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ABSTRACT  

This paper presents CodeRAnts, a new recommendation method based on a collaborative searching technique and inspired on the 

ant colony metaphor. This method aims to fill the gap in the current state of the matter regarding recommender systems for software 

reuse, for which prior works present two problems. The first is that, recommender systems based on these works cannot learn from the 

collaboration of programmers and second, outcomes of assessments carried out on these systems present low precision measures 

and recall and in some of these systems, these metrics have not been evaluated. The work presented in this paper contributes a 

recommendation method, which solves these problems. 

Keywords: Recommender Systems on Software Engineering, recommendation method based on collaborative searching, software 

reuse, open source software, ant colony. 

 

RESUMEN 

Este artículo presenta CodeRAnts: un nuevo método de recomendación basado en la técnica de búsqueda colaborativa e inspirada 

en la metáfora de la colonia de hormigas. Este método es propuesto con el objetivo de llenar el vacío en el estado del arte en cuanto 

a los sistemas de recomendación diseñados para reutilizar software, cuyos trabajos previos presentan dos problemas.  El primero, es 

que los sistemas de recomendación basados en esos trabajos no pueden aprender de la colaboración de los programadores, y 

segundo, que los resultados de las pruebas realizados sobre estos sistemas presentan medidas bajas de precisión y remembranza, 

incluso, en algunos de estos sistemas no se hizo una evaluación de estas métricas. La contribución de este trabajo es un método de 

recomendación que resuelva dichos problemas. 

Palabras clave: Sistemas de recomendación para ingeniería de software, método de recomendación basado en la búsqueda 

colaborativa, reutilización de software, software de fuente abierta y colonia de hormigas. 
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Introduction12 

This paper presents the concepts and design taken into account in 

CodeRAnts, which is a new recommendation method proposed 

to assist software engineers and computer programmers in the 

reuse of source code by allowing them to retrieve useful snippets 

of code (potentially written in any programming language) for the 

implementation of new software products. CodeRAnts is based 

on two approaches. The first is collaborative searching, which 

takes advantage of the similarity and repetition of queries that have 

been used by programmers, who are the stakeholders in the 

search for snippets of code. The second is the ant colony meta-
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tends to solve the cold start problem; for example, a system that 

implements CodeRAnts can suggest snippets of code, even as it 

receives new queries. Secondly, it initiates the use of system of 

recommendations, the structure used to save the queries will have 

little information; therefore, it is necessary to solve the problem 

related with the data sparsity of the query-ranking matrix, which 

is used in collaborative searching. 

The preliminary evaluation carried out in this work shows better 

values for the metrics of precision and recall than those achieved 

in the state of the art. These metrics are the most commonly used 

to evaluate recommender systems (Basu et al., 1998; Billsus and 
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Pazzani, 1998; Sarwar et al., 2000a,b; Picault et al., 2010; Bedi and 

Sharma, 2012).  In mathematical terms, precision (see expression 

1) is the number of retrieved and relevant items, divided by the 

total number of retrieved items. On the other hand, recall (see 

expression 2) is the number of retrieved relevant items, divided 

by the total number of relevant items. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐼𝑡𝑒𝑚𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐼𝑡𝑒𝑚𝑠

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐼𝑡𝑒𝑚𝑠
 

(1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐼𝑡𝑒𝑚𝑠 ∩ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐼𝑡𝑒𝑚𝑠

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐼𝑡𝑒𝑚𝑠
 

(2) 

Motivation 

According to Ricci et al. (2010), a recommender system is a set of 

software tools and techniques which provide suggestions of wor-

thy items for users. These suggestions are related to several deci-

sion-making processes that are difficult when users have a large 

amount of optional items to choose from. In the e-commerce con-

text, these processes are related to the buying of items such as 

books. Amazon’s recommender system, for example, assists its 

users in finding books that meet their needs.  

The open source software engineering context is similar to that 

used by e-commerce. Today, there is a substantial amount of open 

source code available on the World Wide Web, which is stored 

inside repositories and available through search engines (e.g., 

Koders, Krugle Sourceforge, Google code, GitHub, and 
CodePlex).  This source code belongs to world class software 

products (e.g., Linux operating system kernel, JBoss application 

server, GNU Emacs, etc). This plethora of source code is available 

to be reused. In fact, software reuse is acknowledged as an im-

portant activity because it allows programmers to use preexisting 

core assets or artifacts rather than creating them from scratch. 

Indeed, Raymond (1999, p. 4) highlights the importance of soft-

ware reuse: “Good programmers know what to write.  Great 

ones know what to rewrite (and reuse)”.  

Moreover, computer scientists such as Mcilroy (1968), Standish 

(1984), Brooks (1987), Poulin et al. (1993), Boehm (1999), and 

Pohl and Böckle (2005), have highlighted the following advantages 

of reusing software: i) reducing time and costs, ii) improving the 

quality of software, iii) reducing amount of defects and iv) by re-
using code there is a higher chance of detecting failures and fixing 

them.   

