑆
𝑛 + 𝑏𝑛−1𝑆 + · · · + 𝑏1𝑆 + 𝑏0

𝐻 ′ =
𝑎𝑛𝑆

𝑛 + 𝑎𝑛−1𝑆
𝑛−1𝑘𝑡 + · · · + 𝑎1𝑆𝑘

𝑛−1
𝑡 + 𝑎0𝑘

𝑛
𝑡

𝑏𝑛𝑆
𝑛 + 𝑏𝑛−1𝑆𝑘𝑡 + · · · + 𝑏1𝑆𝑘

𝑛−1
𝑡 + 𝑏0𝑘

𝑛
𝑡

(1)

Defining the scaling factor implies an experimental procedure
where the human controlling the system changes that factor
until achieving a value that makes control of the system
comfortable. In this case, this value is set to 𝑘𝑡 = 1/30,
which means that the scaled system is 30 times slower
than the original. In this way, for instance, a transient of two
seconds in the motor lasts a whole minute in the scaled model.
The transient 𝐻 = 3002/(𝑠2 + 600𝑠 + 3002)) corresponds to
𝐻 ′ = 100/(𝑠2+20𝑠+100), and the integral 𝜃 (𝑠)/𝑉𝑒𝑙 (𝑠) = 1/𝑠
corresponds to 𝜃 ′(𝑠)/𝑉𝑒𝑙 ′(𝑠) = (1/30)/𝑠. Both input and
output in each transfer function need to be scaled as indicated
by the notation. The slow human reactions produce a slow
velocity, which in turn produces a slow change in the angular
position. The scaling additionally requires the scaling of the
sampling time at which the data is recorded or generated,
from 𝑡𝑠 to 𝑡 ′𝑠 = 𝑡𝑠/𝑘𝑡 in this case, 𝑡𝑠 = 1 ms, so 𝑡 ′𝑠 = 30 ms.

This stage in the control process requires interaction between
the human and the scaled system. The human senses and
evaluates the behavior of the plant, and, with experience
in the manipulation of the system, compares his or her
perceptions with the set point. As a result, the human makes
two decisions: 1) whether to increase, decrease or maintain
the actuating signal, and 2) how significant this change will be.
The application of the actuating signal as input for the scaled
system produces changes in the output of the scaled plant in
such a way that, ideally, the perceived output matches the
set point in the shortest time possible. The instantiation of
the control stage in this paper uses a computer and a human,
as shown in Figure 5.

Figure 5. Control Scheme.
Source: Authors

This stage aims to generate the best data to train a NN in
the next stage. Thus, the definition of the reference signal
should make the system as dynamic as possible. In this
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case, the author defines a square signal oscillating between
100◦ and −100◦, lasting between 12 and 15 seconds in each
value. That signal passes through a low pass filter of the first
order with 𝜏 = 2 s, as shown in Figure 6. This filter produces
references along the rank of ±100◦, instead of the extreme
values alone. The constant time 𝜏 aims to emulate the normal
work of the motor during a traditional control application,
and at the same time its stabilization time falls just below the
transition time, which allows the system to reach its steady
state. The data acquisition lasts 2,5 minutes. Thus, every
reference value appears about five times, which is enough
data to train a NN.

Figure 6 also shows that the information presented to the
human controller through the scope is not the scaled error,
𝑒′ (as it is done in traditional control), but its negative, −𝑒′.
It can be seen that, regardless of the value of the output 𝑦′,
the output will eventually match the sign of the input 𝑢′. For
instance, if 𝑢′ increases, then 𝑦′ (as well as −𝑒′ = 𝑦′ − 𝑟 ′) will
eventually also increase. Thus, if −𝑒′ is, for instance, negative,
a good control action will consist of setting 𝑢′ as a positive
value. This action is intuitive for a human: it is performed
to counteract the signal in the screen in order to have null
error. On the other hand, the block “Mouse Pointer Reading”
in Figure 6 runs a function based on the function “gpos” of
Matlab, which provides the coordinates of the pointer of the
mouse. The 𝑦 value of the pointer corresponds to the value
of 𝑢′.

Figure 6. Control system in Simulink.
Source: Authors

Blocks 𝑢1 and 𝑦1 in Figure 6 save the data generated during
the running of the simulation and make it available for use
in the workspace of Matlab. The signal 𝑢′ corresponds to
the actions of the human controller, while 𝑦′ provides the
corresponding emulated position given by the scaled model.
Finally, the block “Real-Time Sync” allows the running of the
simulation in real time using the Simulink Desktop Real-Time
toolbox.

Training Stage (T)
This stage uses the data coming from the previous stage
to train a NN. Thus, instead of the human controlling the
motor, the system uses the NN to define the actuating
signal. The training stage starts by normalizing the data,
which implies cutting and scaling. By cutting, the author
understands triming and deleting the first 15 seconds of the

experiment, given that this is the time required for a person
to accommodate, concentrate, and be focused on the control
problem. The scaling consists in dividing the input 𝑒 by
180, as shown in Figure 7. This scaling makes the rank
of the input [−1.1, 1.1], which is close to the rank of the
activation function of each neuron [−1, 1]. Nevertheless,
the effectiveness of the training remains equal under the
scaling or without it in this application. The scaling makes a
difference when looking at multiple inputs, as could be the
case of future work, when the problem requires (for instance,
in addition to 𝑒′, its derivative). Normalization makes all the
inputs have a similar influence during the training.

