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ABSTRACT  

The Coded Aperture Snapshot Spectral Imaging (CASSI) system captures the three-dimensional (3D) spatio-spectral information of a 

scene using a set of two-dimensional (2D) random-coded Focal Plane Array (FPA) measurements. A compressive sensing reconstruc-

tion algorithm is then used to recover the underlying spatio-spectral 3D data cube. The quality of the reconstructed spectral images 

depends exclusively on the CASSI sensing matrix, which is determined by the structure of a set of random coded apertures. In this 

paper, the CASSI system is generalized by developing a multiple-aperture optical imaging system such that spectral resolution en-

hancement is attainable. In the proposed system, a pair of high-resolution coded apertures is introduced into the CASSI system, allow-

ing it to encode both spatial and spectral characteristics of the hyperspectral image. This approach allows the reconstruction of super-

resolved hyperspectral data cubes, where the number of spectral bands is significantly increased and the quality in the spatial domain 

is greatly improved. Extensively simulated experiments show a gain in the peak-signal-to-noise ratio (PSNR), along with a better fit of 

the reconstructed spectral signatures to the original spectral data. 
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RESUMEN 

El sistema de sensado de imágenes espectrales, basado en la apertura codificada y de única toma (CASSI), captura la información 

espacial y espectral de una escena; mediante mediciones codificadas aleatorias capturadas en un sensor 2D. Un algoritmo basado 

en la teoría de sensado compresivo (CS), es utilizado para recuperar la escena tridimensional original a partir de las mediciones 

aleatorias capturadas. La calidad de reconstrucción de la escena depende exclusivamente, de la matriz de sensado del CASSI, la 

cual es determinada por la estructura de las aperturas codificadas que son utilizadas. 

En este artículo, se propone una generalización del sistema CASSI por medio del desarrollo de un sistema óptico multi-apertura, que 

permite el mejoramiento de la resolución espectral. En el sistema propuesto, un par de aperturas codificadas de alta resolución es 

introducido en el sistema CASSI, permitiendo así, la codificación tanto espacial como espectral de la imagen hiperespectral. Este 

enfoque permite la reconstrucción de cubos de datos hiperespectrales, donde el número de las bandas espectrales se aumenta 

significativamente respecto al original, y la calidad espacial es mejorada en gran medida. Así mismo, los experimentos simulados 

muestran mejoramiento en la relación de pico-de-señal-a-ruido (PSNR), junto con un mejor ajuste en las firmas espectrales reconstrui-

das sobre los datos espectrales originales. 

Palabras clave: imágenes hiperespectrales, mejora de resolución espectral, sensado compresivo y apertura codificada. 
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Introduction1234 
Hyperspectral imaging requires sensing a large amount of spatial 
information across many wavelengths. Traditional hyperspectral 
imaging techniques scan adjacent zones of the underlying spectral 
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scene and merge the results to construct a hyperspectral 3-Di-
mensional (3D) data cube. Push-broom spectral imaging sensors, 
for instance, capture a spectral data cube by using one FPA meas-
urement per spatial line of the scene (Brady, D. J., 2009). Spec-
trometers based on optical band-pass filters need to scan the 
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scene by tuning band-pass filters in steps (Eismann, M., 2012). 
These sensing techniques obey the well-known Nyquist criterion, 
which imposes a severe limit on the required number of samples. 
More specifically, these methods require scanning a number of 
zones linearly in proportion to the desired spatial or spectral res-
olution. As the desired resolution increases, the required number 
of samples grows considerably such that the cost of sensing a hy-
perspectral image is extremely high. Recently, a mathematical 
technique called Compressive Sensing (CS) has allowed signal sam-
pling at rates below the Nyquist rate (Donoho, D. L., 2006). This 
new technique involves diverse mathematical areas, such as nu-
merical optimization, signal processing, random matrix analysis, 
and statistics. The enormous potential of CS has been recently 
applied in areas such as microscopy, holography, tomography and 
spectroscopy (Willett, Marcia, and Nichols, 2011; Arguello and 
Arce, 2013). 

