
INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 1, APRIL - 2014 (72-78)

 72

CodeRAnts: A recommendation method based on

collaborative searching and ant colonies, applied to reusing

of open source code

Coderants: método de recomendación basado en la búsqueda colaborativa

y las colonias de hormigas. Aplicado a la reutilización del código fuente

abierto

I. Caicedo-Castro1 and H. Duarte-Amaya2

ABSTRACT

This paper presents CodeRAnts, a new recommendation method based on a collaborative searching technique and inspired on the

ant colony metaphor. This method aims to fill the gap in the current state of the matter regarding recommender systems for software

reuse, for which prior works present two problems. The first is that, recommender systems based on these works cannot learn from the

collaboration of programmers and second, outcomes of assessments carried out on these systems present low precision measures

and recall and in some of these systems, these metrics have not been evaluated. The work presented in this paper contributes a

recommendation method, which solves these problems.

Keywords: Recommender Systems on Software Engineering, recommendation method based on collaborative searching, software

reuse, open source software, ant colony.

RESUMEN

Este artículo presenta CodeRAnts: un nuevo método de recomendación basado en la técnica de búsqueda colaborativa e inspirada

en la metáfora de la colonia de hormigas. Este método es propuesto con el objetivo de llenar el vacío en el estado del arte en cuanto

a los sistemas de recomendación diseñados para reutilizar software, cuyos trabajos previos presentan dos problemas. El primero, es

que los sistemas de recomendación basados en esos trabajos no pueden aprender de la colaboración de los programadores, y

segundo, que los resultados de las pruebas realizados sobre estos sistemas presentan medidas bajas de precisión y remembranza,

incluso, en algunos de estos sistemas no se hizo una evaluación de estas métricas. La contribución de este trabajo es un método de

recomendación que resuelva dichos problemas.

Palabras clave: Sistemas de recomendación para ingeniería de software, método de recomendación basado en la búsqueda

colaborativa, reutilización de software, software de fuente abierta y colonia de hormigas.

Received: April 28th 2013

Accepted: December 4th 2013

Introduction12

This paper presents the concepts and design taken into account in

CodeRAnts, which is a new recommendation method proposed

to assist software engineers and computer programmers in the

reuse of source code by allowing them to retrieve useful snippets

of code (potentially written in any programming language) for the

implementation of new software products. CodeRAnts is based

on two approaches. The first is collaborative searching, which

takes advantage of the similarity and repetition of queries that have

been used by programmers, who are the stakeholders in the

search for snippets of code. The second is the ant colony meta-

1 Isaac Caicedo. BSc in Computer Science Engineering, Pontificia Universidad Bolivar-

iana, Colombia. MSc in Engineering, University of Los Andes, Colombia. Dr. Eng. (c),

Universidad National de Colombia, Colombia. Affiliation: Full time professor, Univer-

sity of Córdoba, Colombia. E-mail: ibcaicedoc@unal.edu.co
2 Helga Duarte. BSc in Systems and Computing Engineering, Universidad National de

Colombia, Colombia. MSc in Engineering, Universidad National de Colombia, Colom-

phor. We consider this approach to tackle two issues. First, it pre-

tends to solve the cold start problem; for example, a system that

implements CodeRAnts can suggest snippets of code, even as it

receives new queries. Secondly, it initiates the use of system of

recommendations, the structure used to save the queries will have

little information; therefore, it is necessary to solve the problem

related with the data sparsity of the query-ranking matrix, which

is used in collaborative searching.

The preliminary evaluation carried out in this work shows better

values for the metrics of precision and recall than those achieved

in the state of the art. These metrics are the most commonly used

to evaluate recommender systems (Basu et al., 1998; Billsus and

bia. PhD in Computer Sciences, Joseph Fourier University, Grenoble I, France. Affili-

attion: Full time professor, Universidad National de Colombia, Colombia.

E-mail: hduarte@unal.edu.co

How to cite: Caicedo, I., Duarte, H., CodeRAnts: A recommendation method

based on collaborative searching and ant colonies, applied to reusing of open source

code., Ingeniería e Investigación, Vol. 34, No. 1, April, 2014, pp. 72 – 78.

CAICEDO-CASTRO AND DUARTE-AMAYA

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 1, APRIL - 2014 (72-78) 73

Pazzani, 1998; Sarwar et al., 2000a,b; Picault et al., 2010; Bedi and

Sharma, 2012). In mathematical terms, precision (see expression

1) is the number of retrieved and relevant items, divided by the

total number of retrieved items. On the other hand, recall (see

expression 2) is the number of retrieved relevant items, divided

by the total number of relevant items.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐼𝑡𝑒𝑚𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐼𝑡𝑒𝑚𝑠

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐼𝑡𝑒𝑚𝑠

(1)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐼𝑡𝑒𝑚𝑠 ∩ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐼𝑡𝑒𝑚𝑠

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐼𝑡𝑒𝑚𝑠

(2)

Motivation

According to Ricci et al. (2010), a recommender system is a set of

software tools and techniques which provide suggestions of wor-

thy items for users. These suggestions are related to several deci-

sion-making processes that are difficult when users have a large

amount of optional items to choose from. In the e-commerce con-

text, these processes are related to the buying of items such as

books. Amazon’s recommender system, for example, assists its

users in finding books that meet their needs.

The open source software engineering context is similar to that

used by e-commerce. Today, there is a substantial amount of open

source code available on the World Wide Web, which is stored

inside repositories and available through search engines (e.g.,

Koders, Krugle Sourceforge, Google code, GitHub, and
CodePlex). This source code belongs to world class software

products (e.g., Linux operating system kernel, JBoss application

server, GNU Emacs, etc). This plethora of source code is available

to be reused. In fact, software reuse is acknowledged as an im-

portant activity because it allows programmers to use preexisting

core assets or artifacts rather than creating them from scratch.

Indeed, Raymond (1999, p. 4) highlights the importance of soft-

ware reuse: “Good programmers know what to write. Great

ones know what to rewrite (and reuse)”.