Figure 7. Effect of the number of neurons in the training.
Source: Authors

An analysis of the sorted data in Figure 7 shows the
relationship between the error and the actuating signal.
That relation looks like a tangent sigmoid function. This
observation favors the use of a Multilayer Perceptron Neural
Network to learn the given data, so that each of its neurons
may have a tangent sigmoid transfer function. It can be seen
that sorting error evinces the control strategy of the human,
which was hidden inside the brain of the human controller
until now. It is possible to divide that strategy in three zones:
1) small errors, from 0 to 0,2; 2) medium errors, from 0,2
to 0,8; 3) major errors, from 0,8 to 1,1. Zone 1 presents the
highest rate of change and happens where the majority of
control takes place. Zone 2 has a smaller slope and resembles
the saturation of a tangent sigmoid. Zone 3, contrary to the
intuition, decreases the actuating signal. This last behavior is
caused by the reaction time of a human due to large errors
(positive or negative). Unlike a pure mathematical algorithm,
the control interface (including the brain itself) does not
allow the human to change a decision instantly. However, a
positive aspect of that delay is that it reduces the overshoot
in the response.

The author used the Levenberg-Marquardt algorithm to train
the NN, with a maximum of 1 000 epochs, and data randomly
divided into three sets: 70% to train, 15% to validate the
training, and 15% to test the NN. Figure 7 shows the result
of changing one of the most influential parameters during
the learning process: the number of neurons in the network.
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Results in Figure 7 regard networks with a single hidden layer
with two, three, or four neurons. Two neurons miss the
third zone. Three neurons resulted better than two, but the
generalization for major and negative errors fails. The best
result in Figure 7 uses four neurons. That network properly
matches and generalizes the data across the three zones.

Figure 8 shows the results when training 100 neural networks
with four neurons in the hidden layer. The lower part of
the figure shows the final mean square error 𝑚𝑠𝑒 for each
training. This error was used as the measure of quality during
the learning process. It can be seen that the variation of 𝑚𝑠𝑒

is not big: the best 𝑚𝑠𝑒 is 0,015, while the worst is 0,022.
The upper part of Figure 8 presents the results for the NN
with the best performance out of the 100 trials. This part of
the figure shows the output data 𝑢1 and the output of the
network (𝑢1NN) when fed with the same input. The network
closely follows human control behavior, especially in Zones
2 and 3.

Figure 8. Selection of the best neural network.
Source: Authors

Running Stage (R)
This final time scaling control stage uses the best Neural
Network of the previous stage. The best network defines an
actuating signal based on the error value in order to control
the models and the motor itself. The same network can
control models and motor since the Multilayer Perceptron
Neural Network is blind to changes in the scale of time. This
type of NN produces the same outputs if the same inputs are
given, regardless of time variation. If an input changes, the
corresponding output is updated after a few mathematical
operations. These operations are instantaneous in practice,
given the speed of the systems in contrast with the time
it takes to propagate a network. Thus, the same network
controls the simulated system and the real plant.

Testing the trained NN starts with running the control over the
scaled model 𝐻 ′ because the controller was trained using data
from 𝐻 ′. The test during the scaling stage lasts 2,5 minutes,
which is enough time to train the network. However, the
simulation in this stage may last longer, that is, 30 minutes
or more. It can be seen that there is no risk that the network
will stop paying attention, as it actually happens with humans

after a few minutes. In addition, instead of two unique values
±100◦, it is better to test several and random amplitudes in
the rank ±90◦. If the control works properly, the next step
in testing consists of using the same network over system
𝐻. This last simulation could take a single minute, because
the system runs at its normal speed (remember that a minute
at the unscaled time corresponds to 30 minutes using the
scaled time, 𝑘𝑡 = 1/30). Thus, the transitions between one
amplitude and another may last from 0,3 s to 0,6 s. If this
test succeeds, it is possible to run the final test, which is to
control the real plant. If not, the Training stage should be run
again.

The final and definite test uses the trained NN to control the
real plant. The block diagram of the connections inside the
computer is shown in Figure 9. It can be seen that the input of
the network is scaled dividing the error by 180. The output of
the controller reaches the plant using a data acquisition card,
the National Instruments PCI-6024E. This card translates the
actuating signal inside the computer into voltage to feed the
power amplifier that drives the motor. Figure 9 also shows a
traditional PID controller with the same tuning that was used
during the Scaling stage, it is a proportional controller with
𝑘 𝑝 = 1/10.