This paper focuses on the application of CS in spectral imaging; 
this technique has been termed Compressive Spectral Imaging 
(CSI). CSI senses 2D coded random projections of the underlying 
scene such that the number of required projections is far less than 
those in the linear scanning case. CSI exploits the fact that hyper-
spectral images can be sparse in some basis representations (Can-
dès and Tao, 2011). Formally, suppose that a hyperspectral sig-
nal	� ∈ ������, or its vector representation		 ∈ ����, is 
-
sparse on some basis	�, such that 	 � �
 can be approximated 
by a linear combination of 
 vectors of � with	
 ≪ ���. Here, � ��	represents the spatial dimensions, and � is the spectral 
depth of the image cube. CSI allows 	 to be recovered from � 
random projections with high probability when	� �
�������� ≪ ���. 

The Coded Aperture Snapshot Spectral Imaging (CASSI) system 
(Wagadarikar, John, Willett, and Brady, 2008; Arguello and Arce, 
2011) is a remarkable imaging architecture that effectively imple-
ments CSI. Thus, CASSI senses the 3D spectral information of a 
scene by using 2D random projections, as depicted in Fig. 1(a). The 
principal components in CASSI include the coded aperture, the 
dispersive element and the Focal Plane Array (FPA). The coded 
aperture patterns are the only varying elements in CASSI, while 
the other optical elements remain fixed during the operation of 
the instrument. The input-output relation in CASSI can be ex-
pressed as � � ��, where � represents the random projections, � is the transfer function representing the dispersive element and 
the coded aperture effects, and � is the 3D spectral data cube in 
vector form (Arguello, Correa and Arce, 2013; Arguello, Rueda 
and Arce, 2013). Given the compressive measurement	�, the ob-
jective of CS is to recover an estimate of � by using an ℓ� � ℓ� 
norm-based optimization algorithm, which exploits the sparsity 
property of the hyperspectral source. 

Despite its potential, CASSI faces a limiting trade-off between spa-
tial and spectral resolution, with the total number of recoverable 
voxels constrained by the size of the FPA. This constraint limits 
the utility and cost-effectiveness of compressive hyperspectral im-
aging for many applications. CSI in infrared (IR) wavelengths is an 
application where FPAs are particularly critical components, be-
cause they become very costly when the resolution increases 
(Arce, Brady, Carin, Arguello, and Kittle, 2014). As a consequence, 
spectral super-resolution enhancement is a topic of high interest, 
because high-resolution reconstructions can be attained from low-
resolution/low-cost FPA detectors.  

This paper presents the spectral resolution enhanced multi-aper-
ture CASSI system (SREM-CASSI), which is a generalization of the 
CASSI system that includes a new multi-aperture section formed 

by a dispersive element sandwiched with a pair of high-resolution 
coded apertures. This configuration leads to multiple-coding flex-
ibility of the spatial and spectral characteristics of the hyperspec-
tral scene, thus permitting the reconstruction of highly resolved 
scenes from multiple-coded low-resolution FPA 2D projections. 
In particular, the random projections in SREM-CASSI are given by � �  ��, where � is the transfer function accounting for the pair 
of coded apertures and the dispersive element effects and   is a 
decimation matrix representing the effect of the low-resolution 
FPA detector. In the following, we introduce the design of the 
SREM-CASSI optical architecture, along with its optical and matrix 
model, as well as simulations to evaluate the attainable improve-
ments.  

SREM-CASSI System Model 
The proposed SREM-CASSI optical architecture is depicted in Fig-
ure 1(a). This is composed by eight optical elements: four lenses, 
two high-resolution coded apertures, a dispersive element (prism 
or grating) and a low-resolution detector. The spatio-spectral 
power source density is denoted as !"�#, %, &�, where # and % 
index the spatial domain and & indexes the wavelengths. The 
source density is first spatially modulated by the coded aper-
ture	'��#, %�, resulting in a coded field represented 
as	!��#, %, &� � '��#, %�!"�#, %, &�. Subsequently, the coded field 
is sheared by the dispersive element, whose output can be ex-
pressed as 

!��#, %, &� � (!��#), %), &�*�# � #) � 
�&�, % � 	%)�+#)+%), (1) 

where	*�# � #) � 
�&�, % � 	%)� is the optical impulse response 
of the system, and 
�&�	represents the dispersion, which occurs 
only in the horizontal direction. After dispersion, the source den-
sity is then modulated by a second coded aperture	'��#, %�, re-
sulting in the field	!,�#, %, &� � '��#, %�!��#, %, &�.  