Moreover, computer scientists such as Mcilroy (1968), Standish

(1984), Brooks (1987), Poulin et al. (1993), Boehm (1999), and

Pohl and Böckle (2005), have highlighted the following advantages

of reusing software: i) reducing time and costs, ii) improving the

quality of software, iii) reducing amount of defects and iv) by re-
using code there is a higher chance of detecting failures and fixing

them.

Search engines allow programmers to find useful source code;

however, some problems still remain: i) the probability that two

people choose the same word to describe a concept is less than

20% (Furnas et al., 1987; Harman, 1995), ii) users who consider

search engines useful for finding code are those who know how

to employ the search (Bajracharya and Lopes, 2010), iii) in a study

by Coyle and Smyth (2007) more than 20,000 queries were used:

its results showed that, on average, Google delivered at least one

useful result only 48% of the time, iv) in the domain of collabora-

tive-based recommender systems, research indicates that the de-

sign problems of search engines are twofold: solitary nature and
one-size-fits-all. (Resnick and Varian, 1997; Balabanovic and Sho-

ham, 1997; Schafer et al., 1999; Jameson and Smyth, 2007; Smyth,

2007; Morris, 2008).

On the one hand, solitary nature means that searches take the form

of an isolated interaction among the user and the search engine.

Due to this drawback, search engines overlook the experience of

users, which is useful for offering a more accurate result list in

comparison to the others with similar preferences. On the other

hand, one-size-fits-all means that several users achieve the same re-

sult list when they use the same query in spite of having different

preferences.

The same researchers highlight the importance of recommender

systems technology, in particular, the concepts of collaboration

and user preferences, in order to cope with the above mentioned

search engine design problems. Preference is information about

users’ needs and the collaboration concept refers to preferences

supplied by a group (or community) of users. The solution pro-

posed, consists of influencing recommendations with information

learned from users’ preferences and their collaboration, thereby,

suggestions are guided by users’ behavior rather than only the

items’ features.

For instance, if a user performs the following query: “I need some-

thing with four legs where I can sit down”. The search engine’s

answer is a result list with items like: horses, tigers, chairs and

tables. These objects match the user’s query. A search engine re-

plies regardless of the user’s preferences and the collaboration of

similar users. Even though the user selects the chair, the search

engine is not able to learn the preference of the active user, and

hence, the engine cannot change the relevance level of the chair

for future users with the same preference. Conversely, a recom-

mender system suggests items based on what it has learned from

the users’ preferences and collaboration. In this case, the sugges-

tion of the recommender system is to use a chair. This illustrative

example depicts the advantages of recommendation techniques

based on collaboration, which motivated the design of

CodeRAnts.

Related Work

In the context of software engineering, Robillard et al. (2010) de-

fine recommender systems as a set of software applications that

provide information items, which are considered valuable to per-

form software engineering tasks, e.g., reusing artifacts, mainte-

nance of software products and the identification of defects and

bugs.

Various recommender systems have been created to assist soft-

ware tasks, e.g., eRose (Zimmermann et al., 2005), Suade

(Robillard et al. 2008), Dhruv (Ankolekar et al., 2006), and Exper-

tise Browser (Mockus and Herbsleb, 2002). However, in the par-

ticular context of software reuse, several recommender systems

have been made: CodeBroker (Ye and Fischer, 2005), Hipikat (Cu-

branic et al., 2005), Strathcona (Holmes et al., 2006), ParseWeb

(Thummalapenta and Xie, 2007), and ORIPC (Outil de Recom-

mandation et Instanciation des Patrons de Conception) (Bouassida

et al., 2011).

All prior recommender systems for software reuse have pre-

sented two important drawbacks, which represent the gap in the

state of the art: i) These recommender systems are not able to

learn from users’ preferences and their collaboration. Therefore,

these systems cannot learn to identify items which were consid-

ered useful by users in past, hence, these systems will not suggest

them in the future. Consequently, these recommender systems

have the same problems as search engines that are mentioned

above, i.e., solitary nature and one-size-fits-all. ii) Only in Hipikat

and CodeBroker were precision and recall measures were evalu-

ated and these indicators are still far from being satisfactory. It is

possible that in the other systems, these metrics were not as-

sessed because a dataset with information about programmers re-

trieving source code did not exist, as in the case of other kinds of

systems based on collaborative filtering, which are assessed with

CODERANTS: A RECOMMENDATION METHOD BASED ON COLLABORATIVE SEARCHING AND ANT COLONIES…

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 1, APRIL – 2014 (72-78) 74

classical datasets such as Jester (http://www.ieor.berkely.edu/~

goldberg/jester-data) and MovieLens (http://www.grouplens.org/

node/73).

Table 1 presents a summary of the literature review on recom-

mender systems for software reuse. In this table, the third require-

ment (Rq3) is missing because these systems lack of the second

one (Rq2), due to a recommender system, which cannot learn

from preferences and collaboration of its users, shares the design

problems of search engines (one-size-fits-all and solitary nature).

The contribution of this work is a recommendation technique de-

signed to fulfill all requirements described in this table.

Table 1. Comparison of recommender systems for software reuse
according to the requirements described at the bottom of this table.
In this table, X means a fulfilled requirement, and NA means a re-
quirement that has not been assessed.

Recommender system Rq1 Rq2 Rq3 Rq4

CodeBroker (Ye and Fischer, 2005) X X

Hipikat (Cubranic et al., 2005) X X

Strathcona (Holmes et al., 2006) X NA X

ParseWeb (Thummalapenta and Xie, 2007) X NA X

ORIPC (Bouassida et al., 2011) NA X

Rq1: The recommender system can reuse code stored inside open source reposi-

tories. Rq2: The recommender system can learn from preferences and collaboration

of its users. Rq3: Results of assessment of the recommender system with respect to

the values of precision and recall are acceptable. Rq4: The recommender system

lacks a cold start problem.

Design of CodeRAnts

CodeRAnts is designed to be implemented in a recommender sys-

tem with a proxy architecture, where this system is the proxy of

a code search engine (e.g., Koders). Fig. 1 depicts a recommender
system that implements the CodeRAnts method and this system

may be plugged to a search engine (or other recommendation sys-

tem like Strathcona). The explanation of its operation is as fol-

lows: 1) The proxy agent receives the query, 𝑞, which comes from

user agent, 2) the proxy agent redirects 𝑞 to code search engine,

3) the code search engine retrieves a result list, 𝑎, with links to
code that could be useful for the user, 4) the proxy agent sends

forward 𝑎 to recommender systems 5) recommender systems

compute a new result list, 𝑅, in accordance with the recommen-

dation technique described below (CodeRAnts), and sends 𝑅 to

the user agent.

