
INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65)

 55

Design of elliptic curve cryptoprocessors over GF(2163)

using the Gaussian normal basis

Diseño de criptoprocesadores de curva elíptica sobre GF(2163)

usando bases normales Gaussianas

P.C. Realpe-Muñoz1, V. Trujillo-Olaya2 and J. Velasco-Medina3

ABSTRACT

This paper presents an efficient hardware implementation of cryptoprocessors that perform the scalar multiplication kP over a finite

field GF(2163) using two digit-level multipliers. The finite field arithmetic operations were implemented using the Gaussian normal basis

(GNB) representation, and the scalar multiplication kP was implemented using the Lopez-Dahab algorithm, the 2-non-adjacent form

(2-NAF) halve-and-add algorithm and the wNAF method for Koblitz curves. The processors were designed using a VHDL description,

synthesized on the Stratix-IV FPGA using Quartus II 12.0 and verified using SignalTAP II and Matlab. The simulation results show that the

cryptoprocessors provide a very good performance when performing the scalar multiplication kP. In this case, the computation times

of the multiplication kP using the Lopez-Dahab algorithm, 2-NAF halve-and-add algorithm and 16NAF method for Koblitz curves were

13.37 µs, 16.90 µs and 5.05 µs, respectively.

Keywords: elliptic curve cryptography, Gaussian normal basis, digit-level multiplier, scalar multiplication.

RESUMEN

En este trabajo se presenta la implementación eficiente en hardware de criptoprocesadores que permiten llevar a cabo la multipli-

cación escalar kP sobre el campo finito GF(2163) usando dos multiplicadores a nivel de digito. Las operaciones aritméticas de campo

finito fueron implementadas usando la representación de bases normales Gaussianas (GNB), y la multiplicación escalar kP fue imple-

mentada usando el algoritmo de López-Dahab, el algoritmo de bisección de punto 2NAF y el método wNAF para curvas de

Koblitz. Los criptoprocesadores fueron diseñados usando descripción VHDL, sintetizados en el FPGA Stratix-IV usando Quartus II 12.0 y

verificados usando SignalTAP II y Matlab. Los resultados de simulación muestran que los criptoprocesadores presentan un muy buen

desempeño para llevar a cabo la multiplicación escalar kP. En este caso, los tiempos de computo de la multiplicación kP usando

Lopez-Dahab, bisección de punto 2NAF y 16NAF para curvas de Koblitz fueron 13.37 µs, 16.90 µs and 5.05 µs, respectivamente.

Palabras clave: criptografía de curva elíptica, bases normales Gaussianas, multiplicador a nivel de digito, multiplicación escalar.

Received: October 29th 2013

Accepted: February 25th 2014

Introduction123

The use of computer networks and the steady increase in the

number of users of these systems have driven the need to improve

security for the storage and transmission of information. There

are many applications that must ensure the privacy, integrity or

authentication of the information stored or transmitted. The se-

curity of the applications has been resolved by using different cryp-

tographic algorithms, which are used in private- or public-key

cryptosystems.

The security of public-key cryptosystems is based on mathematical

problems that are computationally difficult to resolve, i.e., prob-

lems for which there are no known algorithms to resolve them in

1 Paulo Cesar Realpe Muñoz. Bs in Physic Engineering, Universidad del Cauca, Co-

lombia. M.Sc. in Electronics Engineering, Universidad del Valle, Colombia. Affiliation:

Universidad del Valle, Colombia. E-mail: paulo.realpe@correounivalle.edu.co
2 Vladimir Trujillo Olaya. Bs in Electronic Engineering, Universidad del Valle, Colom-

bia. M. Sc. in Electronics Engineering, Universidad del Valle, Colombia. Affiliation: Uni-

versidad del Valle, Colombia. E-mail: vladimir.trujillo@correounivalle.edu.co

a practical time. Because of the high volume of information pro-

cessed, electronic systems are required to perform the encryption

and decryption processes in the shortest time possible without

compromising the security. In this regard, hardware implementa-

tions of cryptographic algorithms have advantages, such as high

speed, high security levels and low cost.

One of the most important cryptosystems is the elliptic curve

cryptosystem (ECC), proposed independently by Koblitz (Kobliz,

1987) and Miller (Miller, 1986). There have been several investiga-
tions of the theory and practice of this cryptosystem. The results

of the investigations demonstrated the ability of these systems to

encrypt information and concluded that this cryptosystem offers

3 Jaime Velasco Medina. B.S in Electrical Engineering, University del Valle, Colombia.

Ph.D in Microelectronics, TIMA-INPG, France. Universidad del Valle, Colombia. E-

mail: jaime.velasco@correounivalle.edu.co

How to cite: Realpe-Muñoz, P. C., Trujillo-Olaya, V., & Velasco-Medina, J. (2014).

Design of elliptic curve cryptoprocessors over GF(2163) using the Gaussian normal

basis. Ingeniería e Investigación, 34(2), 55-65.

DESIGN OF ELLIPTIC CURVE CRYPTOPROCESSORS OVER GF(2163) USING THE GAUSSIAN NORMAL BASIS

INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 56

better security, efficiency and memory usage. The hardware im-

plementations of ECCs have many advantages and are used in

equipment such as ATMs, smart cards, telephones, and cell

phones.

In elliptic curve cryptography, it is known that finding the discrete

logarithm of a random elliptic curve element with respect to a

publicly known base point, that is, the elliptic curve discrete loga-

rithm problem or ECDLP, has high hardness. The entire security

of the ECC depends on the ability to compute the scalar multipli-

cation and the inability to compute the multiplicand given the orig-

inal and product points. Furthermore, the finite-field size of the

elliptic curve determines the computational complexity of the

above problem.

Several works regarding scalar multiplication over a finite field

GF(2m) have been proposed and implemented efficiently in hard-

ware.

C. Rebeiro and D. Mukhopadhyay (Rebeiro and Mukhopadhyay,

2008) presented a cryptoprocessor with novel multiplication and

inversion algorithms. J.Y. Lai, T.Y. Hung, K.H. Yang and C.T. Huang

(Lai et al., 2010) proposed an architecture for elliptic curves along

with the operation scheduling for the Montgomery scalar multipli-

cation algorithm. B. Muthukumar and S. Jeevananthan (Muthuku-

mar and Jeevanahthan, 2010) implemented an elliptic curve co-

processor, which is a dual-field processor with a projective coor-

dinate. A.K. Rahuman and G. Athisha (Rahuman and Athisha, 2010)

presented an architecture using the Lopez-Dahab algorithm for

the elliptic curve point multiplication and Gaussian normal basis

(GNB) for field arithmetic over GF(2163). M. Amara and A. Siad

(Amara and Siad, 2011) proposed an EC point multiplication pro-

cessor intended for cryptographic applications such as digital sig-

natures and key agreement protocols. X. Cui and J. Yang (Cui and

Yang, 2012) implemented a processor that parallelizes the compu-

tations of the ECC at the bit-level and gains a considerable speed-

up. The processor is fully implemented in hardware and supports

key lengths of 113 bits, 163 bits and 193 bits.

