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Isotropic damage model and serial/parallel  
mix theory applied to nonlinear analysis of ferrocement 

thin walls. Experimental and numerical analysis

Modelo de daño isótropo y teoría de mezclas serie/paralelo  
aplicados al análisis no lineal de muros delgados de ferrocemento. 

Análisis experimental y numérico

Jairo A. Paredes1, Daniel Bedoya-Ruiz2, and Jorge E. Hurtado3

ABSTRACT 

Ferrocement thin walls are the structural elements that comprise the earthquake resistant system of dwellings built with this material. 
This article presents the results drawn from an experimental campaign carried out over full-scale precast ferrocement thin walls that 
were assessed under lateral static loading conditions. The tests allowed the identification of structural parameters and the evaluation 
of the performance of the walls under static loading conditions. Additionally, an isotropic damage model for modelling the mortar was 
applied, as well as the classic elasto-plastic theory for modelling the meshes and reinforcing bars. The ferrocement is considered as a 
composite material, thus the serial/parallel mix theory is used for modelling its mechanical behavior. In this work a methodology for 
the numerical analysis that allows modeling the nonlinear behavior exhibited by ferrocement walls under static loading conditions, 
as well as their potential use in earthquake resistant design, is proposed.

Keywords: Precast ferrocement walls, cyclic loading, ductility, Bouc-Wen-Baber-Noori model, earthquake resistant design.

RESUMEN

Los muros de ferrocemento de pared delgada son el elemento estructural principal que compone el sistema de resistencia sísmica 
de las viviendas de ferrocemento. En este artículo se presentan los resultados de una campaña experimental realizada sobre muros 
prefabricados de pared delgada de ferrocemento construidos a escala real 1:1, los cuales fueron probados bajo carga estática lateral. 
Estos ensayos permitieron identificar parámetros estructurales y evaluar la capacidad y el desempeño de los muros bajo carga estática. 
Adicionalmente, se aplicó el modelo de daño isótropo para la modelación del mortero y la teoría de elasto-plasticidad clásica para 
la modelación de las barras y la malla de refuerzo. El Ferrocemento se puede considerar como un material compuesto y por lo tanto 
se utilizó la teoría de mezclas serie/paralelo para modelar su comportamiento mecánico. Así, se planteó una metodología para el 
análisis numérico no lineal que permite modelar el comportamiento no lineal exhibido por los muros de ferrocemento bajo este tipo 
de cargas y su potencial uso en el diseño de muros de ferrocemento.

Palabras clave: Muros prefabricados de ferrocemento, carga cíclica, ductilidad, modelo de Bouc-Wen-Baber-Noori, diseño sismo-
resistente.
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Introduction
The seismic demand determines the material and type of 
the structural systems to use in housing construction. The 
presence of earthquakes encourages us to research at 
innovative systems with better both cost-effectiveness ratio 
and seismic performance than current systems. Ferrocement-
based structural systems are innovative materials with 
promising applications that have demonstrated high 
resistance (Wainshtok-Rivas, 1994, 2004; Naaman, 2000; 
Bedoya-Ruiz, 1998, 2002, 2005; Bedoya-Ruiz et al., 
2015), low seismic fragility (Bedoya-Ruiz et al., 2010, 2014 
2015), low cost-effectiveness relation, and environmental 
sustainability (Bedoya-Ruiz, 2011). These systems usually 
comprise precast thin walls, which are assembled in different 
configurations according to the constructive system of the 
dwelling (Naaman, 2000; Castro, 1979; Gokhale, 1983; 
Olvera, 1998; Wainshtok-Rivas, 1994; Abdullah, 1995; 
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Machado, 1998, Bedoya-Ruiz et al., 2015). The precast 
ferrocement thin walls give lateral resistance and axial load 
capacity to the dwellings. This article presents the results 
drawn from an experimental and theoretical investigation 
which aims to evaluate the behavior of precast ferrocement 
thin walls subjected to static loading conditions; we propose 
a nonlinear numerical model based on an isotropic damage 
model and the serial/parallel mix theory.

Test specimens
Several ferrocement thin walls were built and tested as 
depicted below.

Description of the materials

Each wall was constructed using mortar, wire mesh and 
steel bars. The mortar was made with Portland cement type I 
(CEM I), sand commonly used in the production of reinforced 
concrete, water and superplasticizer using the following 
proportions by weight: sand-cement ratio 1:2, water-cement 
ratio 0.40, superplasticizer 1 % of cement weight. The 
superplasticizer was used in order to improve the workability 
and penetrability of the mortar through the meshes. The 
reinforcement distributed in the cementitious matrix consisted 
of six hexagonal mesh layers with an opening of 31.75 mm 
(this mesh was placed longitudinally); and two #2 bars at the 
ends of the wall. The specific surface of the reinforcement was 
0.0314 mm2/mm3 and its volume fraction was 0.39 %.