Figure 1. CodeRAnts method implemented in a recommender sys-
tem

CodeRAnts method

Similar to Collaborative Searching (Smyth et al., 2010), the design

goal of CodeRAnts is to take advantage of similarity and repetition

of queries performed by programmer communities as a source of

recommendations.

Nevertheless, the collaborative searching approach has similar re-

search challenges to that of collaborative filtering, i.e., data sparsity

of the input-ranking matrix and cold start problem for queries re-

cently used. Therefore, in order to address these drawbacks, we

have taken into account the ant colony metaphor, which was suc-

cessfully used by Bedi and Sharma (2010) to overcome these prob-

lems in the context of collaborative filtering, achieving good values

of precision and recall through off-line assessment.

Algorithms based on this metaphor are those that reproduce the

behavior of real ants in order to build better solutions, by using

artificial pheromones as a means of communication among ants,

which tend to lay pheromone trails while walking from their nests

to the food source and vice versa.

Ants do not communicate directly with each other. These insects

are guided by pheromone smell and hence, ants choose paths

marked by the highest concentration of pheromones. The indirect

communication among ants through pheromone trails enables

them to find a shorter path between their nest and food sources.

The CodeRAnts method consists of creating a directed graph,

whose vertexes represent queries performed in the past and the

weight edge is based on textual similarity, the correlation, and the

confidence between vertexes.

Let 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚} be a set of queries performed by pro-

grammers in the past and 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}, a set of snippets of
code. In the same way that the collaborative searching method

proposed by Smyth et al. (2010), computes the matrix, the

CodeRAnts method also computes the matrix 𝑄𝐶𝑚 𝑥 𝑛, such that

𝑄𝐶𝑖,𝑗 corresponds to the amount of times that the snippet of code

𝑐𝑗 was retrieved when the query 𝑞𝑖 was used by a programmer in

the past.

Similar to the technique proposed by of Bedi and Sharma (2012),

the CodeRAnts method is structured in two processes. The first

is performed off-line; it consists of creating the directed graph,

which shall be used as a set of paths with pheromone trails for

ants. The second is on-line and it is designed to generate recom-

mendations through ant movement in order to find the goal,

namely, to collect a ranking for each snippet of source code.

The off-line process is described in the following two steps: i) the

matrix of rankings 𝑅𝑚 𝑥 𝑛
𝑄𝐶

 is initialized by normalizing the 𝑄𝐶𝑚 𝑥 𝑛

matrix: ∀𝑖,𝑗 : 𝑅𝑖,𝑗
𝑄𝐶

 ←
𝑄𝐶𝑖,𝑗

∑ 𝑄𝐶𝑖,𝑘
𝑚
𝑘=1

, where 𝑖, 𝑗, 𝑘, 𝑚, 𝑛, 𝑄𝐶𝑖,𝑗 ∈ ℕ, 1 ≤

𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛, 𝑅𝑖,𝑗
𝑄𝐶

 ∈ ℝ, and 0 ≤ 𝑅𝑖,𝑗
𝑄𝐶

 ≤ 1.

For the purpose of illustrating this step, let us consider the 𝑄𝐶𝑚 𝑥 𝑛

matrix depicted in Table 2, where 𝑞1 = 𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑖𝑟, 𝑞2 =
𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 𝑞3 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠, 𝑞4 = 𝑧𝑖𝑝, and 𝑞3 = 𝑐𝑜𝑛𝑝𝑟𝑒𝑠𝑠𝑒𝑟.

Table 3 shows the normalized 𝑄𝐶𝑚 𝑥 𝑛 matrix, namely, 𝑅𝑚 𝑥 𝑛
𝑄𝐶

.

Table 2. Instance of 𝑄𝐶𝑚 𝑥 𝑛 matrix.

 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒄𝟕

𝒒𝟏 0 0 0 3 0 0 0

𝒒𝟐 0 2 0 1 0 0 0

𝒒𝟑 0 0 0 1 2 1 0

𝒒𝟒 4 0 2 0 2 1 0

𝒒𝟓 4 0 9 0 1 0 1

ii) the directed graph 𝐺 = (𝑉, 𝐸) is created; let 𝑉 be a set of ver-

texes and let 𝐸 be a set of edges. The vertexes represent queries

performed by programmers in the past, hence, 𝑉 = 𝑄. On the
other hand, edges are links between queries. Each edge represents

CAICEDO-CASTRO AND DUARTE-AMAYA

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 1, APRIL - 2014 (72-78) 75

a path where ants have laid pheromone trails at certain time 𝑡;

therefore, edge weigh is the level of pheromone track at time 𝑡,

that is denoted by queries 𝜌𝑞𝑖,𝑞𝑗 (𝑡), 𝑞𝑖 and 𝑞𝑗. 𝜌𝑞𝑖,𝑞𝑗 (𝑡) is com-

puted based on similarities and confidence among vertexes. If the

level of pheromone among two vertexes is equal to zero, then

there is no edge between both vertexes.

Table 3. Instance of the matrix of rankings 𝑅𝑚 𝑥 𝑛
𝑄𝐶

 that is achieved
from 𝑄𝐶𝑚 𝑥 𝑛 matrix, in Table 2, by normalizing it.

 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒄𝟕

𝒒𝟏 0 0 0 1 0 0 0

𝒒𝟐 0 0.67 0 0.33 0 0 0

𝒒𝟑 0 0 0 0.25 0.5 0.25 0

𝒒𝟒 0.5 0 0.2 0 0.2 0.1 0

𝒒𝟓 0.26 0 0.6 0 0.07 0 0.07

Before delving into the similarity between queries, it is important
to clarify certain issues concerning the language used to form que-

ries. Recall from the previous section that a system, which imple-

ments CodeRAnts, has proxy architecture and it is plugged into a

search engine, thereby query language is the same as that sup-

ported by the engine. For instance, if the recommender system is

plugged into Koders, the queries are formed with words from nat-

ural language and with the same syntax supported by Koders by

using identifiers such as cdef, fdef, mdef, idef, and sdef that refer

to names of classes, files, methods, interfaces, and structures, re-

spectively. In this particular case, a query could be: cdef:util

mdef:compress. With this query, classes whose name contains the

word util and whose method contains the word compress are

searched.