Search engines allow programmers to find useful source code; 

however, some problems still remain: i) the probability that two 

people choose the same word to describe a concept is less than 

20% (Furnas et al., 1987; Harman, 1995), ii) users who consider 

search engines useful for finding code are those who know how 

to employ the search (Bajracharya and Lopes, 2010), iii) in a study 

by Coyle and Smyth (2007) more than 20,000 queries were used: 

its results showed that, on average, Google delivered at least one 

useful result only 48% of the time, iv) in the domain of collabora-

tive-based recommender systems, research indicates that the de-

sign problems of search engines are twofold: solitary nature and 
one-size-fits-all. (Resnick and Varian, 1997; Balabanovic and Sho-

ham, 1997; Schafer et al., 1999; Jameson and Smyth, 2007; Smyth, 

2007; Morris, 2008).  

On the one hand, solitary nature means that searches take the form 

of an isolated interaction among the user and the search engine. 

Due to this drawback, search engines overlook the experience of 

users, which is useful for offering a more accurate result list in 

comparison to the others with similar preferences. On the other 

hand, one-size-fits-all means that several users achieve the same re-

sult list when they use the same query in spite of having different 

preferences. 

The same researchers highlight the importance of recommender 

systems technology, in particular, the concepts of collaboration 

and user preferences, in order to cope with the above mentioned 

search engine design problems.  Preference is information about 

users’ needs and the collaboration concept refers to preferences 

supplied by a group (or community) of users. The solution pro-

posed, consists of influencing recommendations with information 

learned from users’ preferences and their collaboration, thereby, 

suggestions are guided by users’ behavior rather than only the 

items’ features. 

For instance, if a user performs the following query: “I need some-

thing with four legs where I can sit down”. The search engine’s 

answer is a result list with items like: horses, tigers, chairs and 

tables. These objects match the user’s query. A search engine re-

plies regardless of the user’s preferences and the collaboration of 

similar users. Even though the user selects the chair, the search 

engine is not able to learn the preference of the active user, and 

hence, the engine cannot change the relevance level of the chair 

for future users with the same preference. Conversely, a recom-

mender system suggests items based on what it has learned from 

the users’ preferences and collaboration. In this case, the sugges-

tion of the recommender system is to use a chair. This illustrative 

example depicts the advantages of recommendation techniques 

based on collaboration, which motivated the design of 

CodeRAnts.  

Related Work 

In the context of software engineering, Robillard et al. (2010) de-

fine recommender systems as a set of software applications that 

provide information items, which are considered valuable to per-

form software engineering tasks, e.g., reusing artifacts, mainte-

nance of software products and the identification of defects and 

bugs. 

Various recommender systems have been created to assist soft-

ware tasks, e.g., eRose (Zimmermann et al., 2005), Suade 

(Robillard et al. 2008), Dhruv (Ankolekar et al., 2006), and Exper-

tise Browser (Mockus and Herbsleb, 2002). However, in the par-

ticular context of software reuse, several recommender systems 

have been made: CodeBroker (Ye and Fischer, 2005), Hipikat (Cu-

branic et al., 2005), Strathcona (Holmes et al., 2006), ParseWeb 

(Thummalapenta and Xie, 2007), and ORIPC (Outil de Recom-

mandation et Instanciation des Patrons de Conception) (Bouassida 

et al., 2011).  

All prior recommender systems for software reuse have pre-

sented two important drawbacks, which represent the gap in the 

state of the art: i) These recommender systems are not able to 

learn from users’ preferences and their collaboration. Therefore, 

these systems cannot learn to identify items which were consid-

ered useful by users in past, hence, these systems will not suggest 

them in the future. Consequently, these recommender systems 

have the same problems as search engines that are mentioned 

above, i.e., solitary nature and one-size-fits-all. ii) Only in Hipikat 

and CodeBroker were precision and recall measures were evalu-

ated and these indicators are still far from being satisfactory. It is 

possible that in the other systems, these metrics were not as-

sessed because a dataset with information about programmers re-

trieving source code did not exist, as in the case of other kinds of 

systems based on collaborative filtering, which are assessed with 
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classical datasets such as Jester (http://www.ieor.berkely.edu/~ 

goldberg/jester-data) and MovieLens (http://www.grouplens.org/ 

node/73).   

Table 1 presents a summary of the literature review on recom-

mender systems for software reuse. In this table, the third require-

ment (Rq3) is missing because these systems lack of the second 

one (Rq2), due to a recommender system, which cannot learn 

from preferences and collaboration of its users, shares the design 

problems of search engines (one-size-fits-all and solitary nature). 

The contribution of this work is a recommendation technique de-

signed to fulfill all requirements described in this table. 

Table 1. Comparison of recommender systems for software reuse 
according to the requirements described at the bottom of this table. 
In this table, X means a fulfilled requirement, and NA means a re-
quirement that has not been assessed. 

Recommender system Rq1 Rq2 Rq3 Rq4 

CodeBroker (Ye and Fischer, 2005) X   X 

Hipikat (Cubranic et al., 2005) X   X 

Strathcona (Holmes et al., 2006) X  NA X 

ParseWeb (Thummalapenta and Xie, 2007) X  NA X 

ORIPC (Bouassida et al., 2011)   NA X 

Rq1: The recommender system can reuse code stored inside open source reposi-

tories. Rq2: The recommender system can learn from preferences and collaboration 

of its users. Rq3: Results of assessment of the recommender system with respect to 

the values of precision and recall are acceptable. Rq4: The recommender system 

lacks a cold start problem. 