The compressive strength of the mortar (f ’cm) after 28 days 
was 33 MPa, the Young modulus (Ec) of the composite was 
11050 MPa; the yield resistance (σry) of the hexagonal 
mesh was 282 MPa, and its Young modulus (Er) was 81 GPa. 
Finally, the yield resistance of the #2 bars was 420 MPa.

Test setup and load history

The geometry of each of the specimens is sketched in 
Figure 1; an overview of the test set up is shown in Figure 2.

Figure 1. Test setup and dimensions (in mm).

Lateral static load test

Ferrocement thin walls are designed not only to resist axial 
loads, but also forces induced by earthquakes. In the case 
of walls parallel to the seismic motion, the walls must 
withstand shear forces generated by the earthquake. In order 

to compute the strength to lateral static loads, three walls 
were tested. Figure 1 shows an overview of the test set up. 

The walls were anchored to reinforced concrete foundation 
beams in order to provide lateral support. Thereafter, each 
“wall-foundation beam” system was anchored to a reaction 
floor with steel screws as illustrated in Figure 2. In order 
to constrain the walls to in-plane-displacements, lateral 
bracing was employed. The lateral displacement induced 
by the hydraulic actuator was measured using LVDTs 
placed at the top of the walls.

Test results
The results drawn from the tests are summarized in the next 
section.

Static load capacity

Figure 3 shows the load vs. lateral displacement curve of the 
thin ferrocement walls under static loading conditions. Initially, 
the predominant behaviour was flexural, but the overall 
response is given by a combination of different reactions. 
Figure 3 shows some characteristic states of ferrocement 
under bending loads. Up to 4.0 kN (branch OA), the walls are 
working under elastic conditions; there are neither cracks to 
the naked eye nor structural cracks. We obtained an initial 
stiffness of 6.27 kN/mm from branch OA. As from 4.0 kN, 
the first structural crack appears (point A in Figure 3). The 
load vs. displacement curve loses linearity (branch AB, up to 
8.0 kN). From this point the first cracks are generated. With 
the increase of the lateral load, multiple cracks increase their 
length and width (branch BC). The yield point of the meshes 
is not well defined (branch CD). The maximum average load 
for the ferrocement thin walls was 14.4 kN and it was reached 
at a displacement of 13.9 mm. The panel failed when the top 
of the wall reached a maximum horizontal displacement of 
17.0 mm. In all cases the measured strength was superior 
to the theoretical one (12.6 kN) (Naaman, 2000). The shear 
resistance was 14.4 kN/mm, the secant shear modulus (G’) 
was 8.7 kN/mm and the ductility demand capacity for lateral 
displacement (µ = Δu/ Δyield ) was 4.25.

Figure 2. Actual configuration
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Figure 4. shows a wall after test. Several cracks can be 
seen in the base of the wall, whose length increased due to 
increase of the lateral load. It can be observed as well that 
the walls failed by shear sliding, which is a common failure 
mode in elements subjected to static loading conditions 
with a width-height relation less than 2 or 3 (Paulay and 
Priestley, 1991).

Figure 3. Static load vs. Lateral deflection curve

Figure 4. Characteristic failure mode

Numerical modelling

Isotropic damage constitutive model

The mechanical behavior of quasi-brittle materials such 
as concrete, mortar, masonry or rocks is complex. The 
formation of micro-cracks and the sliding between granular 
particles generate a highly nonlinear response (Oller, 
1988a). This phenomenon is characterized by the influence 
of the cohesion and friction in the strength of the material, 
the softening exhibited in the stress-deformation curve, the 
volumetric expansion (Tao and Phillips, 2005) and, as an 
obvious consequence, a reduction in the elastic modulus 
of the material.

Given the broad field of action of these materials (in 
particular the concrete), several authors have developed 
different constitutive models that allow us to represent the 

mechanical behavior of such elements. The Computational 
Fracture Mechanics (CFM) theory provides bases for 
these models, mainly for those techniques that are able 
to simulate the opening and closing of cracks. One of the 
first applications is due to Hillerborg et al. (1976), who 
developed a nonlinear fracture model using finite element 
analysis for modelling the response of reinforced concrete. 
Other recorded applications include the works performed 
by Rots et al. (1987), Bazant et al. (1989), among others.