In this context, we present in this work efficient hardware imple-

mentations of cryptoprocessors over GF(2163) using a GNB repre-

sentation and the Lopez-Dahab algorithm, 2-NAF halve-and-add

algorithm and w-NAF method for Koblitz curves (Anomalous Bi-

nary Curves or ABC) with window sizes of 2, 4, 8 and 16 to

perform the scalar multiplication kP.

The main contributions of this work are: (i) the hardware design

of cryptoprocessors using the GNB over GF(2163) and three scalar

multiplication algorithms (Lopez-Dahab, halve-and-add and w-

NAF method for Koblitz curves) to determine the best crypto-
processor for embedded cryptographic applications. (ii) an effi-

cient hardware implementation of cryptoprocessors based on the

w-NAF method with different window sizes for the Koblitz

curves. They present the best trade-off between the computation

time and area, obtaining a higher performance than the other cryp-

toprocessors reported in the literature. Additionally, they are very

suitable for hardware cryptosystems.

Mathematical background

GNB representation

ANSI X9.62 (ANSI, 1999) describes the detailed specifications of

the ECC protocols and uses the GNB to represent the finite field

elements (NIST, 2000). An element over GF(2m) has the compu-

tational advantage of performing squaring very efficiently. How-

ever, multiplying distinct elements can be cumbersome. In this

case, there are multiplication algorithms that make this operation

both simpler and more efficient.

A normal basis over GF(2m) is as follows:

{, 2, 22

, … , 
2𝑚−1

} (1)

where   GF(2m) and any element A ∈ GF(2m) can be written as
follows:







1

0

2 }1,0{
m

i

ii aaA
i

 (2)

The type T of a GNB is a positive integer and measures the com-

plexity of the multiplication operation with respect to that basis.

Generally, the type T of a smaller value provides a more efficient

multiplication. For a given m and T, the field GF(2m) can have at

most one GNB of type T. A GNB exists whenever m is not divisi-

ble by 8. Let m and T be two positive integers. Then, the type T of

a GNB over GF(2m) exists if and only if p =Tm+1 is prime.

If {, 2, 
22

, … , 
2𝑚−1

} is a GNB over GF(2m), then the element

𝐴 = ∑ 𝑎𝑖
2𝑖

 𝑚−1
𝑖=0 is represented by the binary string

(𝑎0𝑎1𝑎2 … 𝑎𝑚−1), where 𝑎𝑖 ∈ {0, 1}. In this case, the multiplica-

tive identity element is represented by the bit string of all ones.

The additive identity element is represented by the bit string of all

zeros. An important result for the GNB arithmetic is Fermat’s

Theorem. For all   GF(2m), then


2𝑚

=  (3)

This theorem is important for performing the squaring of an ele-
ment over GF(2m).

Finite field arithmetic operations

The following arithmetic operations can be performed over

GF(2m) when using a normal basis of type T.

Addition: If A = (a0a1a2…am-1) and B = (b0b1b2…bm-1) are elements
over GF(2m), then A + B = C = (c0c1c2…cm-1), where ci = (ai + bi)

mod 2.

Squaring: Let A = (a0a1a2…am-1)  GF(2m), then

 

























1

0

1

0

2

1

2

2
1

0

22 1
m

i

m

i

mi

m

i

i

iii

aaaA  (4)

Based on Fermat’s Theorem, 
2𝑚

= , then

 2101

2 ...  mm aaaaA (5)

In this case, squaring is a simple rotation of the vector represen-

tation.

Multiplication: The multiplication C = AB is based on the multipli-

cation matrix 𝑅(𝑚−1)×𝑇 (Masoleh, 2006). If A = (a0a1a2…am-1) and

B = (b0b1b2…bm-1) are elements over GF(2m) and are represented

using a GNB, then AB = C = (c0c1c2…cm-1), where the coefficient

c0 is given by equation (6)

 


 















1

0 1

),(100

m

i

T

j

jiRi babac (6)

and 𝑅(𝑖, 𝑗), 0 ≤ 𝑅(𝑖, 𝑗) ≤ 𝑚 − 1, 1 ≤ 𝑖 ≤ 𝑚 − 1, 1 ≤ 𝑗 ≤ 𝑇 de-

notes the (i, j)th element of the 𝑅(𝑚−1)×𝑇 matrix. To obtain the

ith coefficient of C, i.e., ci, add “i mod m” to all indices in (6).

REALPE-MUÑOZ, TRUJILLO-OLAYA AND VELASCO-MEDINA

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 57

Inversion: If A ≠ 0 and A  GF(2m), the inverse of A is C  GF(2m),

and C is the only element of GF(2m) such that AC = 1, i.e., C = A-

1. The algorithm used to calculate the inversion is based on equa-

tion (7):

 212221  
mm

AAA (7)

Itoh and Tsujii (Itoh and Tsujii, 1998) proposed a method that re-
duces the number of multiplications to calculate the inversion, and

it is based on the following:

 




































 



oddmifAA

evenmifAA

A m

m

m

m

m

1
2

1
2

1

1
2

1

2

2

2

2

2
12

22

(8)

Trace: If A is an element over GF(2m), the trace of A is:
12 222 ...)(




m

AAAAATr (9)

If A = (a0a1a2…am-1) and it is represented in a normal basis, then

the trace can be computed efficiently as follows:

110 ...)( maaaATr (10)

The trace of the element A has two possible values (0 or 1). Quad-
ratic equation solving over GF(2m): If A is an element of GF(2m)

represented in a normal basis, then the quadratic equation:

Azz 2 (11)

has 2  2T solutions over GF(2m), where T = Tr(A). Therefore, if T
= 1, there is no solution, and if T = 0, there are two solutions. If z

is one solution, then the other solution is z + 1. For example, if A

= 0, the solutions are z = 0 and z = 1 (IEEE std 1363, 2000). The

algorithm 1 calculates the quadratic equation over GF(2m) for a

normal basis representation.