 
a) Optical elements present in SREM-CASSI 

 
b) Propagation of the hyperspectral source through the optical elements in  

SREM-CASSI 

Figure 1.  The Spectral Resolution Enhanced Multi-aperture CASSI 
system (SREM-CASSI). (a) SREM-CASSI optical architecture. (b) Rep-
resentation of the sensing process. First, the � �� � � data cube is 
spatially modulated by the first coded aperture �'��. Subsequently, 
the coded data cube is spectrally dispersed by a prism in the hori-
zontal direction and modulated again by the second coded aper-
ture �'��. Finally, the spatio-spectral coded information is deci-
mated and integrated by the low-resolution detector. The coded 
aperture pixel sizes ∆.� and ∆.� are smaller than the resolvable 
pixel at the detector Δ0. 
Finally, the compressive measurements are realized by the integra-
tion of the doubly encoded and dispersed data over the detector’s 
spectral range sensitivity. The spectral density just in front of the 

detector can be expressed as ��#, %� � 2!,�#, %, &� +&. More 
specifically, ��#, %� can be written as 



SPECTRAL RESOLUTION ENHANCEMENT OF HYPERSPECTRAL IMAGERY BY A MULTIPLE-APERTURE COMPRESSIVE … 

INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 3, DECEMBER - 2014 (50-55) 52   

��#, %� � 3'��#, %� 4('� �#), %)�!"�#), %), &�*�# � #)� 
�&�, % � 	%)�+#)+%)5 +&. (2) 

If the optical impulse response of the system is assumed to be 
linear, Eq. (2) can be succinctly expressed as 

��#, %� � 3'��#, %�'� �# 6 
�&�, %�!"�# 6 
�&�, %, &�	+&. (3) 

 

 

The coded aperture pixel sizes of '� and '� are denoted as ∆.� 
and	∆.�, respectively. The transmittance functions of both coded 
apertures are then given by 

'��#, %� � 7 89:;:���
;:9: rect @ #∆.� ��), %∆.� � A)B, (4) 

 '��#, %� � 7 89:;:���
;:9: rect @ #∆.� ��), %∆.� � A)B, (5) 

where 89:;:���
 and 89:;:���

 are binary values accounting for a translu-

cent (1) or blocking (0) element. The term rect�� represents the 
rectangular step function. In practice, the coded apertures are im-
plemented through the use of digital micro-mirror devices (DMD) 
or photomasks.  

To choose which coded apertures to use, it is important to take 
care of the throughput of the system. In SREM-CASSI, the trans-
mittances of the coded apertures define the throughput of the sys-
tem; therefore, both coded apertures are related. More clearly, 
the transmittance of the new system is the product of the trans-
mittance of the two coded apertures. Although the distribution of 
the coded aperture entries can be optimized to achieve better re-
construction results, they can be generated completely at random 
to show the improvement of the SREM system over the traditional 
CASSI. Furthermore, the use of random distributions entails high 
incoherence with the signal representation basis, which assures 
the correct reconstruction of the signal. Figure 2 shows an exam-
ple of two typical coded aperture realizations with different trans-
mittance levels, where the white pixels represent translucent ele-
ments that allow the light to pass through and the black pixels 
represent blocking elements. 

 
Figure 2. Two coded apertures with different transmittance levels. 
White pixels allow the light to pass through, while black pixels block 
the light 

Furthermore, assuming the pixel size of the detector is ∆0, the 
integration of the continuous field ��#, %� in a single detector pixel 
can be expressed as 

�9,; �(��#, %� rect @ #∆0 ��, %∆0 � AB +#+%. (6) 

Using Eqs. (3-5) in (6), the energy captured in the �A,��CD pixel is 
expressed as 

�9,; � 7 89:;:���
;:,9: 	89:;:���

�EFG.8 @ #∆.� ��), %∆.� � A)B� FG.8 @# 6 
�&�∆.� ��), %∆.� � A)B� FG.8 @ #∆.0 ��, %∆.0 � AB� !"�# 6 
�&�, %, &�+&+#+% 6 H9,;, 
(7) 

where H9,; represents the noise of the system. Representing the 

source density !"�#, %, &� in discrete form as !I,J,K, Eq. (7) can be 
succinctly expressed as 

�9,; � 7 7 789:;:��� 89:�;:LK���� !9:�;:LK�K
�
KM�

�9N��∆
9:M9∆

�;N��∆
;:M;∆ 6 H9,;, (8) 

for A	 � 	1,… , �′, �	 � 	1,… ,�), where �) ��′ is the number 

of pixels in the detector, Δ � ∆R∆ST � ∆R∆SU is the ratio between the 

size of the detector and the coded aperture pixels, and � is the 
number of spectral bands of the data cube. In this paper, it is as-
sumed that Δ ∈ VN, that is, the detector and coded aperture pixel 
sizes satisfy ∆0� W�∆.� � W�∆.�, where W�, W� � 1 are integers. 