Design of CodeRAnts 

CodeRAnts is designed to be implemented in a recommender sys-

tem with a proxy architecture, where this system is the proxy of 

a code search engine (e.g., Koders). Fig. 1 depicts a recommender 
system that implements the CodeRAnts method and this system 

may be plugged to a search engine (or other recommendation sys-

tem like Strathcona).  The explanation of its operation is as fol-

lows: 1) The proxy agent receives the query, 𝑞, which comes from 

user agent, 2) the proxy agent redirects 𝑞 to code search engine, 

3) the code search engine retrieves a result list, 𝑎, with links to 
code that could be useful for the user, 4) the proxy agent sends 

forward 𝑎 to recommender systems 5) recommender systems 

compute a new result list, 𝑅, in accordance with the recommen-

dation technique described below (CodeRAnts), and sends 𝑅 to 

the user agent. 

 
Figure 1. CodeRAnts method implemented in a recommender sys-
tem 

CodeRAnts method 

Similar to Collaborative Searching (Smyth et al., 2010), the design 

goal of CodeRAnts is to take advantage of similarity and repetition 

of queries performed by programmer communities as a source of 

recommendations.  

Nevertheless, the collaborative searching approach has similar re-

search challenges to that of collaborative filtering, i.e., data sparsity 

of the input-ranking matrix and cold start problem for queries re-

cently used. Therefore, in order to address these drawbacks, we 

have taken into account the ant colony metaphor, which was suc-

cessfully used by Bedi and Sharma (2010) to overcome these prob-

lems in the context of collaborative filtering, achieving good values 

of precision and recall through off-line assessment. 

Algorithms based on this metaphor are those that reproduce the 

behavior of real ants in order to build better solutions, by using 

artificial pheromones as a means of communication among ants, 

which tend to lay pheromone trails while walking from their nests 

to the food source and vice versa. 

Ants do not communicate directly with each other. These insects 

are guided by pheromone smell and hence, ants choose paths 

marked by the highest concentration of pheromones. The indirect 

communication among ants through pheromone trails enables 

them to find a shorter path between their nest and food sources.  

The CodeRAnts method consists of creating a directed graph, 

whose vertexes represent queries performed in the past and the 

weight edge is based on textual similarity, the correlation, and the 

confidence between vertexes. 

Let 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚}  be a set of queries performed by pro-

grammers in the past and 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}, a set of snippets of 
code. In the same way that the collaborative searching method 

proposed by Smyth et al. (2010), computes the matrix, the 

CodeRAnts method also computes the matrix 𝑄𝐶𝑚 𝑥 𝑛, such that 

𝑄𝐶𝑖,𝑗 corresponds to the amount of times that the snippet of code 

𝑐𝑗 was retrieved when the query 𝑞𝑖 was used by a programmer in 

the past. 

Similar to the technique proposed by of Bedi and Sharma (2012), 

the CodeRAnts method is structured in two processes. The first 

is performed off-line; it consists of creating the directed graph, 

which shall be used as a set of paths with pheromone trails for 

ants. The second is on-line and it is designed to generate recom-

mendations through ant movement in order to find the goal, 

namely, to collect a ranking for each snippet of source code. 

The off-line process is described in the following two steps: i) the 

matrix of rankings 𝑅𝑚 𝑥 𝑛
𝑄𝐶

 is initialized by normalizing the 𝑄𝐶𝑚 𝑥 𝑛 

matrix: ∀𝑖,𝑗 : 𝑅𝑖,𝑗
𝑄𝐶

 ←  
𝑄𝐶𝑖,𝑗

∑ 𝑄𝐶𝑖,𝑘
𝑚
𝑘=1

, where 𝑖, 𝑗, 𝑘, 𝑚, 𝑛, 𝑄𝐶𝑖,𝑗 ∈  ℕ, 1 ≤

𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛, 𝑅𝑖,𝑗
𝑄𝐶

 ∈  ℝ, and 0 ≤ 𝑅𝑖,𝑗
𝑄𝐶

 ≤ 1.   

For the purpose of illustrating this step, let us consider the 𝑄𝐶𝑚 𝑥 𝑛 

matrix depicted in Table 2, where 𝑞1 =  𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑖𝑟, 𝑞2 =
𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 𝑞3 =  𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠, 𝑞4 =  𝑧𝑖𝑝, and 𝑞3 =  𝑐𝑜𝑛𝑝𝑟𝑒𝑠𝑠𝑒𝑟. 

Table 3 shows the normalized 𝑄𝐶𝑚 𝑥 𝑛 matrix, namely, 𝑅𝑚 𝑥 𝑛
𝑄𝐶

. 

Table 2. Instance of  𝑄𝐶𝑚 𝑥 𝑛 matrix. 