Algorithm 1: Quadratic equation solving over GF(2m)

Input: An element A ≠ 0
Output: An element z for which z2 + z = A

1. Let (a0a1…am-1) be the representation of A

2. Set z0  0

3. For i from 0 to m  1 do

 3.1 Set zi  zi-1  ai

4. Return z  (z0z1…zm-1)

Square root: Let A = (a0a1a2…am-1)  GF(2m), then

 0121 ... aaaaA m (12)

In this case, the square root in a normal basis is a simple rotation

of the vector representation (IEEE std 1363, 2000).

Elliptic curve arithmetic

A non-supersingular elliptic curve E(Fq) is defined as a set of points

(x, y)  GF(2m)×GF(2m) that satisfies the affine coordinates equa-

tion,

baxxxyy  232 (13)

where a and b  Fq and are constants with b ≠ 0 together with the
point at infinity denoted by O. The group operations for the elliptic

curve arithmetic in affine coordinates are defined as follows. Let P

= (x1, y1) and Q = (x2, y2) be two points that belong to the curve,

and let the addition inverse of P be defined as P = (x1, x1 + y1).

Then, if Q ≠ P, the point P + Q = (x3, y3) can be computed as:



































QP
x

b
x

QPaxx
xx

yy

xx

yy

x

2

1

2

1

21

21

21

2

21

21

3

(14)

 










































QPxx
x

y
xx

QPyxxx
xx

yy

y

33

1

1
1

2

1

1331

21

21

3

(15)

Using the group operations above, the elliptic curve scalar multi-

plication can be defined as follows. Let E be an elliptic curve over

GF(2m), let Q and P  E be two arbitrary elliptic points satisfying
equation (13), and let k be an arbitrary positive integer. Then, the

elliptic curve scalar multiplication Q = kP is defined as:


timesk

PPPkP  ...
(16)

Considering the group operations described in equations (14) and

(15) using the finite field arithmetic in affine coordinates, three

main elliptic curve operations can be defined: point addition, point

doubling and point halving. In the group operations, the inversion

is the arithmetic operation that is most expensive over GF(2m),

and this operation can be avoided with a projective coordinate

representation. In this case, the inversion is avoided by using the

finite field multiplication.

A point P in the projective coordinates is represented using three

coordinates (X, Y and Z). For the Lopez-Dahab (LD) projective co-

ordinates (Lopez and Dahab, 1999), the projective point (X : Y : Z)

with Z ≠ 0 corresponds to the affine coordinates x = X/Z and y =

Y/Z2. Then, equation (13) can be mapped from the affine coordi-

nates to the LD projective coordinates as:

42232 bZZaXZXXYZY  (17)

The three group operations for the elliptic curve arithmetic in the
projective and affine coordinates can be computed as (Menezes et

al., 2003):

1. Point doubling Q = 2P, where Q = (X3 : Y3 : Z3) and P = (X1 : Y1

: Z1) in the projective coordinates, can be performed using 4 finite

field multiplications, such as

 4

1

2

1333

4

13

4

1

4

13

2

1

2

13

bZYaZXZbZY

bZXXZXZ



 (18)

2. Point addition Q + P, where Q = (X1 : Y1 : Z1) in the projective

coordinates and P = (x2, y2) in the affine coordinates, can be per-

formed using 8 finite field multiplications, such as

 

    GFZEYZyxG

ZXXFEDAX

ACECZ

aZCBDBZC

XZxBYZyA











33

2

322

323

2

3

2

3

2

1

2

1

1121

2

12

(19)

3. Point halving Q/2 is the inverse operation of point doubling. Let
P = (x1, y1) and Q = (x2, y2) be the points over the curve (13) in the

affine coordinates. The point halving operation is performed by

computing P such that Q = 2P by solving the following equations:

DESIGN OF ELLIPTIC CURVE CRYPTOPROCESSORS OVER GF(2163) USING THE GAUSSIAN NORMAL BASIS

INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 58

ax  2

2  (20)

)1(221  xyx (21)

2

111 xxy   (22)

Let the -representation of a point Q = (x2, y2) be Q = (x, Q),
where

222 / xyxQ  (23)

If Q in the -representation is the input of the point halving algo-
rithm, then it is possible to compute point halving without using

the affine coordinates. In scalar multiplication, repeated point halv-

ing operations can be performed directly on the -representation.

However, when a point addition is required, a conversion to the

affine coordinates must be performed. Algorithm 2 computes the

point halving operation.

Algorithm 2: Point Halving

Input: -representation (x2, Q) or affine representation (x2, y2) of Q

Output: -representation (x1, P) of P = (x1, y1)

1. Find a solution ̂ of 2̂ + ̂ = 𝑥2 + 𝑎

2. If the input is a -representation, then 𝑡 = 𝑥2(𝑥2 + 𝑄 + ̂)

 Else 𝑡 = 𝑥2 + 𝑥1̂

3. If Tr(t)=0 then 𝑃 ← ̂, 𝑥1 ← √𝑡 + 𝑥1

 Else 𝑃 ← ̂ + 1, 𝑥1 ← √𝑡

4. Return (𝑥1, 𝑃)

Koblitz Curves

Koblitz curves, or anomalous binary curves, are elliptic curves de-

fined over GF(2m). The main advantage of these curves is that the

scalar multiplication operation can be performed without the use

of point doubling operations.

An algorithm for scalar multiplication on Koblitz curves is pre-

sented by Solinas (Solinas, 2000). The Solinas algorithm or the τ–

adic window method computes a special τ–adic expansion of an

integer number in ℤ[τ]. For example, a special τ–adic expansion is

the window τ–adic non-adjacent form (τNAF).

The Koblitz curves are curves defined over GF(2m) by:

132  axxxyyEa
 (24)

where a  {0,1}, that is, curves E0 and E1.