Notice that �) � �X and �) � Y�N�L�X Z, where � �� corre-

sponds to the number of pixels in the first coded aperture and � � �� 6 � � 1� in the second coded aperture. A critical require-
ment to achieve spectral super-resolution is that the pixel sizes of 
both coded apertures must be smaller than that of the detector, 
i.e., ∆.� [ ∆0 and ∆.� [ ∆0 . 
SREM-CASSI Matrix Forward Model 
The SREM-CASSI FPA measurements given in Eq. (8) can be suc-
cinctly expressed in matrix notation as 

\I �  �I� 6 ]I ,								^ ∈ 1,… ,_, (9) 

where _ is the number of captured snapshots, the matrix   rep-
resents the decimation originated by the low resolution detector, \I and � are vector representations of �9,; and !IJK in Eq. (8), 

respectively, �I is the projection matrix accounting for the disper-

sive element and the ^CD	coded apertures, and the vector ]I rep-
resents the noise of the system. Notice that the coded apertures '��#, %� and '��#, %� change for every snapshot. Notice also that, 
in Eq. (9), �	represents the high-resolution spectral source data 

cube, whereas the vectors \I correspond to low-resolution meas-
urements. Figure 1(b) shows a sketch of the sensing process to 

obtain the low-resolution measurements \I from the high-resolu-
tion spectral scene. The snapshots are taken sequentially, and it is 
assumed that the underlying spectral scene remains static during 
the integration time of the K snapshots. The optical transmission 
function of the system is represented by 

�I � �̀Ia �̀I, (10) 

where a is a ��� 6 � � 1� � ��� matrix representing the dis-

persive element operation and ̀ �I and ̀ �I are the matrix represen-

tations of the coded apertures used in the ^CD snapshot. Specifi-

cally, �̀I is a ��� � ��� block-diagonal matrix of the form 

�̀I � bcc
ddiag�i�j � k����� ⋯ k�����k����� diag�i�j � ⋯ k�����⋮ ⋮ ⋱ ⋮k����� k����� ⋯ diag�i�j �op

pq, (11) 
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where diag�i�j � represents an �� ��� matrix with the ele-

ments of i�I  in the diagonal and krs�rs is an NM� NM zero-
valued matrix. Notice that the function “diag(x)” is defined as a 
function that places the elements of the vector parameter x in the 
diagonal of a matrix. 

The second coded aperture ̀ �I operation is modeled in the system 
as an ���	 6 � � 1� � ���	 6 � � 1� matrix, with the values of 
the second coded aperture in its diagonal. Alternately, the disper-
sive element operation is represented by the matrix a, which can 
be written as 

a � vdiag�w��
	 � k���� ⋯ k����k���� diag�w��	 � ⋯ k����⋮ ⋮ ⋱ ⋮k���� k���� ⋯ diag�w��	 �x, (12) 

where w��	  represents an ��-long one-valued vector. Finally, y � z{w∆	 			k�L∆	 	| ⊗	w∆	 ~, where ⊗ is the Kronecker matrix 
product operation and 

� � v yy�
�̀�∆⋮y�
�̀��L∆x (13) 

where  

�� � bcc
cd0 0 ⋯ 0 11 0 ⋯ 0 00 1 ⋯ 0 0⋮ ⋮ ⋱ ⋮ 00 0 ⋯ 1 0opp

pq. (14) 

Notice that the matrix operation y�
���K in Eq. (13) shifts the col-
umns of	y by W positions circularly to the right. Consequently, the 
decimation operation resulting from the low-resolution detector 
can be modeled as 

 � bcc
cd � k�∆��∆ k�∆��∆k�∆��∆ � k�∆��∆k�∆��∆ k�∆��∆ � opp

pq (15) 

For a multiple-snapshot approach, the general model for SREM-
CASSI can be written as 

bcc
d\�\�⋮\�opp

q �  v����⋮��x �. (16) 