 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒄𝟕 

𝒒𝟏 0 0 0 3 0 0 0 

𝒒𝟐 0 2 0 1 0 0 0 

𝒒𝟑 0 0 0 1 2 1 0 

𝒒𝟒 4 0 2 0 2 1 0 

𝒒𝟓 4 0 9 0 1 0 1 

ii) the directed graph 𝐺 = (𝑉, 𝐸) is created; let 𝑉 be a set of ver-

texes and let 𝐸 be a set of edges. The vertexes represent queries 

performed by programmers in the past, hence, 𝑉 = 𝑄. On the 
other hand, edges are links between queries. Each edge represents 
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a path where ants have laid pheromone trails at certain time 𝑡; 

therefore, edge weigh is the level of pheromone track at time 𝑡, 

that is denoted by queries 𝜌𝑞𝑖,𝑞𝑗 (𝑡), 𝑞𝑖 and 𝑞𝑗. 𝜌𝑞𝑖,𝑞𝑗 (𝑡) is com-

puted based on similarities and confidence among vertexes. If the 

level of pheromone among two vertexes is equal to zero, then 

there is no edge between both vertexes.  

Table 3. Instance of the matrix of rankings 𝑅𝑚 𝑥 𝑛
𝑄𝐶

  that is achieved 
from  𝑄𝐶𝑚 𝑥 𝑛 matrix, in Table 2, by normalizing it. 

 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒄𝟕 

𝒒𝟏 0 0 0 1 0 0 0 

𝒒𝟐 0 0.67 0 0.33 0 0 0 

𝒒𝟑 0 0 0 0.25 0.5 0.25 0 

𝒒𝟒 0.5 0 0.2 0 0.2 0.1 0 

𝒒𝟓 0.26 0 0.6 0 0.07 0 0.07 

Before delving into the similarity between queries, it is important 
to clarify certain issues concerning the language used to form que-

ries. Recall from the previous section that a system, which imple-

ments CodeRAnts, has proxy architecture and it is plugged into a 

search engine, thereby query language is the same as that sup-

ported by the engine. For instance, if the recommender system is 

plugged into Koders, the queries are formed with words from nat-

ural language and with the same syntax supported by Koders by 

using identifiers such as cdef, fdef, mdef, idef, and sdef that refer 

to names of classes, files, methods, interfaces, and structures, re-

spectively. In this particular case, a query could be: cdef:util 

mdef:compress. With this query, classes whose name contains the 

word util and whose method contains the word compress are 

searched. 

The similarity among queries is defined in Expression 3, where 

𝛼, 𝛽 ∈  ℝ, 𝛼 + 𝛽 = 1. These constants represent weights for bal-

ancing two similarity measures. The first, 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) is the sim-

ilarity among queries based on the number of edition operations 

performed (the edit distance proposed by Levenshtein (1966), 

𝑒𝑑𝐷𝑖𝑠(𝑞𝑖 , 𝑞𝑗)) to transform 𝑞𝑖 into 𝑞𝑗 (see Expression 4). If 𝑞𝑖 =

 𝑞𝑗, then 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) = 1, this is, 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) reaches its maxi-

mum value due to the edition distance equal to cero, 

𝑒𝑑𝐷𝑖𝑠(𝑞𝑖 , 𝑞𝑗) = 0. Following with the above mentioned example, 

an engineer may use the following words for the query: compress, 

conpresser (in French), or comprimir (in Spanish). If 𝑞𝑖 =

 𝑐𝑜𝑛𝑝𝑟𝑒𝑠𝑠𝑒𝑟, 𝑞𝑗 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠, and 𝑡ℎ = 5 (threshold equal to 

five), then 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) = 0.4, because there are three edits to 

change a query into the other one: 1) conpresser → compresser 

(substitution of the letter n for m), 2) compresser → compresse 

(removal of letter r) and 3) compresse → compress (removal of 
letter e). Table 4 presents all computations of edit distance and 

𝑠𝑖𝑚𝑤 between queries from the above mentioned example. 

Table 4. Computation of edit distance, 𝑠𝑖𝑚𝑤, 𝑠𝑖𝑚𝑐, and 𝑠𝑖𝑚, based 
on table 3, where 𝑞1 =  𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑖𝑟, 𝑞2 = 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 𝑞3 =  𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠, 𝑞4 =
 𝑧𝑖𝑝, 𝑞3 =  𝑐𝑜𝑛𝑝𝑟𝑒𝑠𝑠𝑒𝑟, and 𝑡ℎ = 5 

 Edit distance 𝒔𝒊𝒎𝒘 𝒔𝒊𝒎𝒄 𝒔𝒊𝒎 

𝒒𝟏, 𝒒𝟐 5 0 0.2 0.14 

𝒒𝟏, 𝒒𝟑 4 0.2 0.27 0.25 

𝒒𝟏, 𝒒𝟒 8 0 0.32 0.22 

𝒒𝟏, 𝒒𝟓 5 0 0.12 0.09 

𝒒𝟐, 𝒒𝟑 4 0.2 0.39 0.34 

𝒒𝟐, 𝒒𝟒 6 0 0.47 0.33 

𝒒𝟐, 𝒒𝟓 7 0 0.19 0.13 

𝒒𝟑, 𝒒𝟒 7 0 0.62 0.44 

𝒒𝟑, 𝒒𝟓 3 0.4 0.25 0.29 

𝒒𝟒, 𝒒𝟓 9 0 0.29 0.21 

The edit-distance-based measure is the extent of the typographical 
similarity between two queries.  This has been considered in this 

work because sometimes, typographical mistakes are included 

within the users’ query. Nevertheless, this measure does not con-

sider the semantic similarity between two queries, e.g., 𝑞𝑖 =

 𝑡ℎ𝑒𝑦, and 𝑞𝑗 = 𝑡ℎ𝑒. Therefore, 𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) is also based on the 

correlation between the rankings associated with both queries. 

𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) =  𝛼 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) +  𝛽 𝑠𝑖𝑚𝑐(𝑞𝑖 , 𝑞𝑗) (3) 

𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) = {
𝑡ℎ − 𝑒𝑑𝐷𝑖𝑠(𝑞𝑖 , 𝑞𝑗)

𝑡ℎ
 𝑖𝑓𝑡ℎ > 𝑒𝑑𝐷𝑖𝑠(𝑞𝑖 , 𝑞𝑗) 

𝑜                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(4) 

Let 𝑠𝑖𝑚𝑐(𝑞𝑖, 𝑞𝑗) be the similarity based on correlation coefficient 

between queries; it is calculated using Expression 5. 𝐶𝑞𝑖,𝑞𝑗
 is the 

correlation coefficient between the row vectors 𝑅𝑖
𝑄𝐶

  and 𝑅𝑗
𝑄𝐶

, 

which is defined in Expression 6, where 𝐶𝑞𝑖,𝑞𝑗
 ∈  ℝ, and 

−1 ≤  𝐶𝑞𝑖,𝑞𝑗
≤  1, 𝑅𝑖

𝑄𝐶̅̅ ̅̅ ̅
 and 𝜎𝑞𝑖

 represent the average and the 

standard deviation of the row vector 𝑅𝑖
𝑄𝐶

, respectively. If the value 

of 𝐶𝑞𝑖,𝑞𝑗
trends to one, it means that both queries are correlated, 

but if the value is close to zero, there is no correlation, otherwise 

there is an inverse correlation.  Table 4 shows all computations of 

𝑠𝑖𝑚𝑐 between queries, taking into account the matrix of rankings 

𝑅𝑚 𝑥 𝑛
𝑄𝐶

 depicted in Table 3. 

𝑠𝑖𝑚𝑐(𝑞𝑖 , 𝑞𝑗) =  {
𝐶𝑞𝑖,𝑞𝑗

 𝑖𝑓 𝐶𝑞𝑖,𝑞𝑗
> 0

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(5) 

𝐶𝑞𝑖,𝑞𝑗
=  

∑ (𝑅𝑖,𝑘
𝑄𝐶

− 𝑅𝑖
𝑄𝐶̅̅ ̅̅ ̅)(𝑅𝑗,𝑘

𝑄𝐶
− 𝑅𝑗

𝑄𝐶̅̅ ̅̅ ̅)𝑚
𝑘=1

𝜎𝑞𝑖
𝜎𝑞𝑗

 

(6) 

Confidence between queries is computed using Expression 7. 

𝑐𝑜𝑛𝑓(𝑞𝑗|𝑞𝑖) is the conditional probability of making  the query 𝑞𝑗 

given the query 𝑞𝑖 . Table 5 also shows all computations of confi-

dence between queries in the above mentioned example.   

Table 5. Computation of confidence between queries (i.e. 

𝑐𝑜𝑛𝑓(𝑞𝑗|𝑞𝑖)) 

 𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒒𝟒 𝒒𝟓 

𝒒𝟏 1 0.5 0.33 0 0 

𝒒𝟐 1 1 0.33 0 0 

𝒒𝟑 1 0.5 1 0.5 0.25 

𝒒𝟒 0 9 0.67 1 0.75 

𝒒𝟓 0 0 0.33 0.75 1 

Fig. 2 depicts the directed graph created by using Expression 8, 

with initial pheromone paths, when 𝑡 = 0, namely, 𝜌𝑞𝑖,𝑞𝑗 (0), 

where 𝑘 ∈ ℝ, 𝑎𝑛𝑑 𝑘 → 0 (i.e., k tends to be very small). 𝜏(𝑞𝑖 , 𝑞𝑗) 

is a function based on similarity and confidence among queries, it 

is computed using Expression 9 (adapted from Bedi and Sharman, 

2012). Table 6 shows all computations performed to create the 

directed graph. 

𝑐𝑜𝑛𝑓(𝑞𝑗|𝑞𝑖)

=  
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑐𝑜𝑑𝑒 𝑤ℎ𝑒𝑛 𝑏𝑜𝑡ℎ 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑤𝑒𝑟𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑐𝑜𝑑𝑒 𝑤ℎ𝑒𝑛 𝑞𝑖  𝑤𝑎𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑
 

(7) 

𝜌𝑞𝑖,𝑞𝑗 (0)

=  {

𝜏(𝑞𝑖, 𝑞𝑗) 𝑖𝑓 𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗)  ≠ 0 𝑎𝑛𝑑 𝑐𝑜𝑛𝑓(𝑞𝑖 , 𝑞𝑗) ≠ 0

𝑘 𝑐𝑜𝑛𝑓(𝑞𝑖 , 𝑞𝑗) 𝑖𝑓 𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) = 0 𝑎𝑛𝑑 𝑐𝑜𝑛𝑓(𝑞𝑖 , 𝑞𝑗) ≠ 0