Since 1958, Kachanov (1958) established the bases 
for damage theory, and they were used to represent 
the mechanical behavior of different materials. At the 
beginning, damage modelling was applied to the simulation 
of dislocation and softening phenomena in steel elements. 
Simo et al. (1987a, 1987b) proposed the isotropic damage 
model, and contributions of other authors (Lemaitre (1985), 
Oliver et al. (1990), Chaboche (1988a, 1988b), Ju (1989), 
among others) have enabled the constitution of Continuum 
Damage Mechanics (CDM) as a useful theory for the 
modelling of quasi-brittle materials.

However, it was only in the early1980’s that CDM theory was 
used for modelling reinforced concrete. Some of those models 
are based on CDM theory and classic plasticity postulates, 
e.g. Oller (1988b), Mazars et al. (1989), Lubliner et al. (1989), 
Jason et al. (2006), Tao et al. (2005), among others.

The continuous damage models are defined from an internal 
variable that establishes the decrease of both strength and 
elastic modulus of material; this internal variable can be 
a scalar or a tensor. The orientation of micro-cracking is 
not considered for the case of isotropic damage (scalar) 
(Oliver et al., 1990; Simo et al., 1987a), which ignores the 
anisotropy effect of the material in the direction of cracking.

The concept of damage allows us to model the presence of 
cracks and voids in the material, as well as their evolution 
(Oller, 2001). In continuum mechanics, this representation 
can be done by a damage internal variable which relates 
the effective stress tensor (defined by Kachanov (1958)) and 
the real stress tensor or Cauchy’s tensor σ = (1 − d) σo  , where 
σ stands for the Cauchy’s stress tensor, which represents the 
response of the material in the real (damaged) state; σo is 
the effective stress tensor and it represents the behavior of 
the material in an undamaged state; and d is the isotropic 
damage internal variable that measures strength and stiffness 
degradation of the material. If d = 0, it means that the material 
has not achieved its maximum resistance, hence, the 
material is undamaged. If the material experiences a total 
local damage, the internal variable reaches its maximum 
value: d = 1.

The strain tensor ε is defined as a free variable, and then the 
effective stress tensor can be computed as σo  = Co : ε , where 
Co is the fourth-order constitutive tensor of the material. 
Figure 5 shows a schematic representation of the effective 
stress hypothesis.

This model agrees with the thermodynamic principles 
for irreversible, adiabatic and isothermal processes. For 
an isothermal process the Helmholtz free energy !ψ( )  is 
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defined in terms of the damage variable and the free 
elastic energy (ψo ) :ψ= ψ(ε,d)= (1−d) !ψo . The free elastic 
energy is a function of the free variable, and is defined as: 

ψo ε( )=
1
2
ε :C

0
: ε  Thermally stable processes must meet the 

inequality of Clausius-Planck, given by:

 Ξ = σ : !ε− !ψ≥ 0  (1)

where, !ψ  is the temporal variation of free energy, defined 
as:

Figure 5. Schematic representation of the effective stress hypothesis. 
Adapted from Oller (2001).

 !ψ= ∂ψ
∂ε
: !ε−∂ψ

∂d
!d  (2)

Substituting Equation (2) in (1), the following form of the 
inequality of Clausius-Planck is obtained:

 Ξ = σ−
∂ψ
∂ε

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
!ε+ ∂ψ
∂d
!d≥ 0  (3)

According to Coleman’s method (Maugin, 1992), inequality 
(3) must be satisfied by any temporal variation of the free 
variable ε, therefore, the term in parentheses must be zero, 
thus obtaining the hyper-elastic constitutive law for the 
scalar damage constitutive model:

 σ =
∂ψ
∂ε

 (4)

Taking into account the following equation: 
ψ= ψ(ε,d)= (1 −d)ψ

0
 we have that the constitutive equation 

for the isotropic damage model can be written as:

 σ =
∂ψ
∂ε

�= (1−d)∂ψo
∂ε

�= (1−d)Co : ε  (5)

Where σ is the second-order Cauchy’s tensor; C0 is the 
fourth-order elastic constitutive tensor; and !ψ  is the free 
energy per unit volume.

The mechanical dissipation can be computed from Equation 
(3) and the following expression:ψ= ψ(ε,d)= (1 −d)ψ

0
, 

obtaining:

 Ξ = ψo
!d  (6)

For a comprehensive development of the isotropic damage 
model, the reader is referred to Oller (2001).