Furthermore, Eq. (16) can be succinctly expressed as 

\ �  ��, (17) 

where � � {����� …	�����|� ∈ �0,1�����N�L�������� and \ �{�\��� …	�\���|�. In particular for reconstruction, the hyper-
spectral signal �	 ∈ 	������, or its vector representation �	 ∈	��.�.�, is assumed to be 
-sparse on some basis �, such that � ��
. Here, 
 are the coefficients of the sparse representation. 
Hence, � can be approximated by a linear combination of 
 vectors 

from � with 
 ≪ �.�. �. Specifically, an estimation �� of the high-
resolution data cube � from the low-resolution measurements \	can be achieved by solving the optimization problem 

�� � ��argmin�:‖� �  ���)‖�� 6 �‖�)‖�	� (18) 

where � > 0 is a regularization parameter that balances the con-
flicting tasks of minimizing the least squares residuals and, at the 
same time, searches for a sparse solution. 

Analysis of the Forward Operators 
The singular value spectrums for the sensing matrices based on 
the random selection of the coded apertures for the SREM-CASSI 
system and the traditional CASSI system are presented in Fig. 3. 

The condition number � � �T�� is indicated as a measure of ill-pos-

edness, where &� represents the most significant eigenvalue and &� the less significant. As � is smaller, the forward operator � is 
better posed. It can be observed that, although the spread of the 
singular values behaves in a similar fashion for both architectures 
regardless of the transmittance level of the coded apertures, the 
SREM-CASSI condition number is significantly smaller than that of 
the traditional CASSI. In consequence, the SREM-CASSI optical 
design leads to better well-conditioned sensing matrices. 

  
a) b) 

 
c) 

Figure 3. Singular value spectra analysis of the forward sensing op-
erator � for the SREM-CASSI (SREM) system and the traditional 
CASSI (Trad.) system. (a) For ∆� 2, (b) ∆� 4, and (c) ∆� 8 
Simulations and Results 
A high-resolution spectral data cube exhibiting � � 24 spectral 
bands and � � � � 256 spatial pixels was experimentally ob-
tained using a wide-band Xenon lamp as light source and a visible 
monochromator that spans between 451 nm and 642 nm (RGB 
representation in Fig. 4(a)). The image intensity was captured using 
a CCD camera with a 656x492 pixel resolution and a pixel size of 
9.9 µm. A low-resolution spectral data cube was obtained by clus-
tering the 24 bands into 6 bands. The spectral range is the same 
for both the high- and low-resolution data cubes. The bandwidth 
of each spectral band in the high-resolution data cube is 8 nm, 
whereas the low-resolution data cube exhibits 32 nm per band.  

The goal of these experiments is to recover the datacube exhibit-
ing 24 bands from the 6-band data cube. To accomplish this, two 
high-resolution coded apertures with 256x256 and 256x279 pixel 
resolutions are employed. The entries of these coded apertures 
are random realizations of Bernoulli random variables, with differ-
ent levels of transmittance. To obtain an estimation of the high-
resolution spectral data cube, the optimization problem in Eq. (18) 
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is solved by using the Gradient Projection for Sparse Reconstruc-
tion algorithm (GPSR) as it exhibits faster computational speed 
(Figueiredo, Nowak, and Wright, 2007). In addition, the represen-
tation basis � was set to be the Kronecker product of three ba-
ses,	��⊗��⊗�,, where the combination ��⊗�� was the 
2D-Wavelet Symlet 8 basis and �,	was the Discrete Cosine basis. 
Due to the random nature of the coded aperture entries, ten trials 
were performed for each experiment, and the results were aver-
aged. 

  

a) b) 

  
c) d) 

Figure 4. Transmittance analysis of the coded apertures for differ-
ent snapshots. (a) Original data cube. (b) Δ � 2; (c) Δ � 4; and (d)	Δ �8. 
Three different coded aperture/detector pixel ratios Δ (2, 4, 8) 
were evaluated, along with six different transmittance levels (10%, 
20%, 30%, 50%, 80%, and 100%) of the coded apertures. Figure 4 
shows the results for different transmittance levels and the corre-
sponding average PSNR of the reconstruction that was achieved. 
Note that better results are obtained when the transmittance is 
lower than 50%, with 10%-20% being the best average transmit-
tance ratio interval. It can be noticed that the results worsen when 
we approach the CASSI architecture (transmittance = 100%). 