0                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(8) 
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𝜏(𝑞𝑖 , 𝑞𝑗) =  
2 × 𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) × 𝑐𝑜𝑛𝑓( 𝑞𝑗|𝑞𝑖)

𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) + 𝑐𝑜𝑛𝑓( 𝑞𝑗|𝑞𝑖)
 

(9) 

 

Table 6. Computation of initial level of pheromones in the directed 
graph in Fig 3 

 𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒒𝟒 𝒒𝟓 

𝒒𝟏 1 0.22 0.28 0 0 

𝒒𝟐 0.25 1 0.33 0 0 

𝒒𝟑 0.4 0.4 1 0.47 0.27 

𝒒𝟒 0 0 0.53 1 0.32 

𝒒𝟓 0 0 0.31 0.32 1 

Once the directed graph 𝐺 = (𝑉, 𝐸) has been created, as in the 

example depicted in Fig. 2, the on-line process may start. In this 

process, an active query vertex is selected by searching the vertex 

most similar to the query, 𝑞, sent by a programmer. Given that 

this algorithm is inspired in the ant colony, for all the generated 

ants, there is a time to live (TTL) parameter associated with the 

number of iterations that the ants can explore in the graph 𝐺. If 
the destination vertex is not found within TTL limit, each ant is 

removed. Due to the fact that the destination vertex is not known, 

or in the worst case does not exist, it is mandatory to setup a stop 

point (the TTL parameter) for the on-line process in order to pre-

vent it from running indefinitely. 

 
Figure 2. Instance of Graph 𝐺 with pheromone paths 

 

 
Figure 3. Pheromone graph 𝐺 updated from the one depicted in Fig. 
2. 

The virtual ants’ source of food consists of ranking most of the 
items. Hence, ants move through queries, which are similar to or 

probably related with the active query in order to collect their 

rank for those snippets of code that are not ranked for the active 

query.  The on-line process of CodeRAnts is described in the fol-

lowing steps:  

i) Seek an active query vertex, 𝑎, which is selected if it is the most 

similar to query, 𝑞, sent by a programmer. Suppose an engineer 

makes a query with the word comprimir (i.e., 𝑞 = "𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑖𝑟"); 

by using edition distance as a method for measuring similarity be-

tween queries, 𝑞1 is the most similar vertex in the graph depicted 

in Fig. 3 because there is no edition distance between 𝑞 and 𝑞1 

due to the fact that both are exactly alike.  Hereafter, for this ex-

ample, 𝑞1 is the active query vertex (i.e., 𝑞1 = 𝑎) in the graph de-

picted in Fig. 2. 

ii) Create 𝑥 amount of ants, where 𝑥 is equal to number of out-

going edges from active query vertex, 𝑎. In Fig. 2, if the active 

query vertex is 𝑞1, then two ants are created, because this vertex 

has two outgoing edges.  

iii) Each x-th ant selects the next vertex to be visited with the 

probability 𝑃𝑞𝑖,𝑞𝑗

𝑘 = max (𝜌𝑞𝑖,𝑞𝑗 (𝑡) ×
𝑡𝑟𝑎𝑐𝑒𝑑𝑞𝑗

𝑢𝑛𝑟𝑎𝑡𝑒𝑑𝑎
) (adapted from Bedi 

and Sharman, 2012), where 𝑞𝑗  ∉ 𝑡𝑎𝑏𝑢(𝑥), 𝑡𝑎𝑏𝑢(𝑥) is a set of 

vertexes which the x-th ant has visited.  𝑡𝑟𝑎𝑐𝑒𝑑𝑞𝑗
 denotes the 

amount of code snippets traced by the vertex 𝑞𝑗, which have not 

been ranked by the active vertex 𝑎. 𝑢𝑛𝑟𝑎𝑡𝑒𝑑𝑎 is the total number 

of code snippets that have not been ranked by the active vertex 

𝑎. The x-th ant will stop when all its adjacent vertexes are in the 

set 𝑡𝑎𝑏𝑢(𝑥). The whole process will finish when all ants may not 

move anymore or when the ants’ TTL reaches its maximum value. 

Taking 𝑞1 as the active query vertex, Table 3 shows that snippets 

of code 𝑐1, 𝑐2, 𝑐3, 𝑐5, 𝑐6 and 𝑐7 do not have a ranking in 𝑞1. Among 

the neighbors of 𝑞1, 𝑞2 there is a ranking for 𝑐2 and 𝑞3 has a rank-

ing for 𝑐5 and 𝑐6, hence, these rankings are collected. Therefore, 

𝑐1, 𝑐3, and 𝑐7 are still without a ranking. Thereafter, ants keep 

moving, by choosing 𝑞3 as the new destination vertex because the 

path between 𝑞1 and 𝑞3 has the greatest concentration of phero-

mones. This step is repeated without passing twice through the 

same vertex until ants reach their goal (i.e., to rank all snippets of 

code), or until maximum TTL is reached. It is important to clarify 

that when a certain snippet of code, 𝑐𝑖 , is ranked by at least two 
neighbor vertexes, the ranking provided by the neighbors is 

stored, descending sorted, in accordance with trails of pheromone 

between the active vertex and its neighbors. For instance, when 

ants are on the vertex 𝑞3, the snippet of code 𝑐1 shall be ranked 

by its neighbor vertexes 𝑞4 and 𝑞5. In this example, the ranking 

provided by 𝑞4 is stored before the other one provided by 𝑞5, due 

to the fact that trails of pheromones between 𝑞3 and 𝑞4 are 

stronger than the concentration of pheromones among 𝑞3 and 𝑞5. 