The similarity among queries is defined in Expression 3, where

𝛼, 𝛽 ∈ ℝ, 𝛼 + 𝛽 = 1. These constants represent weights for bal-

ancing two similarity measures. The first, 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) is the sim-

ilarity among queries based on the number of edition operations

performed (the edit distance proposed by Levenshtein (1966),

𝑒𝑑𝐷𝑖𝑠(𝑞𝑖 , 𝑞𝑗)) to transform 𝑞𝑖 into 𝑞𝑗 (see Expression 4). If 𝑞𝑖 =

 𝑞𝑗, then 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) = 1, this is, 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) reaches its maxi-

mum value due to the edition distance equal to cero,

𝑒𝑑𝐷𝑖𝑠(𝑞𝑖 , 𝑞𝑗) = 0. Following with the above mentioned example,

an engineer may use the following words for the query: compress,

conpresser (in French), or comprimir (in Spanish). If 𝑞𝑖 =

 𝑐𝑜𝑛𝑝𝑟𝑒𝑠𝑠𝑒𝑟, 𝑞𝑗 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠, and 𝑡ℎ = 5 (threshold equal to

five), then 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) = 0.4, because there are three edits to

change a query into the other one: 1) conpresser → compresser

(substitution of the letter n for m), 2) compresser → compresse

(removal of letter r) and 3) compresse → compress (removal of
letter e). Table 4 presents all computations of edit distance and

𝑠𝑖𝑚𝑤 between queries from the above mentioned example.

Table 4. Computation of edit distance, 𝑠𝑖𝑚𝑤, 𝑠𝑖𝑚𝑐, and 𝑠𝑖𝑚, based
on table 3, where 𝑞1 = 𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑖𝑟, 𝑞2 = 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 𝑞3 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠, 𝑞4 =
 𝑧𝑖𝑝, 𝑞3 = 𝑐𝑜𝑛𝑝𝑟𝑒𝑠𝑠𝑒𝑟, and 𝑡ℎ = 5

 Edit distance 𝒔𝒊𝒎𝒘 𝒔𝒊𝒎𝒄 𝒔𝒊𝒎

𝒒𝟏, 𝒒𝟐 5 0 0.2 0.14

𝒒𝟏, 𝒒𝟑 4 0.2 0.27 0.25

𝒒𝟏, 𝒒𝟒 8 0 0.32 0.22

𝒒𝟏, 𝒒𝟓 5 0 0.12 0.09

𝒒𝟐, 𝒒𝟑 4 0.2 0.39 0.34

𝒒𝟐, 𝒒𝟒 6 0 0.47 0.33

𝒒𝟐, 𝒒𝟓 7 0 0.19 0.13

𝒒𝟑, 𝒒𝟒 7 0 0.62 0.44

𝒒𝟑, 𝒒𝟓 3 0.4 0.25 0.29

𝒒𝟒, 𝒒𝟓 9 0 0.29 0.21

The edit-distance-based measure is the extent of the typographical
similarity between two queries. This has been considered in this

work because sometimes, typographical mistakes are included

within the users’ query. Nevertheless, this measure does not con-

sider the semantic similarity between two queries, e.g., 𝑞𝑖 =

 𝑡ℎ𝑒𝑦, and 𝑞𝑗 = 𝑡ℎ𝑒. Therefore, 𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) is also based on the

correlation between the rankings associated with both queries.

𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) = 𝛼 𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) + 𝛽 𝑠𝑖𝑚𝑐(𝑞𝑖 , 𝑞𝑗) (3)

𝑠𝑖𝑚𝑤(𝑞𝑖 , 𝑞𝑗) = {
𝑡ℎ − 𝑒𝑑𝐷𝑖𝑠(𝑞𝑖 , 𝑞𝑗)

𝑡ℎ
 𝑖𝑓𝑡ℎ > 𝑒𝑑𝐷𝑖𝑠(𝑞𝑖 , 𝑞𝑗)

𝑜 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

Let 𝑠𝑖𝑚𝑐(𝑞𝑖, 𝑞𝑗) be the similarity based on correlation coefficient

between queries; it is calculated using Expression 5. 𝐶𝑞𝑖,𝑞𝑗
 is the

correlation coefficient between the row vectors 𝑅𝑖
𝑄𝐶

 and 𝑅𝑗
𝑄𝐶

,

which is defined in Expression 6, where 𝐶𝑞𝑖,𝑞𝑗
 ∈ ℝ, and

−1 ≤ 𝐶𝑞𝑖,𝑞𝑗
≤ 1, 𝑅𝑖

𝑄𝐶̅̅ ̅̅ ̅
 and 𝜎𝑞𝑖

 represent the average and the

standard deviation of the row vector 𝑅𝑖
𝑄𝐶

, respectively. If the value

of 𝐶𝑞𝑖,𝑞𝑗
trends to one, it means that both queries are correlated,

but if the value is close to zero, there is no correlation, otherwise

there is an inverse correlation. Table 4 shows all computations of

𝑠𝑖𝑚𝑐 between queries, taking into account the matrix of rankings

𝑅𝑚 𝑥 𝑛
𝑄𝐶

 depicted in Table 3.

𝑠𝑖𝑚𝑐(𝑞𝑖 , 𝑞𝑗) = {
𝐶𝑞𝑖,𝑞𝑗

 𝑖𝑓 𝐶𝑞𝑖,𝑞𝑗
> 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

𝐶𝑞𝑖,𝑞𝑗
=

∑ (𝑅𝑖,𝑘
𝑄𝐶

− 𝑅𝑖
𝑄𝐶̅̅ ̅̅ ̅)(𝑅𝑗,𝑘

𝑄𝐶
− 𝑅𝑗

𝑄𝐶̅̅ ̅̅ ̅)𝑚
𝑘=1

𝜎𝑞𝑖
𝜎𝑞𝑗

(6)

Confidence between queries is computed using Expression 7.