These curves present the following property: If P(x, y) is a point

on the curve Ea, then the point (x2, y2) is also a point on Ea. In

addition, they satisfy (x4, y4) + 2(x, y) = µ(x2, y2) for each point (x,

y) on Ea, where µ = (1)1a. In GF(2m), the Frobenius map  is an

endomorphism that raises every element to its power of two, i.e.,

 : x → x2. Then, the Frobenius endomorphism is performed effi-
ciently (cost-free) when the elements of the finite field are repre-

sented in a normal basis (Cui and Yang, 2012). Koblitz shows that

the point doubling operation can be performed efficiently by using

the Frobenius endomorphism, if the binary curve is defined over

GF(2m) and a ∈ {0, 1}. Then, the Frobenius map can be defined as

: (x, y) → (x2, y2). In this case, if the scalar k is represented in

NAF, then






1

0

l

i

i

ik for ki  {0,1, –1} (25)

The –adic representation can be obtained by repeatedly dividing

k by , where the remainders of each division step are named digits

ui. This procedure is also used to obtain the representation’s NAF

of the scalar k, namely, k is repeatedly divided by 2. To decrease

the number of point additions for the scalar multiplication, it is

necessary to obtain a NAF representation of k that achieves a

smaller number of nonzero digits. The scalar multiplication can be

computed as:







1

0
)(

l

i

i

i PkkP  (26)

The result corresponds to the Hamming weight of the NAF, and

it is equal to the binary NAF representation, i.e., the Hamming

weight ≈ (log2 k)/3, and the length of the –adic representation of

k is approximately 2m, which is twice the length of the binary NAF

representation. However, Solinas presents a method that reduces

the length of the –adic representation to approximately m. Thus,
the Koblitz curves’ arithmetic is based on the point addition and

Frobenius map .

Hardware architectures for elliptic curve
cryptoprocessors

In this section, we present the hardware architectures for elliptic

curve cryptoprocessors over GF(2163) using a Gaussian normal ba-

sis. Each cryptoprocessor is designed using one algorithm for the

scalar multiplication, namely, the Lopez-Dahab algorithm (Lopez

and Dahab, 1999), the halve-and-add 2-NAF algorithm (Menezes

et al., 2000) and the w-NAF method for Koblitz curves with w =

2, 4, 8 and 16 (Solinas, 2000).

Digit-level multiplier

The finite field multiplication over GF(2m) is an operation that is

more important for performing the scalar multiplication. Thus, this

operation must be implemented efficiently in hardware. There are

several algorithms for performing the finite field multiplication that

are presented in Azarderakhsh and Masoleh (2010), Huang et al.

(2011,), Wang and Fan (2012) Lee and Chiou (2012).

Azarderakhsh and Masoleh (Azarderakhsh and Masoleh, 2010)

proposed a serial or parallel digit-level multiplier with a digit-size

d, where 1 ≤ d ≤ m. In this case, if d = m, the multiplier is parallel

and if d < m, it is serial and requires M = m/d, 1 ≤ M ≤ m, clock

cycles to generate all the m coefficients of C = AB = (c0c1c2…cm-

1), where A = (a0a1a2…am-1) and B = (b0b1b2…bm-1) are elements

represented in a GNB over GF(2m). Figure 1 shows the digit-level

GF(2m) multiplier for T = 4, where A, B and C are registers for

storing the input and output elements.

A

Adder

GF(2163)

CS

CS

J

J

Jc

C

m

B

r1 r2

r

n

(m+1)/2

(m+1)/2

ctrl

m

m

m

m

m

d
>>

CS

CS

(m+1)/2

m

m

CS m

d
>>

m

m

d
>>

d-1 >>

d-1 >>

r >>

r >>

0 >>

Figure 1. Digit-level Multiplier

The block r is formed by the blocks r1 and r2, and its structure

depends on type T of the GBN with T  2 and the multiplication

matrix R. The block J is a set of m, two-input AND gates. The

REALPE-MUÑOZ, TRUJILLO-OLAYA AND VELASCO-MEDINA

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 59

block CS is a d-fold cyclic shift and an adder GF (2163), which is a

set of two-input XOR gates.

The block r1 is an optimal set of XOR gates that are ob-

tained using (27), and r2 is a set of XOR gates that are ob-

tained from the main matrix r:

10),,2/)1((,...,

),...,2(),,1(,()(

'

0

'

0

'

01



 

dkkBms

kBskBsbBP kk





kRi

kibBks),('

0

(27)

The time complexity of the digit-level multiplier is TA + (2 +

log2m)TX, where TX and TA are the delay time of a two-

input XOR gate and a two-input AND gate, respectively.

The area complexity of this multiplier is m2 ANDs and 

2m2 – 2m XORs (Azarderakhsh and Masoleh, 2010).

To implement the digit-level multiplier with a digit-size d =

55 in hardware, that is M = 3 clock cycles, a Matlab code is

written to generate the equations of the blocks r1 and r2,

which are synthesized using VHDL.

Hardware architecture using the Lopez-Dahab algo-
rithm

The scalar multiplication kP for non-supersingular elliptic curves
over binary fields using the Lopez-Dahab algorithm is shown in

Algorithm 3, which is a modified version of the Montgomery algo-

rithm, where the same operations are performed during each it-

eration of the main loop (D. Hankerson et al., 2003).

Algorithm 3: Montgomery point multiplication

Input: k = (kt1,…,k1k0) with kt1 = 1, P = (x, y)  GF(2m)
Output: kP

1. X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2

2. For i from t - 2 downto 0 do

3. if ki = 1 then

 3.1 T ← Z1, Z1 ← (X1Z2 + X2Z1)2, X1 ← xZ1 + X1X2TZ2

 3.2 T ← X2, X2 ← X2
4 + bZ2

4, Z2 ← T2Z2
2

4. else

 4.1 T ← Z2, Z2 ← (X1Z2 + X2Z1)2, X2 ← xZ2 + X1X2TZ1

 4.2 T ← X1, X1 ← X1
4 + bZ1

4, Z1 ← T2Z1
2

5. x3 ← X1/Z1

 y3 ← (x +
X1

Z1
) [(X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)](xZ1Z2)−1 +

y
6. Return (x3, y3)

In this case, the scalar multiplication is performed in three steps:
1) conversion of P from affine to projective coordinates; 2) com-

pute Q = kP by addition and doubling; and 3) conversion of Q from

projective to affine coordinates.

To implement the above algorithm in hardware, we initially define

three functions: Madd() performs the point addition, Mdouble() per-
forms the point doubling and Mxy() performs the conversion from

projective to affine coordinates. These functions are defined as

follows:

)},(Return

)(

)({

),,,(

11

2

12211

2

122112211

2211

ZX

ZXZXZ

ZXZXxZXZXX

ZXZXM add





)},(Return

{

),(

22

2

1

2

22

4

2

4

22

11

ZX

ZXZ

bZXX

ZXM double





where, (x, y) and (x3, y3) are the coordinates of points P and Q =

kP, respectively.