Elasto-plasticity constitutive model 

In small strain problems, plasticity theory assumes that the 
total strain is an additive decomposition of the elastic and 
plastic components ε = ε e + ε p.From the plastic deformation 
is irreversible, the on-going energetic processes are 
dissipative and they depend on the trajectory of the stress-
strain relation. This relation is given by: σ = C: ε e = C: (ε − ε p) , 
where σ is the second-order Cauchy’s tensor, and C is the 
fourth-order elastic tensor. According to the plasticity 
theory based on continuum mechanics which describes the 
response of an ideal solid in a macroscopic level, the linear 
or nonlinear elastic zone is defined by a yield function; 
whereas that the elasto-plastic region is portrayed by a non-
proportional relation between stresses and strains. In this 
region, the relation between stress increments and strain 
increments can be positive, zero or negative, depending 
on the type of elasto-plastic behavior: hardening, perfect 
plasticity or softening, respectively. The response is 
conditioned on the mechanical characteristics of the 
material.

The behavior on the elastic region is described by Hooke’s 
law; the limit between the elastic and elasto-plastic 
response is given by a yield function, and the behavior 
on the elasto-plastic region is described by: (i) the total 
deformation and its two components (elastic and plastic), 
(ii) a creep law and (iii) a set of internal variables and its 
corresponding evolution laws.

The yield function (also known as plastic yield function) 
is a function of the stress tensor g(σ, q) = 0 where σ is the 
second-order Cauchy’s tensor, and q is a set of internal 
variables. The plastic yield function is a surface in the 
stress space covering the elastic zone, which expands or 
shrinks depending on the plastic behavior of the material 
(hardening or softening).

The total strain change decomposition has served as a 
criterion to establish differences among current plasticity 
theories. For instance, the Levi-von Mises theory states that 
the total strain increment is equal to the plastic deformation 
increment !ε= !εp⇒ !εe = 0 , whereas that Prandtl-Reus theory 
assures that the total deformation increment is the addition of 
the elastic strain increment and the plastic strain increment 
!ε= !εe+ !εp ; thus, the relation between stress increments and 
strain increments is given by: !σ = Ct : !ε= Ct : !ε

e+ !εp( ) , where Ct 
is the fourth-order elasto-plastic tangent tensor.

In small deformations, plasticity theory agrees with Prandtl-
Reus hypothesis. Therefore, the plastic strain represents the 
fundamental internal variable and its evolution is defined 
by the following creep law:

 !εp = !λ ∂G(σ;q)
∂σ

 (7)

Where G = (σ; q) is the potential creep and !λ  is a non-
negative scalar known as plastic consistency parameter.

When the potential creep is considered equal to the plastic 
yield function G= (σ;q)≡ g(σ;q) , is said that the creep law 
is associated. Kuhn-Tucker equations: !λ= 0; g(σ;q)≤ 0  and 
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!λg(σ;q)= 0  provide simultaneous conditions that meet 
Prager’s plastic consistency postulate !g(σ;q)= 0 , and the 
loading/unloading conditions

In the present research, each reinforcing bar is represented 
by an associated elasto-plastic rule. The elastic domain 
boundary !g(σ;q)= 0  is established through von Mises’ yield 
function; in the case of plastic domain we used an associated 
creep law according to Prandtl-Reus hypothesis (Oller, 
1991); we considered a perfect elasto-plastic response, 
i.e., it is not necessary the definition of internal variables 
associated to hardening/softening (William, 2001).

Serial/parallel mix theory 

It is very important to determine the physical and mechanical 
parameters of the ferrocement that will be included within 
the finite element model. In order to give a proper definition 
of those parameters, it is necessary to draw upon composite 
materials theory. Composite materials comprise a matrix 
that lodges one or several fibres. Ferrocement belongs to 
this group, because the mortar is the matrix and the meshes 
are grouped according to their orientation (longitudinal or 
transversal), and they comprise the fibres.

The definition of mechanical parameters of composite 
materials has evolved from the classic mix theory to the 
serial/parallel mix theory in recent years. In classic mix 
theory, the parameters of the materials are computed 
from a weighted average according to their volumetric 
participation. On the other hand, serial/parallel mix 
theory takes into account fibre orientation as well as loads 
direction. Throughout this work we applied the serial/
parallel mix theory proposed by Rastellini (2006) and 
implemented by Martinez (2008).