𝑐𝑜𝑛𝑓(𝑞𝑗|𝑞𝑖) is the conditional probability of making the query 𝑞𝑗

given the query 𝑞𝑖 . Table 5 also shows all computations of confi-

dence between queries in the above mentioned example.

Table 5. Computation of confidence between queries (i.e.

𝑐𝑜𝑛𝑓(𝑞𝑗|𝑞𝑖))

 𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒒𝟒 𝒒𝟓

𝒒𝟏 1 0.5 0.33 0 0

𝒒𝟐 1 1 0.33 0 0

𝒒𝟑 1 0.5 1 0.5 0.25

𝒒𝟒 0 9 0.67 1 0.75

𝒒𝟓 0 0 0.33 0.75 1

Fig. 2 depicts the directed graph created by using Expression 8,

with initial pheromone paths, when 𝑡 = 0, namely, 𝜌𝑞𝑖,𝑞𝑗 (0),

where 𝑘 ∈ ℝ, 𝑎𝑛𝑑 𝑘 → 0 (i.e., k tends to be very small). 𝜏(𝑞𝑖 , 𝑞𝑗)

is a function based on similarity and confidence among queries, it

is computed using Expression 9 (adapted from Bedi and Sharman,

2012). Table 6 shows all computations performed to create the

directed graph.

𝑐𝑜𝑛𝑓(𝑞𝑗|𝑞𝑖)

=
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑐𝑜𝑑𝑒 𝑤ℎ𝑒𝑛 𝑏𝑜𝑡ℎ 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑤𝑒𝑟𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑐𝑜𝑑𝑒 𝑤ℎ𝑒𝑛 𝑞𝑖 𝑤𝑎𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑

(7)

𝜌𝑞𝑖,𝑞𝑗 (0)

= {

𝜏(𝑞𝑖, 𝑞𝑗) 𝑖𝑓 𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) ≠ 0 𝑎𝑛𝑑 𝑐𝑜𝑛𝑓(𝑞𝑖 , 𝑞𝑗) ≠ 0

𝑘 𝑐𝑜𝑛𝑓(𝑞𝑖 , 𝑞𝑗) 𝑖𝑓 𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) = 0 𝑎𝑛𝑑 𝑐𝑜𝑛𝑓(𝑞𝑖 , 𝑞𝑗) ≠ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

CODERANTS: A RECOMMENDATION METHOD BASED ON COLLABORATIVE SEARCHING AND ANT COLONIES…

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 1, APRIL – 2014 (72-78) 76

𝜏(𝑞𝑖 , 𝑞𝑗) =
2 × 𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) × 𝑐𝑜𝑛𝑓(𝑞𝑗|𝑞𝑖)

𝑠𝑖𝑚(𝑞𝑖 , 𝑞𝑗) + 𝑐𝑜𝑛𝑓(𝑞𝑗|𝑞𝑖)

(9)

Table 6. Computation of initial level of pheromones in the directed
graph in Fig 3

 𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒒𝟒 𝒒𝟓

𝒒𝟏 1 0.22 0.28 0 0

𝒒𝟐 0.25 1 0.33 0 0

𝒒𝟑 0.4 0.4 1 0.47 0.27

𝒒𝟒 0 0 0.53 1 0.32

𝒒𝟓 0 0 0.31 0.32 1

Once the directed graph 𝐺 = (𝑉, 𝐸) has been created, as in the

example depicted in Fig. 2, the on-line process may start. In this

process, an active query vertex is selected by searching the vertex

most similar to the query, 𝑞, sent by a programmer. Given that

this algorithm is inspired in the ant colony, for all the generated

ants, there is a time to live (TTL) parameter associated with the

number of iterations that the ants can explore in the graph 𝐺. If
the destination vertex is not found within TTL limit, each ant is

removed. Due to the fact that the destination vertex is not known,

or in the worst case does not exist, it is mandatory to setup a stop

point (the TTL parameter) for the on-line process in order to pre-

vent it from running indefinitely.

Figure 2. Instance of Graph 𝐺 with pheromone paths

Figure 3. Pheromone graph 𝐺 updated from the one depicted in Fig.
2.

The virtual ants’ source of food consists of ranking most of the
items. Hence, ants move through queries, which are similar to or

probably related with the active query in order to collect their

rank for those snippets of code that are not ranked for the active

query. The on-line process of CodeRAnts is described in the fol-

lowing steps:

i) Seek an active query vertex, 𝑎, which is selected if it is the most

similar to query, 𝑞, sent by a programmer. Suppose an engineer

makes a query with the word comprimir (i.e., 𝑞 = "𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑖𝑟");

by using edition distance as a method for measuring similarity be-

tween queries, 𝑞1 is the most similar vertex in the graph depicted

in Fig. 3 because there is no edition distance between 𝑞 and 𝑞1

due to the fact that both are exactly alike. Hereafter, for this ex-

ample, 𝑞1 is the active query vertex (i.e., 𝑞1 = 𝑎) in the graph de-

picted in Fig. 2.

ii) Create 𝑥 amount of ants, where 𝑥 is equal to number of out-

going edges from active query vertex, 𝑎. In Fig. 2, if the active

query vertex is 𝑞1, then two ants are created, because this vertex

has two outgoing edges.

iii) Each x-th ant selects the next vertex to be visited with the

probability 𝑃𝑞𝑖,𝑞𝑗

𝑘 = max (𝜌𝑞𝑖,𝑞𝑗 (𝑡) ×
𝑡𝑟𝑎𝑐𝑒𝑑𝑞𝑗

𝑢𝑛𝑟𝑎𝑡𝑒𝑑𝑎
) (adapted from Bedi

and Sharman, 2012), where 𝑞𝑗 ∉ 𝑡𝑎𝑏𝑢(𝑥), 𝑡𝑎𝑏𝑢(𝑥) is a set of

vertexes which the x-th ant has visited. 𝑡𝑟𝑎𝑐𝑒𝑑𝑞𝑗
 denotes the

amount of code snippets traced by the vertex 𝑞𝑗, which have not

been ranked by the active vertex 𝑎. 𝑢𝑛𝑟𝑎𝑡𝑒𝑑𝑎 is the total number

of code snippets that have not been ranked by the active vertex

𝑎. The x-th ant will stop when all its adjacent vertexes are in the

set 𝑡𝑎𝑏𝑢(𝑥). The whole process will finish when all ants may not

move anymore or when the ants’ TTL reaches its maximum value.