Figure 9. Block diagram to control the real plant.
Source: Authors

Figure 10 shows the performance of the Time Scaling
Controller during the control of the real plant. The upper
part of the figure presents the reference, the output with a
PID controller, and the output with the proposed controller
in this paper. TSC presents a lower overshoot and reaches
the reference better, as can also be seen in the middle figure.
It has a null error for the steady state after almost all the
transients, but the PID has a steady state error of about 4◦,
this is due to the effect of the dead zone. The lower part of
Figure 10 shows the actuating signal for both controllers. It is
important to remark that TSC does not reach the limits of ±2,
but the PID controller does it. This characteristic reveals that
the trained NN uses the energy to control the plant better
than the PID for the experiment in the figure. The switching
of the actuating signal for TSC happens because the controller
reaches null error, so that the signal jumps alternatively from
negative (or positive) to a null value. The actuating signal for
the PID does not switch because it almost never reaches the
null error. Finally, a measure of the performance for both
controllers is the index Integral of the Absolute Error (IAE).
For a trial of ten seconds, the result for the PID is 56,8 and
37,8 for TSC. Thus, the ratio between the two controllers is
about 1,5 in favor of the Time Scaling Controller.
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Figure 10. Control performance comparison.
Source: Authors

Discussion
Results in Figure 10 show the advantage of using TSC to
regulate the position of a motor in contrast with a PID
controller. However, a tuning process could improve the PID
control performance, so that the apparent advantage of TSC
could decrease. On the other hand, it is also true that the
model of the plant could be improved, as well as the training
of the NN. Thus, the ratio of 1,5 when comparing controller
performances in the previous section is not definitive. Instead
of a numerical ratio, this paper aims to show how to use
the scaling time as a key concept in controlling dynamic
systems, more specifically a motor. Both PID and TSC can
be optimized, but that is not the purpose of this paper.

An aspect that can be studied to improve the performance of
TSC is the influence of the human controller in the generation
of data to train a NN. The data used in this paper comes
from the author as the controller of the scaled model, but
another person could generate different control actions, thus
resulting in a different NN. Thus, TSC performance can be
improved by looking at data coming from different human
controllers. Another aspect that affects TSC performance is
the model used to get the data. The model in Figure 3 was
enough to train a NN to control the real plant, as can be seen
in Figure 10. However, the difference between the output of
𝐻 ′, 𝐻, and the real plant shows that it is possible to consider

another model. It was evident that the real plant presented
overshoot, while the models do not. In addition, the real
plant was faster than its simulated counterpart.

The oscillation of the control signal 𝑢 (𝑡) in the lower part of
Figure 10 shows another feature of the proposed controller
that was not programmed intentionally but emerged from
the definition of the system itself. If the absolute value of the
error is smaller than 10◦, the actuating signal 𝑢 (𝑡) switches
between two values, which resembles the work of a PWM
when switched to increase the efficiency of a system. TSC
applies energy to the system only when it is necessary and
the error is larger than 1◦ in this application. By doing so,
the controller avoids system oscillation. However, if the
absolute value grows larger than 10◦, the actuating signal has
a traditional continuous shape. These two control actions
will be the focus of future studies on the application of TSC.

Finally, an important aspect of TSC is how the trained NN
controls systems at different time scales. You can see that the
network itself does not have any reference to time. However,
given that the network in this paper is implemented in a
computer, the network updates its output at the sample rate
𝑡𝑠. In this paper, 𝑡𝑠 = 1 ms, whereas 𝑡 ′𝑠 = 30 ms. Thus, and
given that the stabilization time of the motor is about 20 ms,
or 600 ms for 𝐻 ′, then the updating of the network can be
considered to happen instantly. Consequently, the actuating
signal changes at the same speed of the error, and the error
changes at the same speed of the feedback signal coming
from the sensor (𝑒 = 𝑦−𝑟). Thus, the actuating signal changes
at the rate of the plant’s output 𝑦. In summary, the controlled
plant itself defines the speed of the whole system, which is
not defined by the NN. If the plant is fast, the actuating signal
changes accordingly; on the contrary, if the plant is slow, the
network also produces a slow actuating signal.

Conclusions
The experiments in this paper show that Time Scaling
Control properly controls the angular position of a motor
and even results in better control performance than a PID
controller. The main reason for this is that TSC uses the
control knowledge of a human, which daily handles nonlinear
situations and is adaptive and robust in comparison with a
fixed and linear rule such as the PID controller.

The human plays the main role in TSC because he directly
influences the outcome of three processes: first, defining
the model of the system, as shown in Figure 3 and Figure
4; second, setting the experiment to acquire data, as shown
in Figure 5 and Figure 6; and third, being the source of the
knowledge to train a NN, as shown in Figure 7 and Figure
8. In the case of stages 1 and 2, the knowledge is explicit:
the human is an expert in the system. In 3, TSC extracts
hidden knowledge inside the brain, which may be the main
contribution of TSC.

There are still many interesting topics to explore in TSC, but
the author will provide just three of them as an example:
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1. The definition of the minimal components of a model
in order to have enough information to run TSC.

2. The definition of a deterministic method to select the
best scaling factor 𝑘𝑡 , according to the system model.

3. The analysis of data coming from different persons
and the study of the effect of those differences in TSC
performance.
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