Serial and parallel definition of stress and strain 
tensors 

Serial/parallel mix theory states that the behavior of the 
materials is parallel in the direction of each fibre, while the 
behavior is serial on the other directions. In order to take 
into account this double condition, it is necessary to divide 
the stress and strain tensors of each component material 
into their serial and parallel direction.

If we define e1 as the direction vector that determines 
the parallel behavior, the projection tensor in the parallel 
direction can be defined as the dyadic product of the unit 
vector, i.e. Np = e1⊗ e1 , and the fourth-order projection 
tensor in the parallel direction is defined as: Pp = Np ⊗Np . 
The fourth order projection tensor in the serial direction can 
be evaluated as the complement of the tensor in the parallel 
direction, i.e. Ps = I – Np. These fourth-order projection 
tensors let us divide the strain tensor ε into its parallel and 
serial components, εp and εs respectively, as follows:

 ε= εP + εS ; εP = PP : ε  and εS = PS : ε  (8)

Similarly, the stress tensor σ can be divided into its parallel 
(σp ) and serial (σs ) components:

 σ = σP +σS ; σP = PP :σ  and σS = PS :σ  (9)

Numerical model hypothesis

The numerical model used to obtain the composite material 
stress-strain relation based on serial/parallel behavior of its 
components follows the hypothesis presented below:

• All materials have the same deformation in the parallel 
direction (iso-strain condition).

• All materials undergo the same stresses in the serial 
direction (iso-stress condition).

• The contribution of each component materials to the 
response of the composite is proportional to their 
volume within the composite.

• Each component is distributed homogenously within 
the composite.

• All materials are perfectly bonded.

Constitutive equations of the materials 

The behavior of each of material within the composite 
can be described from their constitutive equations. 
Reinforced concrete follows a damage constitutive law, 
and the reinforcing steel is represented by classic plasticity 
postulates. For these cases, the relation between stress and 
strain can be written as:

Damaged model kσ = (1−d)kCo :
kε( )  (10)

Elasto-plasticity model kσ = kCo :
kεe = kCo : (

kε - kεp )  (11)

Where kσ is the stress tensor of material k within the 
composite; kC0 is the respective constitutive tensor; kε and 
kε p are the total strain tensor and the plastic strain tensor 
respectively, and d is the internal variable of the isotropic 
damage model.

Equations (10) and (11) can be rewritten taking into 
account the decomposition of the tensors into their serial 
and parallel components as follows:

 
kσP
kσS

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

kCPP
kCPS

kCSP
kCSS

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
:

kεP
kεS

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
 (12)

The constitutive tensor of each simple material, represented 
by superscript k, has been divided into four components 
according to their participation. Thus, for example, 
component kCPP is the part of the constitutive tensor which 
contributes to the parallel behavior; component kCSS is the 
part whose behavior is completely serial; components kCPS 
and kCSP comprise terms of the constitutive tensor which 
have serial and parallel behavior combined.

The decomposition of each tensor for each simple material 
is defined by the double contraction of fourth-order 
projection tensors and the constitutive tensor, as follows:
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kCPP = PP :
kC :PP

kCPS = PP :
kC :PS

kCSP = PS :
kC :PP

kCSS = PS :
kC :PS

 (13)

Given that both, the matrix material and the fibres, will have 
a common fourth-order projection tensor, the constitutive 
tensor of the composite material is determined as a function 
of the volumetric participation of each simple material, as 
follows:

 

cCPP =
fk fCPP +

mkmCPP( )+ mkfk fCPS−
mCPS( ) :A : mCSP −

fCSP( )
cCPS =

fk fCPS :A :
mCSS +

mkmCPS :A :
fCSS( )

cCSP =
mkfCSS :A :

mCSP +
fkmCSS :A :

fCSP( )
cCSS =

1
2

mCSS :A :
fCSS +

fCSS :A :
mCSS( )

 (14)

 A= mkfCSS +
fkmCSS( )−1  (15)

where superscripts c, m and f represent different materials: 
composite, matrix and fibre respectively. The parameters fk 
and mk stand for the volumetric participation of each simple 
material, fibre and matrix respectively.