iv) Generate suggestions through the method proposed by Res-

nick et al. (1994), with the expression 10, where 𝑟𝑞𝑖,𝑐𝑘
and 𝑟𝑞𝑗,𝑐𝑘

 

represent the rankings of vertexes 𝑞𝑖 and 𝑞𝑗 for the snippet of 

code 𝑐𝑘, respectively. �̅�𝑞𝑖
 and �̅�𝑞𝑗

 denote the average rankings of 

vertexes 𝑞𝑖 and  𝑞𝑗, respectively. 𝑡𝑜𝑝_𝑄 is the number of first 

neighbors of the vertex 𝑞𝑖 with the biggest trail of pheromones. 

For example, if 𝑡𝑜𝑝𝑄 = 10, then 𝑟𝑞1,𝑐4
= 1 +

 
1 (1−1 )+ 0.22(0.33−0.5 )+ 0.28 (0.25−0.33 )

1+0.22+0.28
= 0.96   

v) Finally, update 𝜌𝑞𝑖,𝑞𝑗 (𝑡) with Expression 11, where 𝜀 is the 

evaporation rate of pheromones and 𝛿 is computed with Expres-

sion 12, where 𝜂𝑎,𝑞𝑘
=  

1

𝑑𝑎,𝑞𝑘

, and 𝑑𝑎,𝑞𝑘
 represents the distance 

from vertex 𝑎 to vertex 𝑞𝑘.  Table 7 and Fig. 3 depict the update 

to the pheromone graph, when 𝜀 = 0.01. 

𝑟𝑞𝑖,𝑐𝑘
=  𝑟𝑞𝑖

 ̅̅ ̅̅ +  
∑ 𝜌𝑞𝑖,𝑞𝑗 (𝑟𝑞𝑗,𝑐𝑘

− �̅�𝑞𝑗
 )

𝑡𝑜𝑝_𝑄
𝑗=1

∑ 𝜌𝑞𝑖,𝑞𝑗 
𝑡𝑜𝑝_𝑄
𝑗=1

 

(10) 
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𝜌𝑞𝑖,𝑞𝑗 (𝑡) = (1 −  𝜀)𝜌𝑞𝑖,𝑞𝑗 (𝑡 − 1) + 𝛿𝑞𝑖,𝑞𝑗 (𝑡 − 1) (11) 

𝛿𝑞𝑖,𝑞𝑗 (𝑡) =  𝜂𝑎,𝑞𝑘
∏ 𝜌𝑞𝑖,𝑞𝑘 (𝑡) ×

𝑡𝑟𝑎𝑐𝑒𝑑𝑞𝑗

𝑢𝑛𝑟𝑎𝑡𝑒𝑑𝑎

𝑑𝑎,𝑞𝑘

𝑘=1
 (12) 

 

Table 7. Update of pheromone graph in Fig. 6, when 𝜀 = 0.01. The 
meaning of each column is as follows: A = (1 −  𝜀)𝜌𝑞𝑖,𝑞𝑗 (𝑡 − 1), B =

𝜂𝑎,𝑞𝑘
, C =  ∏ 𝜌𝑞𝑖,𝑞𝑘 (𝑡 − 1)

𝑑𝑎,𝑞𝑘

𝑘=1 , D =
𝑡𝑟𝑎𝑐𝑒𝑑𝑞𝑗

𝑢𝑛𝑟𝑎𝑡𝑒𝑑𝑎
, and E = 𝜌𝑞𝑖,𝑞𝑗 (𝑡). 

 A B C D E 

𝒒𝟏, 𝒒𝟐 0.21 1 0.22 
1

6
 0.24 

𝒒𝟏, 𝒒𝟑 0.27 1 0.28 
2

6
 0.36 

𝒒𝟑, 𝒒𝟒 0.46 
1

2
 

0.22 x 0.47 

= 0.1 

4

6
 0.49 

𝒒𝟑, 𝒒𝟓 0.26 
1

2
 

0.22 x 0.27 

= 0.06 

4

6
 0.27 

Simulation setting 

Shani and Gunawardana (2010) present three methods to evaluate 
recommender systems, namely, off-line, user studies and on-line.  

In this work, CodeRAnts was evaluated through the first method 

with a simulation program written in Java.  The program generates 

a bag-of-terms by assigning random values to the matrix termsCode, 

which holds the frequency of each term in the source code (i.e., if 

termsCode[3][4] is equal to 15, it means that the term 𝑡3 appears 

fifteen times in the snippet of code 𝑐4).  The dataset is randomly 

generated due to the fact that  there is not a real published dataset 

of interaction between programmers and search engines, or pro-

grammers and recommender systems based on collaborative 

searching. 