Point addition and point doubling are implemented in hardware

using the data dependence graph shown in Figure 2, and the con-

version from the projective to affine coordinates is implemented

using two digit-level multipliers for the data dependence graph

shown in Figure 3. The inversion operation is implemented using

the Itoh-Tsujii algorithm (Itoh and Tsujii, 1998).

Z1

Z1X1

X1Z2

Z2X2

X2

b x

Addition Squaring Multiplication

S0:

S1:

S2:

Madd
Mdouble

Latency

(Clock cycles)

M

M

M

Figure 2. Data dependence graph for Madd and Mdouble

Latency

(Clock cycles)

M

Z1 X1
Z2 X2

Addition Squaring Multiplication

S0:

S1:

S2:

xy

Inversion

3x

3y

S3:

S4:

S5:

S6:

M

M

M

1

M

10M

Figure 3. Data dependence graph for conversion of the projective
to affine coordinates

According to Figures 2 and 3, the latencies for Madd and Mdouble and
the projective to affine conversion are 3M and 15M +1, respec-

tively, where M is the latency for a finite field multiplication.

In step 4 of Figure 3, two multipliers are used, and one of them

with the block of rotation performs the inversion of an element A

 GF(2163). In this case, the latency of the inversion is 10M because

it needs 10 finite field multiplications for m = 163. In step 6, a

multiplier is only used because the last operation of the coordinate

conversion requires a multiplication.

DESIGN OF ELLIPTIC CURVE CRYPTOPROCESSORS OVER GF(2163) USING THE GAUSSIAN NORMAL BASIS

INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 60

The architecture of the cryptoprocessor over GF(2163) using the

Lopez-Dahab algorithm is shown in Figure 4. It uses two register

files, two parallel digit-level multipliers, one inversion block, sev-

eral squaring and adder blocks, a main control and an FSM to per-

form the point addition, point double and conversion from the

projective to affine coordinates.

A
B
C
D
E
F

W
X
Y
Z

REG

FILE 1

REG

FILE 2

Main

Ctrl

Key

BLOCK I

GF(2163)

BLOCK II

GF(2163)

Rotation

GF(2163)

BLOCK III

GF(2163)

Input Reg

Output Reg
Inversion

kP

k, P(x, y)

Double

Add

FSM

V

Figure 4. Elliptic curve cryptoprocessor using the Lopez-Dahab al-
gorithm

The functional blocks that perform the finite field arithmetic op-
erations over GF(2163) for the Lopez-Dahab cryptoprocessor are

shown in Figure 5. It is important to mention that the performance

of any cryptoprocessor depends on the efficient implementation

of the hardware for the finite field arithmetic.

Mux

Mult

Mux

Mux

Mux

Mux

Mult

Mux

Mux

Mux

MuxBLOCK I BLOCK II BLOCK III

EA C

V

EB C D EA F

W Y
Figure 5. Functional blocks of the finite field arithmetic

The main control is an FSM that generates the control signals to

perform the scalar multiplication, process the key, initialize the

cryptoprocessor and control the I/O registers. The second FSM

performs the point addition, point doubling and conversion from

the projective to the affine coordinates.

Idle

start

2

,1

,

2

21

4

21







tcont

xZZ

bxXxX

ik
1

),(),(

),,,(),(

1111

112222







contcont

ZXMdoubleZX

ZXZXMaddZX

1

),(),(

),,,(),(

2222

221111







contcont

ZXMdoubleZX

ZXZXMaddZX

),,,(2211 ZXZXMxyQ 

end

0

1

01

Cont=0
0

1

Figure 6. ASM chart of the main control

In Figure 6, the ASM chart of the main control is shown, where

the variables X1, Z1, X2 and Z2 are initialized and stored in the

register files. Each bit of the scalar k is evaluated from left to right

to perform the operations Madd and Mdouble using the data depend-

ence graph shown in Figure 2. If the bit ki is ‘1’, then

Madd(X1,Z1,X2,Z2), Mdouble(X2,Z2) are computed. Else,

Madd(X2,Z2,X1,Z1), Mdouble(X1,Z1). When all bits of the scalar k are

evaluated, the conversion from the projective to affine coordi-

nates is executed using the data dependence graph shown in Figure

3, and kP in the affine coordinates is stored in the output register.

Algorithm 3 is more resistant against simple power analysis and

timing attacks. This is because the computation cost does not de-

pend on the specific bit of the scalar k. For each bit of the scalar

k, one point addition and one point doubling are performed. The

proposed scheme has two different execution paths depending on

the current bit of the scalar k. Both execution paths have the same

complexity and require the same number of clock cycles.

Hardware architecture using the halve-and-add al-
gorithm

Schroeppel (Schroeppel, 2000) and Knudsen (Knudsen, 1999) in-

dependently proposed the halve-and-add algorithm to accelerate

the scalar multiplication on the elliptic curves defined over the bi-

nary extension fields. This algorithm uses an elliptic curve primitive

called point halving as shown in algorithm 2.

Because, theoretically, the point halving operation is three times

faster than the point doubling operation, it is possible to accelerate

the scalar multiplication Q = kP by replacing the double-and-add

algorithm with the halve-and-add algorithm, which uses an expan-

sion of the scalar k in terms of negative powers of 2 (Mercurio et

al., 2006).

In the halve-and-add algorithm, it is necessary to transform the

integer k = (km-1,…,k0)2. If k´ is defined by

)(mod2/,...,2/ '

0

'

1

1'

1 nkkkk t

t  


 (28)

where n represents the order of the base point P, then







1

0

' 2/
t

i

i

i PkkP (29)

Equation (29) can be generalized to a window-NAF. The NAFw of

a positive integer k and w  2 is represented by the expression

𝑘 = ∑ 𝑘𝑖2𝑖𝑙−1
𝑖=0 , where each nonzero coefficient ki is odd and at

most, one of any w consecutive digits is nonzero. In this case, the

NAFw of k can be computed using algorithm 4.

Algorithm 4: NAFw of a positive integer

Input: Window width w, positive integer k.
Output: NAFw(k)

1. i  0

2. While k  1 do

 2.1 If k is odd then ki  k mods 2w, k  k  ki

 2.2 Else ki  0

 2.3 k  k/2, i  i+1

3. Return (ki1,…,k1, k0)

In this work, a Maple code is written to obtain the expansion co-
efficients NAFw with w = 2, namely, the coefficients NAFw(2t-1 k

mod n), which are represented by 2-bits.