Equations of equilibrium and compatibility 

The equations that specify stress equilibrium and establish 
strain compatibility of the composite are defined from the 
analysis of the hypothesis presented above. The serial/
parallel mix theory is designed for composite materials 
with two components: fibre and matrix. With this approach, 
the relations for both materials in the parallel and serial 
directions are given by:

Parallel behavior 
cεP =

mεP =
fεP           

cσP =
mkmσP +

fk fσP

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 (16)

Serial behavior 
cεS =

mkmεS +
fk fεS

cσS =
mσS =

fσS

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 (17)

Numerical implementation of serial/parallel mix 
theory 

Given that mix theory is a set of constitutive equations, its 
implementation within a finite element code should be at a 
constitutive level, i.e., if the input variable is the composite 
strain tensor cε at a time instant t + ∆t, then the algorithm 
must compute the stress-strain relation of the composite 
in accordance with the equilibrium and compatibility 
equations (Equations (16) and (17)); the algorithm should 
return the composite stress tensor cσ.

The first step is to divide the strain tensor into its serial and 
parallel components so as to compute the deformations of 
the materials (fibre and matrix). After that, we have that the 
strain parallel component is the same for both materials as 
indicated by Equation (16). On the other hand, an initial 
guess must be supplied for the strain serial component 
of one of the materials; if this prediction is made over 

the matrix material, then the increase on the expected 
deformations can be computed as:

 mΔεS
⎡
⎣⎢

⎤
⎦⎥
0
= A : fCSS :

cΔεS +
fk fCSS−

mCSP( ) cΔεP⎡
⎣⎢

⎤
⎦⎥
 (18)

where A is defined by Equation (15) and cΔεS =
t+Δt

cεS
⎡
⎣⎢
⎤
⎦⎥ −

t
cεS
⎡
⎣⎢
⎤
⎦⎥ .

With this first approximation of the matrix serial deformation, 
we can compute from Equation (17) the fibre strain tensor:

 
t+Δt

fεS
⎡
⎣⎢
⎤
⎦⎥
0
=
1
fk

t+Δt
cεS
⎡
⎣⎢
⎤
⎦⎥ −

mk
fk

t+Δt
mεS
⎡
⎣⎢
⎤
⎦⎥  (19)

After the serial deformations of both materials have been 
computed, they must be assembled in conjunction with 
the parallel components so as to get the strain tensor of 
each material. At this point, the constitutive equations of 
each material (Equations (10) and (11)) should be used 
independently in order to compute the stress tensor and to 
update the internal variables. The stress serial components 
for the fibre and the matrix material must meet the 
equilibrium equation (Equation (17)) within a prescribed 
threshold, i.e.:

 ΔσS =
mσS−

fσS ≤ toler  (20)

Where, ∆σS is the residual stress. If Equation (20) is not 
verified, then the initial guess for the strain serial component 
should be corrected using a Newton-Raphson scheme. In 
this case, the Jacobian is computed as (Rastellini, 2006):

 J=
∂ΔσS
∂mεS mεS=

mεS
⎡
⎣⎢
⎤
⎦⎥
n

= mCSS
⎡
⎣⎢

⎤
⎦⎥
n+

mk
fk

fCSS
⎡
⎣⎢
⎤
⎦⎥
n

 (21)

where n is the number of iterations. Once the Jacobian 
has been determined, the initial guess for the strain serial 
component of the matrix material is corrected as follows:

 mεS
⎡
⎣⎢
⎤
⎦⎥
n+1
= mεS
⎡
⎣⎢
⎤
⎦⎥
n
− J−1 : ΔσS⎡

⎣⎢
⎤
⎦⎥
n

 (22)

In order to obtain a quadratic convergence within the serial/
parallel mix theory, we must use the tangent constitutive 
tensors of the fibre and the matrix material for computing 
the Jacobian matrix. Depending on the constitutive equation 
used for each material, it may be possible that there is not 
an analytic expression for the tangent constitutive tensor. 

This problem was solved by Martinez (2008) and the 
solution has been implemented within the PLCD routine 
(Oller et al., 2010), which is a robust derivation algorithm 
based on perturbations.

Design of composite materials 

Ferrocement is a composite material made of a mortar 
matrix as well as hexagonal meshes and reinforcing bars 
which comprise the fibres. Figure 6 shows the geometry 
of the reinforcing hexagonal mesh; in this example, the 
hexagonal mesh is placed longitudinally so each hexagon 
has two aligned fibres with respect to the longitudinal wall 
axis, it has two fibres at +60° and other two fibres at -60° 
with respect to the longitudinal wall axis.
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Figure 6. Geometrical characteristics of the hexagonal mesh.

Moreover, each wall has two reinforcing bars of diameter 
6.35 mm (#2 bars), located at the ends of the wall. Figure 7 
shows a scheme of the wall reinforcement.