A search engine and programmers are simulated in order to train 

and test the simulated recommender system, which implements 

the CodeRAnts method. In the training phase, programmers ran-

domly choose certain snippets of code by performing searches 

through a simulated search engine.  Queries are randomly selected 

from a dataset and these terms appear with high frequency in the 

snippet of code. In this way, the programmers’ knowledge for per-

forming a code search is simulated. The queries are words from 

natural language, which are used to write source code. This phase 

aims to fill the 𝑄𝐶𝑚 𝑥 𝑛matrix, by recording which snippets of code 

are selected by programmers during the searches. 

After the training phase, the simulator program performs the off-

line phase of the CodeRAnt method. Then, the on-line phase be-

gins the testing phase and other simulated programmers perform 

source code searches through a simulated recommender system. 

During the training phase, simulated programmers search at most 

99 snippets of code and while testing phase is performed, the 

other instances seek at most, 25 snippets of code, which are 
stored in the dataset (i.e., relevant items). In both phases, pro-

grammers perform from 5 to 10 queries in order to search a snip-

pet of code.  Each query is randomly selected from a bag-of-que-

ries.  When a programmer finds a snippet of code, it is counted as 

a retrieved item in order to compute precision and recall metrics.  

Three fourths of the set of programmers are used for training and 

one fourth of this set is used for testing. Assessments were per-

formed with sets of 30, 50, 100, 500, 1000, 5000, and  10000 

programmers. Other parameters considered in the assessment 

are: 𝛼 = 0.75, 𝛽 = 0.25, 𝑡ℎ = 1, timeout = 10, 𝜀 = 10−2, and 

𝑘 =  10−3. These parameters were chosen by running the simula-

tion several times. Thus, we tuned the parameters until the best 

performance was achieved. The next section shows the results of 

the assessments with this experimental setting. 

Results and discussion 

Table 8 shows the results of the simulation. The average of preci-

sion and recall values is 0.53 and 0.71 respectively. These values 

are better than those achieved by Cubranic et al. (2005) with Hip-

ikat, in average, 0.11 and 0.65 for precision and recall, respectively. 

Furthermore, the outcomes of the simulation performed on 

CodeRAnts are better than those observed by Ye and Fischer 

(2005) with CodeBroker, namely, with this system precision is not 

greater than 0.4, but recall reached 1.  

Table 8. Results of assessment performed over CodeRAnts 

Number of  

programmers 
Precision Recall 

30 0.57 0.72 

50 0.52 0.7 

100 0.53 0.71 

500 0.51 0.72 

1000 0.51 0.7 

5000 0.52 0.71 

10000 0.52 0.7 

Nevertheless, although with the simulations we achieved better 
values than those obtained by other researchers, this assessment 

method is not rigorous and its outcomes are slanted, given that 

the above mentioned systems were evaluated through user-based 

assessments. Cubranic et al. (2005) evaluated Hipikat with a group 

of real programmers and the Eclipse source code (version 2.1).  In 

a similar fashion, Ye and Fischer (2005) carried out experiments 

over CodeBroker with real programmers, but with the Java 1.1.8 

core library and the JGL 1.3 library. Thereby,  for future studies, 

CodeRAnts must be assessed with the other systems using the 

same experimental method and setting.  Additionally, CodeRAnts 

was assessed with a randomly generated dataset; hence, for fur-

ther work we must collect a real dataset through user-based ex-

periments. 

The results of these experiments reveal that edit-distance-based 

similarity between queries is not useful because the best perfor-

mance is achieved when the threshold parameter is equal to one. 

Hence, this is almost the same procedure as checking whether 

both queries are equal. In the future, we will assess other similarity 

measures (e.g., cosine distance, Euclidean distance, and etcetera). 

Conclusions and directions for further work  

The contributions of this study are: i) a recommendation method 

that can be implemented like a proxy of a code search engine or 
an above mentioned recommender system (e.g., Strahtcona), in 

order to allow them to improve their answers and recommenda-

tions for programmers; due to this, these systems could learn 

from users’ collaboration through CodeRAnts. ii) a recommenda-

tion method which tackles the cold start problem given that a sys-

tem which implements CodeRAnts can suggest snippets of code, 

although it receives new queries that do not belong to set 𝑄, by 

searching other similar in this set. Moreover, through the ant col-

ony technique, a system which implements CodeRAnts can sug-

gest snippets of code, despite the fact that the matrix 𝑅𝑚 𝑥 𝑛
𝑄𝐶

 does 

not have a ranking for these snippets given certain queries through 

the search performed by ants, through possibly related or corre-

lated queries, and collecting ranking for these snippets, iii) a rec-
ommendation method, that in a simulated environment, has better 

preliminary values of precision and recall than prior systems de-

signed for software reuse; however, it is important to highlight 

that the results of the simulations are not definitive evidence of 
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the quality of recommendation provided through of CodeRAnts 

method because in the simulation settings the bag-of-terms and 

the dataset are randomlygenerate; moreover, CodeRAnts was not 

evaluated with the same experimental method and setting carried 

out in the other systems by other researchers.  

For future studies the following are proposed: i) collect a real da-

taset through user-based experiments, ii) carry out the evaluation 

of CodeRAnts with the other systems with the same experimental 

method and setting and iii) test other similar measures (e.g., cosine 

distance, Euclidean distance, etc.). 
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