The halve-and-add algorithm is shown in algorithm 5. Step 3 of the

algorithm performs the point addition Qi + P in the Lopez-Dahab

mixed coordinates (Qi and P are represented in LD projective and
affine coordinates, respectively) using equation (14) and the halv-

ing point P/2 in the affine coordinates or -representation, if bit ki´

≠ 0; else, compute point halving. In this case, it is important to

mention that if the results of the first two operations A and B of

equation (19) are equal to zero, the point doubling 2P is performed

REALPE-MUÑOZ, TRUJILLO-OLAYA AND VELASCO-MEDINA

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 61

in the LD projective coordinates using equation (18) with X1 = x2,

Y1 = y2 and Z1 = 1.

Algorithm 5: Halve-and-add w-NAF point multiplication

Input: Window width w, NAFw(2t−1 k mod n) = ∑ ki
′2it

i=0 , P ∈ GF(2m)
Output: kP

1. Set Qi ← ∞ for i ∈ I = {1, 3, 5, … . 2w−1 − 1}
2. if kt

′ = 1 then Q1 = 2P

3. For i from t - 1 downto 0 do

 3.1 if ki
′ > 0 then Qki

′ ← Qki
′ + P

 3.2 if ki
′ < 0 then Q−ki

′ ← Q−ki
′ − P

 3.3 P ← P/2

4. Q ← ∑ iQii∈I

5. Return (Q)

Z1 X1 Y1

Addition Squaring Multiplication

S0:

S1:

S2:

S3:

S4:

Y3

X3

Z3

2y
2x

A B

Latency

(Clock cycles)

M

M

M

M

M

Figure 7. Data dependence graph for point addition

Latency

(Clock cycles)

M

b

Z3

X3

Y3

S0:

S1:

S2:

S3:

2x2y

Addition Squaring Multiplication

1

1

1

Figure 8. Data dependence graph for point doubling

The point addition in the LD mixed coordinates and the point

doubling in the LD projective coordinates are implemented in

hardware using the data dependence graphs shown in Figure 7 and
Figure 8, respectively. According to Figures 7 and 8, the latencies

for the point addition and point doubling are 5M and M + 3, re-

spectively.

The architecture of the cryptoprocessor over GF(2163) using the

halve-and-add algorithm is shown in Figure 9, and it uses two reg-

ister files, two digit-level finite multipliers, one solving quadratic

equation block, one point halving block, several squaring and adder

blocks, a main control and an FSM to perform the point addition,

point doubling and point halving.

REG

FILE 1

REG

FILE 2

Key

BLOCK I

GF(2163)

BLOCK II

Halving

GF(2163)

BLOCK III

GF(2163)

BLOCK IV

GF(2163)

Input Reg

Output Reg

P(x, y)

kP

NAF(2t-1k mod n)

Main

Ctrl

Double

Add

Halving

FSM

A
B
C
D
E
F

W
X
Y
Z

Figure 9. Elliptic curve cryptoprocessor using the halve-and-add al-
gorithm

The functional blocks that perform the finite field arithmetic op-

erations over GF(2163) for the halve-and-add cryptoprocessor are

shown in Figure 10. In this case, finite field arithmetic operations

are the addition, squarer, square root, trace, half trace (quadratic

equation solving in a normal basis) and multiplication.

Mult
Mux

Mux

Mux

Mult

Mux

Mux BLOCK IIBLOCK I

Mux

Mux

Mux

Mux BLOCK IV

Mux

Mux

BLOCK III

Mux Mux

Sqrt

T

HT
Mux

A B D E

W W X

Y Z

C E F A FD

C D

Figure 10. Blocks of the finite field arithmetic

The main control is an FSM that generates the control signals to

perform the scalar multiplication, process the key, initialize the

cryptoprocessor and control the I/O registers. The second FSM

performs the point addition, point doubling and point halving.

Idle

start

'

ik

0

PQ  PQ 

0cont end

'

ikPQQ  PQQ 

1 contcont

0

1

2/PP 

1

1

'

ikPQ 2

1 tcont

0' ik

1

0' ik

0' ik0' ik

2/PP 

Figure 11. ASM chart of the main control

DESIGN OF ELLIPTIC CURVE CRYPTOPROCESSORS OVER GF(2163) USING THE GAUSSIAN NORMAL BASIS

INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 62

In Figure 11, the ASM chart of the main control is shown, where
the sequence processing is as follows: initialize coordinate Q ac-

cording to the sign of the bit 𝑘𝑡−1
′ ; perform the point halving op-

eration on P; evaluate the bit 𝑘𝑖
′ for i > t1; compute the point

addition in the LD mixed coordinates and point halving on P if 𝑘𝑖
′

 0, else compute point halving; and perform the conversion of

the point P in the -representation to the affine coordinates only
when a point addition is required. Finally, Q = kP is obtained in the

LD projective coordinates.

Algorithm 7 performs the rounding of a complex number 0 + 1

with 0 and 1  ℚ to obtain an element  ℤ[].

Hardware architecture using the w-τNAF algorithm

The length of the –adic representation for k = d0 + d1  ℤ[] is

roughly twice log2(max(d0, d1)). Solinas (Solinas, 2000) presents a

method that reduces the length of the –adic representation. The

objective is to find r  ℤ[] of small norm with r  k (mod δ),

where δ = (m  1)/(  1), and use NAF(r) to calculate rP.

Algorithm 6 calculates an element r´  k (mod δ), which is also

written as r´ = k partmod δ. Solinas proved that l(r) ≤ m + a and

if C  2, then l(r´) ≤ m + a + 3.

Algorithm 6: Partial reduction modulo δ=(τm  1)/(τ  1)

Input: k  [n  1], C  2, s0 = d0  µd1, Vm, s1 = d1

Output: r´ = k partmod δ

1. k´= k/2a-C+(m-9)/2

2. For i from 0 to 1 do

 2.1 g´si.k´ j´Vm.g´/2m

 2.2 i  (g´+j´)/2(m+5)/2 + 1/2/2C

3. Use Algorithm 7 to compute (q0, q1)Round(0, 1)

4. r0k(s0 + µs1)q02s1q1 r1s1q0s0q1

5. Return r0+r1τ

Algorithm 7: Rounding off

Input: Rational numbers 0 and 1

Output: Integers q0 and q1
1. For i from 0 to 1 do

 fi  i+1/2 ni  i  fi hi  0

2. n 2n0+µn1

3. If n  1 then

 3.1 If n0  3µn1< 1 then h1  µ; else h0  1
 Else

 3.2 If n0  4µn1  2 then h1  µ

4. If n < 1 then

 4.1 If n0  3µn1  1 then h1  µ; else h0  1
 Else

 4.2 If n0  4µn1 < 2 then h1  µ

5. q0  f0 + h0, q1  f1 + h1

6. Return (q0, q1)

Let w  2 be a positive integer, and αi = i mod w for i  {1, 3, 5,…,

2w-1 ‒1}. A w‒NAF expansion of an nonzero element   Z[] is

an expression:







1

0

l

i

i

iur (30)

where ui  {0, α1, α3,…, α2w-1‒1}, ul‒1 ≠ 0 and at most, one of

any w consecutive digits is nonzero. Then, kP = αu0P + αu1P + …

+ l‒1αl‒1P, when the scalar k is represented in w‒NAF.