Figure 7. Reinforcement of precast ferrocement thin walls –  
Dimensions: 2 × 1 × 0.02 m. (No scale proportion)

Three composite materials were designed so as to represent 
the precast ferrocement thin walls:

• Composite material 1 (MC1): Simple mortar that is 
assigned to the volumes located at the ends of the wall.

• Composite material 2 (MC2): Comprises a mortar 
matrix, the hexagonal mesh and the reinforcing bars. 
This material was assigned to vertical volumes where 
the reinforcing bars are located. The material was 
designed with 4 layers; Table 1 shows the volumetric 
participation of each layer as well as the volumetric 
participation of each material within each layer.

Table 1. Composition of composite material 2 (MC2)

Layer
% 

Layer
% 

Matrix
% Mesh 

fibre
% Steel 

fibre
Description

1(0º ) 81.8 90.31 0.00 9.69 Matrix + Steel bar

2(0º) 6.06 95.51 4.489 0.00 Matrix + longitudinal fibre

3(+60º) 6.06 95.51 4.489 0.00 Matrix + fibre at + 60º

4(-60º) 6.06 95.51 4.489 0.00 Matrix + fibre at - 60º

• Composite material 3 (MC3 ): This material was used for 
modelling the matrix and the hexagonal mesh. It was 
assigned to the central volume of the wall. This material 
was designed with 3 layers. Table 2 shows the volumetric 
participation of each layer as well as the volumetric 
participation of each material within each layer.

Table 2. Composition of composite material 3 (MC3)

Layer % Layer
% 

Matrix
% Mesh 

fibre
Description

1(0º) 33.34 99.0 1.00 Matrix + longitudinal fibre

2(+60º) 33.33 99.0 1.00 Matrix + fibre at + 60º

3(-60º) 33.33 99.0 1.00 Matrix + fibre at - 60º

The distribution of composite materials within the 
geometrical model is shown in Figure 8.

Figure 8. Assigning composite materials to the geometric model of 
the precast ferrocement thin walls.

Finite element model

Three different volumes have been defined in order to 
discretize the precast ferrocement thin walls, and they were 
assigned to a specific composite material. These volumes 
were discretized with a mesh of hexahedral elements 
comprising 2000 elements and 4182 nodes. Each element 
has 8 integration points and each node has 3 degrees of 
freedom. Figure 9 shows the finite element mesh employed, 
the top of the wall is highlighted for illustrative purposes.

Figure 9. Finite element mesh. 2000 hexahedral elements and 4182 
nodes.

Applied loads

The loading process of the precast ferrocement wall 
comprised two stages: In the first stage we applied a vertical 
load of 1.46 kN, which simulates the confining load applied 
at test laboratory; this load was uniformly distributed among 
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the nodes located at the top of the wall. Nodes located 
at the ends received half the applied load with respect to 
the intern nodes because those nodes have half afferent 
area. This stage was executed in one load step. During 
the second stage, a lateral incremental displacement was 
applied to the nodes located at the top of the wall; this 
stage was carried out during 103 load steps. The wall was 
considered as perfectly fixed at the base.

Numerical results

Response curve

The experimental and numerical response curves are shown 
in Figure 10. It can be seen that the numerical response 
curve fits very well the experimental one. The initial slope 
of the experimental curve is slightly higher than the initial 
slope of the numerical curve, i.e., the real specimen has 
higher stiffness than the numerical model. This difference 
between stiffness values may be due to the support elements 
that are not included within the numerical model.

We highlighted some key points of the experimental curve 
in Figure 3 . and they are shown again in Figure 10. For the 
numerical curve we highlighted some characteristic points 
too (a, b, c, d, e), these points will be used to present the 
numerical results: damage variable, axial strain and stresses.

In the experimental tests, point A corresponds to the first 
crack appearance, while point a of the numerical curve 
designates the last point with linear behavior. These two 
points are close to each other, which could indicate that 
cracking appearance was captured by the numerical model. 
The maximum strength measured at laboratory is given 
by point E, and the maximum strength computed by the 
numerical model is given by point e. These two values are 
very close, which shows that the numerical model is able 
to represent the maximum strength of precast ferrocement 
thin walls.

Damage evolution 

Damage started at the base of the wall in the traction zone. 
The initial damage appeared at a lateral displacement of 
0.0015 m at the top of the wall with an initial value of 
0.42907 (point a). The evolution of the damage variable is 
shown in Figure 11. It can be seen that damage increases in 
the traction zone and the wall experiences local damages 
at different points when the top of the wall has reached a 
lateral displacement of 0.006 m (point c).