Taking 𝑞1 as the active query vertex, Table 3 shows that snippets

of code 𝑐1, 𝑐2, 𝑐3, 𝑐5, 𝑐6 and 𝑐7 do not have a ranking in 𝑞1. Among

the neighbors of 𝑞1, 𝑞2 there is a ranking for 𝑐2 and 𝑞3 has a rank-

ing for 𝑐5 and 𝑐6, hence, these rankings are collected. Therefore,

𝑐1, 𝑐3, and 𝑐7 are still without a ranking. Thereafter, ants keep

moving, by choosing 𝑞3 as the new destination vertex because the

path between 𝑞1 and 𝑞3 has the greatest concentration of phero-

mones. This step is repeated without passing twice through the

same vertex until ants reach their goal (i.e., to rank all snippets of

code), or until maximum TTL is reached. It is important to clarify

that when a certain snippet of code, 𝑐𝑖 , is ranked by at least two
neighbor vertexes, the ranking provided by the neighbors is

stored, descending sorted, in accordance with trails of pheromone

between the active vertex and its neighbors. For instance, when

ants are on the vertex 𝑞3, the snippet of code 𝑐1 shall be ranked

by its neighbor vertexes 𝑞4 and 𝑞5. In this example, the ranking

provided by 𝑞4 is stored before the other one provided by 𝑞5, due

to the fact that trails of pheromones between 𝑞3 and 𝑞4 are

stronger than the concentration of pheromones among 𝑞3 and 𝑞5.

iv) Generate suggestions through the method proposed by Res-

nick et al. (1994), with the expression 10, where 𝑟𝑞𝑖,𝑐𝑘
and 𝑟𝑞𝑗,𝑐𝑘

represent the rankings of vertexes 𝑞𝑖 and 𝑞𝑗 for the snippet of

code 𝑐𝑘, respectively. �̅�𝑞𝑖
 and �̅�𝑞𝑗

 denote the average rankings of

vertexes 𝑞𝑖 and 𝑞𝑗, respectively. 𝑡𝑜𝑝_𝑄 is the number of first

neighbors of the vertex 𝑞𝑖 with the biggest trail of pheromones.

For example, if 𝑡𝑜𝑝𝑄 = 10, then 𝑟𝑞1,𝑐4
= 1 +

1 (1−1)+ 0.22(0.33−0.5)+ 0.28 (0.25−0.33)

1+0.22+0.28
= 0.96

v) Finally, update 𝜌𝑞𝑖,𝑞𝑗 (𝑡) with Expression 11, where 𝜀 is the

evaporation rate of pheromones and 𝛿 is computed with Expres-

sion 12, where 𝜂𝑎,𝑞𝑘
=

1

𝑑𝑎,𝑞𝑘

, and 𝑑𝑎,𝑞𝑘
 represents the distance

from vertex 𝑎 to vertex 𝑞𝑘. Table 7 and Fig. 3 depict the update

to the pheromone graph, when 𝜀 = 0.01.

𝑟𝑞𝑖,𝑐𝑘
= 𝑟𝑞𝑖

 ̅̅ ̅̅ +
∑ 𝜌𝑞𝑖,𝑞𝑗 (𝑟𝑞𝑗,𝑐𝑘

− �̅�𝑞𝑗
)

𝑡𝑜𝑝_𝑄
𝑗=1

∑ 𝜌𝑞𝑖,𝑞𝑗
𝑡𝑜𝑝_𝑄
𝑗=1

(10)

CAICEDO-CASTRO AND DUARTE-AMAYA

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 1, APRIL - 2014 (72-78) 77

𝜌𝑞𝑖,𝑞𝑗 (𝑡) = (1 − 𝜀)𝜌𝑞𝑖,𝑞𝑗 (𝑡 − 1) + 𝛿𝑞𝑖,𝑞𝑗 (𝑡 − 1) (11)

𝛿𝑞𝑖,𝑞𝑗 (𝑡) = 𝜂𝑎,𝑞𝑘
∏ 𝜌𝑞𝑖,𝑞𝑘 (𝑡) ×

𝑡𝑟𝑎𝑐𝑒𝑑𝑞𝑗

𝑢𝑛𝑟𝑎𝑡𝑒𝑑𝑎

𝑑𝑎,𝑞𝑘

𝑘=1
 (12)

Table 7. Update of pheromone graph in Fig. 6, when 𝜀 = 0.01. The
meaning of each column is as follows: A = (1 − 𝜀)𝜌𝑞𝑖,𝑞𝑗 (𝑡 − 1), B =

𝜂𝑎,𝑞𝑘
, C = ∏ 𝜌𝑞𝑖,𝑞𝑘 (𝑡 − 1)

𝑑𝑎,𝑞𝑘

𝑘=1 , D =
𝑡𝑟𝑎𝑐𝑒𝑑𝑞𝑗

𝑢𝑛𝑟𝑎𝑡𝑒𝑑𝑎
, and E = 𝜌𝑞𝑖,𝑞𝑗 (𝑡).

 A B C D E

𝒒𝟏, 𝒒𝟐 0.21 1 0.22
1

6
 0.24

𝒒𝟏, 𝒒𝟑 0.27 1 0.28
2

6
 0.36

𝒒𝟑, 𝒒𝟒 0.46
1

2

0.22 x 0.47

= 0.1

4

6
 0.49

𝒒𝟑, 𝒒𝟓 0.26
1

2

0.22 x 0.27

= 0.06

4

6
 0.27

Simulation setting

Shani and Gunawardana (2010) present three methods to evaluate
recommender systems, namely, off-line, user studies and on-line.

In this work, CodeRAnts was evaluated through the first method

with a simulation program written in Java. The program generates

a bag-of-terms by assigning random values to the matrix termsCode,

which holds the frequency of each term in the source code (i.e., if

termsCode[3][4] is equal to 15, it means that the term 𝑡3 appears

fifteen times in the snippet of code 𝑐4). The dataset is randomly

generated due to the fact that there is not a real published dataset

of interaction between programmers and search engines, or pro-

grammers and recommender systems based on collaborative

searching.