The w-NAF expansion can be efficiently computed using algo-
rithm 8, which can be viewed as an approach similar to the general

NAF algorithm. In this work, a Maple code is written to obtain the

expansion w‒NAF of the scalar k with w = 2, 4 and 8, generating

8-bit expansion coefficients and w = 16, generating 16-bit expan-

sion coefficients.

Algorithm 8: Computing a w‒NAF of an element in ℤ[]

Input: w, t, r = r0 + r1  ℤ[], αu = βu + γu for u  {1, 3, 5,…,2-1 - 1}

Output: w‒τNAF(r)

1. i  0

2. While r0 ≠ 0 or r1 ≠ 0 do

 2.1 If r0 is odd then

 u  r0 + r1t mods 2w

 If u > 0 then s  1; else s  ‒1, u  ‒u

 r0  r0 ‒ sβu, r1  r1 ‒ sγu, ui  sαu.

 2.2 Else: ui  0

 2.3 t  r0, r0  r1 + r0/2, r1  ‒t/2, i  i + 1

3. Return (ui‒1, ui‒2,…,u1, u0)

Solinas proposed algorithms to compute kP using the window

NAF method for the scalar k, namely, kP is calculated using the

w-NAF method and Horner’s rule (Solinas, 2000). An efficient

scalar multiplication algorithm that uses the w-NAF method is

presented in algorithm 9, where step 1 calculates the w-NAF of

the scalar k with the partial reduction modulo  = (m1)/(1),

namely, w-NAF(r  k mod()), where r  k mod() is obtained
from algorithms 6 and 7; step 2 generates the multiples of the

point P and step 4.2 performs the point addition Q + Pu, when the

bit ui ≠ 0, and point doubling 2Q, when the results of the two first

operations A and B of equation (19) are equal to zero.

Algorithm 9: w‒NAF point multiplication method for Koblitz
curves

Input: Window width w, integer k ∈ [1, n − 1], P  GF(2m) of order n

Output: kP

1. Compute wNAF(r  k mod()) = ∑ uiτ
il−1

i=0

2. Compute Pu = αuP, for u ∈ {1, 3, 5, … , 2w−1 − 1}

3. Q ← ∞

4. For i from l −1 downto 0 do

 4.1 Q ← τQ

 4.2 if ui ≠ 0 then

 Let u be such that αu = ui or α−u = −ui

 If u > 0 then Q ← Q + Pu

 Else Q ← Q − P−u

5. Return Q

The point addition in the LD mixed coordinates and the point
doubling in the LD projective coordinates with b = 1 are imple-

mented in hardware using the data dependence graphs shown in

Figure 7 and Figure 8, respectively.

REG

FILE 1

REG

FILE 2
BLOCK I

GF(2163)
ROM

BLOCK III

GF(2163)

Input Reg

Output Reg

w-TNAF

kP

w-TNAF(r)

GF(2163)

QBLOCK II

GF(2163)

Main

Ctrl

Double

Add

FSM

Q

A
B
C
D
E
F

W
X
Y
Z

Figure 12. Elliptic curve cryptoprocessor for Koblitz curves

The architecture of the cryptoprocessor over GF(2163) using the

w-NAF algorithm for Koblitz curves is shown in Figure 12, and it

uses two register files, two digit-level finite multipliers, one Fro-

benius map block, one RAM that stores the expansion coefficients

w-NAF of the scalar k, two ROMs that store the pre-computed

REALPE-MUÑOZ, TRUJILLO-OLAYA AND VELASCO-MEDINA

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 63

points Pu in the affine coordinates, which were obtained from

Matlab for w = 2, 4, 8 and 16, several squaring and adder blocks, a

main control and an FSM to perform the point addition, point dou-

bling and Q.

The functional blocks that perform the finite field arithmetic op-

erations over GF(2163) for the wNAF cryptoprocessor for Ko-

blitz curves are shown in Figure 13.

Mult

Mux

Mux

Mux

Mult

Mux

Mux

Mux

Mux BLOCK IIIBLOCK I BLOCK II

Mux

Mux

Mux Mux

Mux

A D F

W

B D F

Y

B D FC E

X
Figure 13. Blocks of the finite field arithmetic

The main control is an FSM that generates the control signals to

perform the scalar multiplication, process the key, initialize the

cryptoprocessor and control the I/O registers. The second FSM

performs the point addition, point doubling and Q.

In Figure 14, the ASM chart of the main control is shown, where

the sequence processing is as follows: initialize the Q coordinate

according to the sign of the bit ui of the w-NAF expansion; eval-

uate the bits ui for i > t1; and compute the point addition in the

LD mixed coordinates and the Frobenius map  on Q, if ui  0.

Else, compute Q. Finally, Q = kP is obtained in the LD projective
coordinates. In Figure 14, the ASM of the FSM is shown. One im-

portant remark is that the Koblitz curves are resistant to simple

power analysis and to all the known special attacks (T. Juhas,

2007).

Idle

start

iu

0

uPQ 

1 contcont

end

iu
uPQQ 

uPQQ 

1 lcont

1

QQ 

1

0

1

uPQ 
0iu 0iu

0cont

0

1

0iu

0iu

Figure 14. ASM chart of the main FSM

Hardware verification and synthesis
results

The López-Dahab, halve-and-add and w-NAF cryptoprocessors
are described using generic structural VHDL, are synthesized for

a digit-size of d = 55 on the Stratix-IV FPGA (EP4SGX180HF35C2)

using the Altera Quartus II version 12 design software for the im-

plementation and are verified using SignalTap II and Matlab.