Regions with high values of the damage variable agree with 
the cracking pattern experienced by the ferrocement walls 
at laboratory (see Figure 4). The experimental cracking 
pattern and the damage variables location are shown in 
Figure 12. The figure on the left shows the state of the wall 
at the end of the test, the figure on the right correspond 
to the numerical simulation when the top of the wall has 
reached a lateral displacement of 0.0115 m (point e). As 
can be seen, there is a close fit between the experimental 
cracking zone and the numerical damage location.

Strain evolution 

The damage constitutive model that was used for modelling 
the mortar is based on continuum mechanics. Discontinuity 
phenomena such cracking formation and their evolution 
are normally represented by location of deformations. 

Frequently, the location of deformations coincides with 
regions where the damage variable has higher values. The 
evolution of the vertical strain is shown in Figure 13, and 
it can be seen that at point b the vertical strain is relatively 
symmetric, but as the slope of the response curve decreases 
(point c), two regions with concentrated traction vertical 
strains come out. Traction strains are 8 times higher than 
compression deformations. For states corresponding to the 
final loading stages (points d and e), higher strain values 
are located at the base of the wall, where the biggest crack 
was formed.

Figure 10. Response curve due to lateral static load - Experimental and 
numerical curves.

Figure 11. Damage variable evolution of precast ferrocement thin 
walls.
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Figure 12. Comparison between experimental cracking pattern and 
numerical damage location. Numerical results corresponding to a top 
wall lateral displacement of 0.0115 m (point e).

Figure 13. Strain evolution on the vertical direction of precast ferroce-
ment thin walls.

Stress evolution 

Modelling of composite materials using serial/parallel mix 
theory allows us to compute the stresses developed on the 
composite material as well as on each component material. 
The vertical stress evolution over the three materials is 
shown in Figure 13 (see Figure 8) defined within the model.

At point b, which is the beginning of damage evolution, we 
can see that the maximum traction stress (7784.5 kPa) and 
maximum compression stress (9029.3 kPa) are relatively 
symmetric; those maximum values are developed by 
the composite material 2 MC2 (see Figure 8 ) where the 
reinforcing bars are located.

When the slope of the response curve diminishes (point c), 
the stress values increase to more than double with respect 
to point b values and the stress distribution is preserved. 
The maximum tensile stress for points d and e of the 
response curve tend to decrease, but keeping the regions 
with maximum stresses located on MC2 materials, which 
indicates that the intern flexural moment is developed by 
the reinforcing bars; additionally, it can be seen that, at point 
e, regions with MC3  materials (see Figure 8 ) have stress 
values close to zero, this is due to a high tensile damage at 
the base (see Figure 12), so the resistance developed by this 
part of the wall is low.

Figure 14. Vertical stress evolution (kPa) on the composite materials of 
the precast ferrocement thin walls.

The longitudinal stress distribution over the reinforcing bars 
(fibre 1 within MC2 material) is shown in Figure 15. It can 
be seen that the reinforcing bars developed a maximum 
tensile stress of 420 MPa and a maximum compressive 
stress of 297 MPa.

The distribution of the principal stress I in both materials, the 
matrix and the fibres, that comprise MC3 material is shown in 
Figure 16, where it can be observed that the distribution and 
magnitude of such stress is similar for the three layers within 
the matrix (see Table 2), but the magnitude and distribution 
of the principal stress is different for each layer of the fibres.

The layer that contains the meshes placed longitudinally 
experiences high tensile stresses in the regions with higher 
damage, because the meshes withstand the stresses that the 
matrix is unable to endure. The layer with fibres at +60° 
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(layer 2, see Table 2) experiences higher stresses than layer 
1, probably due to the cinematic loads applied that form a 
small angle with respect to this layer. The layer with fibres 
at -60° has the small values of principal stress and it is 
concentrated at the base of the wall, which coincides with 
the maximum damage region.

Figure 15. Longitudinal stress of reinforcing bars. Fibre 1 within MC2 
material (Values in kPa).

Figure 16. Distribution of principal stress I (kPa) on MC3 material, co-
rresponding to a top Wall displacement of 0.008  m (point d).

Conclusions
The constitutive isotropic damage model and serial/
parallel mix theory have been applied to modeling of 
ferrocement thin wall subjected to lateral loads. The 
numerical results fit the experimental ones. It does 
mean that the ferrocement thin walls can be numerically 
modelling like a composite material.

The ferrocement has been modeling into several layers. 
This procedure allows to determine the stresses and strains 
in each component material. The evolution of isotropic 
damage variable represents the evolution of cracks in 
mortar.
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