A search engine and programmers are simulated in order to train

and test the simulated recommender system, which implements

the CodeRAnts method. In the training phase, programmers ran-

domly choose certain snippets of code by performing searches

through a simulated search engine. Queries are randomly selected

from a dataset and these terms appear with high frequency in the

snippet of code. In this way, the programmers’ knowledge for per-

forming a code search is simulated. The queries are words from

natural language, which are used to write source code. This phase

aims to fill the 𝑄𝐶𝑚 𝑥 𝑛matrix, by recording which snippets of code

are selected by programmers during the searches.

After the training phase, the simulator program performs the off-

line phase of the CodeRAnt method. Then, the on-line phase be-

gins the testing phase and other simulated programmers perform

source code searches through a simulated recommender system.

During the training phase, simulated programmers search at most

99 snippets of code and while testing phase is performed, the

other instances seek at most, 25 snippets of code, which are
stored in the dataset (i.e., relevant items). In both phases, pro-

grammers perform from 5 to 10 queries in order to search a snip-

pet of code. Each query is randomly selected from a bag-of-que-

ries. When a programmer finds a snippet of code, it is counted as

a retrieved item in order to compute precision and recall metrics.

Three fourths of the set of programmers are used for training and

one fourth of this set is used for testing. Assessments were per-

formed with sets of 30, 50, 100, 500, 1000, 5000, and 10000

programmers. Other parameters considered in the assessment

are: 𝛼 = 0.75, 𝛽 = 0.25, 𝑡ℎ = 1, timeout = 10, 𝜀 = 10−2, and

𝑘 = 10−3. These parameters were chosen by running the simula-

tion several times. Thus, we tuned the parameters until the best

performance was achieved. The next section shows the results of

the assessments with this experimental setting.

Results and discussion

Table 8 shows the results of the simulation. The average of preci-

sion and recall values is 0.53 and 0.71 respectively. These values

are better than those achieved by Cubranic et al. (2005) with Hip-

ikat, in average, 0.11 and 0.65 for precision and recall, respectively.

Furthermore, the outcomes of the simulation performed on

CodeRAnts are better than those observed by Ye and Fischer

(2005) with CodeBroker, namely, with this system precision is not

greater than 0.4, but recall reached 1.

Table 8. Results of assessment performed over CodeRAnts

Number of

programmers
Precision Recall

30 0.57 0.72

50 0.52 0.7

100 0.53 0.71

500 0.51 0.72

1000 0.51 0.7

5000 0.52 0.71

10000 0.52 0.7

Nevertheless, although with the simulations we achieved better
values than those obtained by other researchers, this assessment

method is not rigorous and its outcomes are slanted, given that

the above mentioned systems were evaluated through user-based

assessments. Cubranic et al. (2005) evaluated Hipikat with a group

of real programmers and the Eclipse source code (version 2.1). In

a similar fashion, Ye and Fischer (2005) carried out experiments

over CodeBroker with real programmers, but with the Java 1.1.8

core library and the JGL 1.3 library. Thereby, for future studies,

CodeRAnts must be assessed with the other systems using the

same experimental method and setting. Additionally, CodeRAnts

was assessed with a randomly generated dataset; hence, for fur-

ther work we must collect a real dataset through user-based ex-

periments.

The results of these experiments reveal that edit-distance-based

similarity between queries is not useful because the best perfor-

mance is achieved when the threshold parameter is equal to one.

Hence, this is almost the same procedure as checking whether

both queries are equal. In the future, we will assess other similarity

measures (e.g., cosine distance, Euclidean distance, and etcetera).

Conclusions and directions for further work

The contributions of this study are: i) a recommendation method

that can be implemented like a proxy of a code search engine or
an above mentioned recommender system (e.g., Strahtcona), in

order to allow them to improve their answers and recommenda-

tions for programmers; due to this, these systems could learn

from users’ collaboration through CodeRAnts. ii) a recommenda-

tion method which tackles the cold start problem given that a sys-

tem which implements CodeRAnts can suggest snippets of code,

although it receives new queries that do not belong to set 𝑄, by

searching other similar in this set. Moreover, through the ant col-

ony technique, a system which implements CodeRAnts can sug-

gest snippets of code, despite the fact that the matrix 𝑅𝑚 𝑥 𝑛
𝑄𝐶

 does

not have a ranking for these snippets given certain queries through

the search performed by ants, through possibly related or corre-

lated queries, and collecting ranking for these snippets, iii) a rec-
ommendation method, that in a simulated environment, has better

preliminary values of precision and recall than prior systems de-

signed for software reuse; however, it is important to highlight

that the results of the simulations are not definitive evidence of

CODERANTS: A RECOMMENDATION METHOD BASED ON COLLABORATIVE SEARCHING AND ANT COLONIES…

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 1, APRIL – 2014 (72-78) 78

the quality of recommendation provided through of CodeRAnts

method because in the simulation settings the bag-of-terms and

the dataset are randomlygenerate; moreover, CodeRAnts was not

evaluated with the same experimental method and setting carried

out in the other systems by other researchers.

For future studies the following are proposed: i) collect a real da-

taset through user-based experiments, ii) carry out the evaluation

of CodeRAnts with the other systems with the same experimental

method and setting and iii) test other similar measures (e.g., cosine

distance, Euclidean distance, etc.).

References

Ankolekar, A., Sycara, K., Herbsleb, J., Kraut, R., Welty, C., Support-

ing online problem-solving communities with the semantic web.,

Memoirs from 15th International conference on World Wide Web,

ACM Press, 2006, pp. 575–584.

Bajracharya, S. K., Lopes, C. V., Analyzing and mining a code

search engine usage log., 2010, Empirical Software Engineering,

pp. 1—43.

Balabanovic, M., Shoham, Y., Fab: content-based, collaborative

recommendation., Commun, Vol. 40, No. 3, 1997, ACM, pp. 66–

72.