 
Figure 5. Comparison of the reconstruction PSNR between SREM-
CASSI (SREM) and traditional CASSI (CASSI), as the number of snap-
shots increases, for the different decimation ratios Δ � 2,4,8. 
 

   
a) b) c) 

Figure 6. Zoom version of the reconstructed datacube for ∆� 4 using 
the traditional CASSI and the SREM-CASSI. (a) Original image, (b) 
Traditional CASSI with PSNR=28.5 dB, (c) SREM-CASSI with 
PSNR=31 dB. 
 

 
a) Spectral datacube pixels under study 

 
b) Spectral signatures of the (67,37) spatial pixel 

 
(c) Spectral signatures of the (211,137) spatial pixel 

Figure 7. Spectral signatures analysis. (a) Original image, indicat-
ing the pixels under study. (b) Spectral signature of the (67,37) spa-
tial coordinate of the data cube, and (c) (211,137) spatial coordi-
nate of the data cube. As the decimation ratio increases, the recon-
structed quality decreases, but the SREM-CASSI (SR-CASSI) result is 
always closer to the original signature than the one from CASSI 

 

Original

0.1 0.2 0.3 0.5 0.8 1
29

30

31

32

33

Transmittance Analysis for ∆ = 2

Transmittance of the 2nd Coded Aperture

M
e

a
n

 P
S

N
R

 

 
K=8

K=16

K=32

K=128

0.1 0.2 0.3 0.5 0.8 1
28

28.5

29

29.5

30

30.5

31

31.5

Transmittance Analysis for ∆ = 4

Transmittance of the 2nd Coded Aperture

M
e
a
n
 P

S
N

R

 

 

K=8

K=16

K=32

K=128

0.1 0.2 0.3 0.5 0.8 1
26.5

27

27.5

28

28.5

29

Transmittance Analysis for ∆ = 8

Transmittance of the 2nd Coded Aperture

M
e

a
n

 P
S

N
R

 

 

K=8

K=16

K=32

K=128

8 16 32 64 128
26

27

28

29

30

31

32

33
Mean PSNR vs Snapshots

Snapshots

M
e

a
n

 P
S

N
R

 

 
SREM (∆ = 2)

CASSI (∆ = 2)

SREM (∆ = 4)

CASSI (∆ = 4)

SREM (∆ = 8)

CASSI (∆ = 8)

PSNR=24.95



RUEDA, PARADA AND ARGUELLO 

  

               INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 3, DECEMBER - 2014 (50-55)    55 

Using the best transmittance level for each experiment, Fig. 5 
shows the reconstruction PSNR vs. the number of captured snap-
shots for different values of Δ, using the SREM-CASSI and the tra-
ditional CASSI architectures. There, it is evident that, as the deci-
mation ratio increases, the reconstruction quality decreases. 
However, capturing more snapshots can alleviate the loss in qual-
ity. Thus, a reconstruction PSNR of 28 dB is achieved by using 
either Δ � 2 and 4 snapshots, Δ � 4 and 8 snapshots, or Δ � 8 
and 64 snapshots. Then, if an eight-times smaller resolution detec-
tor is available, roughly eight times more snapshots are required 
to achieve similar reconstruction results. In Fig. 5, it can also be 
seen how the results from the SREM-CASSI architecture surpass 
those achieved by the traditional CASSI. 

Figure 5. Comparison of the reconstruction PSNR between SREM-
CASSI (SREM) and traditional CASSI (CASSI), as the number of 
snapshots increases, for the different decimation ratios Δ � 2,4,8. 

In contrast, Fig. 6 shows the reconstruction results of the right-
hand side object obtained with the traditional CASSI and the pro-
posed architecture when Δ � 4 is used and 128 shots are cap-
tured. It can be easily noticed that the SREM reconstruction quality 
improves on that obtained with the traditional CASSI. 

Finally, Fig. 7 shows the comparison between the reconstructed 
spectrums of three selected points from the data cube for differ-
ent number of snapshots and Δ � 2. As the number of captured 
snapshots increases, the spectral signatures approach the original 
signature. 

Conclusions 
A spectral resolution enhancement methodology for coded aper-
ture-based multiple-snapshot spectral imaging systems has been 
developed. The proposed optical architecture exploits the sub-
pixel information from the original hyperspectral signal by means 
of two high-resolution coded apertures, attaining richer spectral 
scenes by using a low-resolution detector but at the cost of cap-
turing multiple FPA measurements. The reconstructions attained 
up to 32.5 dB of PSNR with half the size of a full-resolved FPA (2 
dB decay), 31 dB with a detector four times smaller (3.5 dB decay) 
and 28.5 dB with an eight-times smaller detector (6 dB decay). 
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