Basu, C., Hirsh, H., Cohen, W., Recommendation as classification:

Using social and content-based information in recommenda-

tion., Proceedings of the 15th National Conference on Artificial

Intelligence, 1998, AAAI Press, pp. 714–720.

Bedi, P., Sharma, R., Trust based recommender system using ant

colony for trust computation., Expert Systems with Applications,

Vol. 39, No. 1, 2012, pp. 1183 – 1190.

Billsus, D., Pazzani, M. J., Learning collaborative information filters.,

Proceedings of the 15th International Conference on Machine

Learning, ICML ’98, San Francisco, CA, USA, 1998, Morgan Kauf-

mann Publishers Inc, pp. 46–54.

Boehm, B. W., Managing software productivity and reuse., IEEE

Computer, Vol. 32, No. 9, 1999, pp. 111–113. EPA, Title 40 Sub-

chapter I-Solid waste, 258 criteria for municipal solid waste land-

fills., Environmental Protection Agency, USA, 2000.

Bouassida, N., Kouas, A., Ben-Abdallah, H. A design pattern recom-

mendation approach., 2nd Interntional Conferences on Soft-

ware Engineering and Service Science (ICSESS), 2011, IEEE Press.

Brooks, F., No silver bullet essence and accidents of software engi-

neering., Computer, Vol. 20, No. 4, 1987, pp. 10–19.

Coyle, M., Smyth, B., Information recovery and discovery in collab-

orative web search., Proceedings of the 29th European confer-

ence on IR research, ECIR’07, Berlin, Heidelberg, Springer-Verlag,

2007, pp. 356–367.

Cubranic, D., Murphy, G. C., Singer, J., Booth, K. S., Hipikat: Apro-

ject memory for software development., IEEE Trans. Software

Eng., Vol. 31, No. 6, 2005, pp. 446–465.

Furnas, G. W., Landauer, T. K., Gomez, L. M., Dumais, S. T., The vo-

cabulary problem in human-system communication. Commun.

ACM, Vol. 30, No. 11, 1987, pp. 964–971.

Holmes, R., Walker, R., Murphy, G., Approximate structural context

matching: An approach for recommending relevant examples.,

IEEE Trans. Software Eng., Vol. 32, No. 1, 2006, pp. 952–970.

Jameson, A., Smyth, B., The adaptive web. Chapter Recommen-

dation to groups, Berlin, Heidelberg, Springer-Verlag, 2007, pp.

596–627.

Levenshtein, V. I., Binary codes capable of correcting deletions, in-

sertions and reversals., Soviet Physics Doklady, 1966, pp. 707-710.

Mcilroy, D., Mass–produced software components. Software Engi-

neering, conference by the NATO Science Committee, 1968, pp.

952–970.

Mockus, A., Herbsleb, J., Expertise browser: Aquantitative ap-

proach to identifying expertise. 24th International Conference on

Software Engineering, New York, United States of America, IEEE

CS Press, 2002, pp. 503–512.

Morris, M. R., A survey of collaborative web search practices., Pro-

ceedings of the 26th annual SIGCHI conference on Human fac-

tors in computing systems, CHI ’08, 2008, New York, NY, USA, ACM,

pp. 1657–1660.

Picault, J., Ribiere, M., Bonnefoy, D., Mercer, K., Recommeder sys-

tems Handbook, chapter 10: How to Get the Recommender Out

of the Lab?, 2010, Springer–Verlag, pp. 579–614.

Pohl, K., Böckle, G., Software Product Line Engineering, Founda-

tions, Principles, and Techniques., Springer–Verlag, Germany,

2005.

Poulin, J. S., Caruso, J. M., Hancock, D. R., The business case for

software reuse. IBM Syst. J., Vol. 32, No. 4, 1993, pp. 567–594.

Raymond, E. S., The Cathedral and the Bazaar., 1st ed., Sebasto-

pol, CA, USA, O’Reilly & Associates, Inc., 1999.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedle, J.,

Grouplens: An open architecture for collaborative filtering of net-

news., Conference on computer supported cooperative work,

Chapel Hill, ACM Press, 1994, pp. 175–186.

Resnick, P., Varian, H. R., Recommender systems., Commun. ACM,

Vol. 40, No. 3, 1997, pp. 56–58.

Ricci, F., Rokach, L., Shapira, B., Recommeder systems Handbook,

chapter 1: Introduction to Recommeder systems Handbook.,

Springer–Verlag, 2010, pp. 1–38.

Robillard, M., Walker, R., Zimmermann, T., Foreword. Workshop on

Recommendation Systems for Software Engineering., ACM Press,

2008.

Robillard, M., Walker, R., Zimmermann, T., Recommmedation sys-

tems for software engineering., Software IEEE, Vol. 27, No. 4, 2010,

pp. 80–86.

Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J. T., Application of

dimensionality reduction in recommender system – a case study.,

ACM WebKDD 2000 Web Mining for ECommerce Workshop, Vol.

1625, No. 1, 2000, pp. 264–268.

Schafer, J. B., Konstan, J., Riedi, J., Recommender systems in ecom-

merce., Proceedings of the 1st ACM conference on Electronic

commerce, EC ’99, New York, NY, USA, ACM, 1999, pp. 158–166.

Shani, G. Gunawardana, A., Recommeder systems Handbook,

chapter 8: Evaluating Recommendation Systems., Springer–Ver-

lag, 2010, pp. 257–297.

Smyth, B., Case-based recommendation., In: The Adaptive Web,

2007, pp. 342–376.

Smyth, B., Coyle, M., Briggs, P., Recommeder systems Handbook,

chapter 18: Communities, Collaboration, and Recommender

Systems in Personalized Web Search., Springer–Verlag, 2010, pp.

579–614.

Thummalapenta, S., Xie, T., Parseweb: A programming assistant for

reusing open source code on the web. IEEE/ACM International

conferences on Automated Software Engineering, ACM Press,

2007, pp. 204–213.

Ye, Y., Fischer, G., Reuse-conducive development environments.,

Automated Software Eng., Vol. 12, No. 2, 2005, pp. 199–235.

Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S., Mining versión

histories to guide software changes., IEEE Trans. Software Eng.,

Vol. 31, No. 6, 2005, pp. 429–445.