Hardware verification of the cryptoprocessors

To verify the synthesis and simulation results of the cryptoproces-

sors, the following parameters for a pseudo-random elliptic curve

are used according to the National Institute of Standards and

Technology (NIST, 2000):

1. Random elliptic curves B163:

The form of the curve is: y2 + xy = x3 + x + b

Gx = 3F0EBA16286A2D57EA0991168D4994637E8343E36

Gy = 0D51FBC6C71A0094FA2CDD545B11C5C0C7973244F1

b = 20A601907B8C953CA1481EB10512F78744A3205FD

2. Koblitz elliptic curves K163

The form of the curve is: y2 + xy = x3 + x + 1

Gx = 2FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8

Gy = 289070FB05D38FF58321F2E800536D538CCDAA3D9

n = 4000000000000000000020108A2E0CC0D99F8A5EF

In Figures 15 through 17, the simulation results for the cryptopro-

cessors over GF(2163) in a GNB using SignalTAP II and Matlab are

shown.

(a)

(b)

Figure 15. Simulation results for the Lopez-Dahab cryptoprocessor.
(a) Results from SignalTAP II (b) Results from Matlab

(a)

(b)

Figure 16. Simulation results for the halve-and-add cryptoproces-
sor. (a) Results from SignalTAP II (b) Results from Matlab

(a)

(b)

Figure 17. Simulation results for the Koblitz curves cryptoprocessor.
(a) Results from SignalTAP II (b) Results from Matlab

From Figures 15 through 17, we can see that the results obtained

from Matlab are the same as the results from SignalTAP II. Then,
the hardware results verify the correct functionality of the de-

signed cryptoprocessors.

Synthesis results for the cryptoprocessors

The synthesis results of the cryptoprocessors over GF(2163) are

shown in Table 1. Additionally, some of the data presented in Ta-

ble I are plotted in Figure 18.

DESIGN OF ELLIPTIC CURVE CRYPTOPROCESSORS OVER GF(2163) USING THE GAUSSIAN NORMAL BASIS

INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 64

Table 1. Synthesis results for the cryptoprocessors

Cryptoprocessor
Area

(ALUTs)

Fmax

(MHz)
Registers

kP

(µs)
TA

Lopez-Dahab 24882 215.3 2608 13.37 0.33

Halving 2-NAF 22670 158.2 2572 16.90 0.38

Koblitz 2-NAF 24223 226.6 2046 9.88 0.23

Koblitz 4-NAF 24257 226.7 2050 7.37 0.17

Koblitz 8-NAF 24249 211.6 2108 6.17 0.14

Koblitz 16-NAF 24270 177.1 2135 5.05 0.12

(a)

(b)

(c)

(d)

Figure 18. (a) Area resources. (b) Frequency. (c) Registers re-
sources. (d) Time to perform the scalar multiplication of each cryp-
toprocessor.

From Figure 18, we can see that the w‒NAF cryptoprocessor-

with w = 16 performs the scalar multiplication at a faster time (5.05

s), and the halve-and-add processor with w = 2 uses fewer area

resources than the other processors.

Comparison of the results with other works

To compare the performance of the designed cryptoprocessors

with respect to the cryptoprocessors presented in the literature,

Table 2 shows several design parameters and processing times,

such as area resources, frequency, kP time and time-area product.

However, it is important to mention that performing a fair com-

parison in hardware design is very difficult because there are other

technical considerations, including the technologies, hardware

platforms, software tools, scalar multiplication algorithms, finite

field representations, and size of the fields.

From Table 2, it is possible to observe that the GF(2163) crypto-

processor presented in Mahadizadeh et al (2013) requires less

time to perform the scalar multiplication than our processor based

on the Lopez-Dahab algorithm because the first processor uses
three digit-level multipliers, and our design uses two digit-level

multipliers, and the latency to compute Madd and Mdouble is 3M.

However, the first processor requires more area than our pro-

cessor. Mercurio et al (2006) computes kP by using the half-and-

add algorithm, m=163, polynomial bases representation and one

parallel multiplier. Our processor requires more area than the

mentioned processor because it uses two digit-level multipliers,

but our design requires less time to perform the scalar multiplica-

tion, and the latency to compute the point addition is 5M. Finally,

our processor is based on the Koblitz curves and has a higher

performance (area and time) than the processor presented in

Azarderakhsh (2013) because our design has a latency of 5M to

compute the point addition, and it uses two digit-level multipliers

and a window method that allows us to reduce the amount of

point addition operations.

Table 2. Performance comparison results

Design FPGA Area
Freq.

(MHz)

kP

(µs)
TA

(Trujillo and Velasco, 2010) Stratix III 18567 ALUTs 97.51 60 1.11

(Malik, 2010) TMS320 - 160 63400 -

(Sandoval et al., 2011) Virtex 4 4586 LUTs 100 1070 4.90

(Nabil et al., 2012) Xilinx 2502 LUTs 213 254 0.63

(Mercurio et al., 2006) Virtex E 11616 LUTs 41 25.0 0.29

(Azarderakhsh et al., 2013) Stratix II 46168 ALUTs 188.7 9.15 0.42

(Mahdizadeh et al., 2013) Virtex 4 33414 LUTs 250 9.60 0.32

This work Lopez-Dahab Stratix IV 24882 ALUTs 215.3 13.37 0.33

This work Halving Stratix IV 22670 ALUTs 158.2 16.90 0.38

This work 2-NAF Stratix IV 24223 ALUTs 226.6 9.88 0.23

This work 4-NAF Stratix IV 24257 ALUTs 226.7 7.37 0.17

This work 8-NAF Stratix IV 24249 ALUTs 211.6 6.17 0.14

This work 16-NAF Stratix IV 24270 ALUTs 177.1 5.05 0.12

From Table 2, it is possible to observe that the GF(2163) crypto-

processor presented in Mahadizadeh et al (2013) requires less

time to perform the scalar multiplication than our processor based

on the Lopez-Dahab algorithm because the first processor uses

three digit-level multipliers, and our design uses two digit-level

multipliers, and the latency to compute Madd and Mdouble is 3M.

However, the first processor requires more area than our pro-

cessor. Mercurio et al (2006) computes kP by using the half-and-

add algorithm, m=163, polynomial bases representation and one
parallel multiplier. Our processor requires more area than the

mentioned processor because it uses two digit-level multipliers,

but our design requires less time to perform the scalar multiplica-

tion, and the latency to compute the point addition is 5M. Finally,

REALPE-MUÑOZ, TRUJILLO-OLAYA AND VELASCO-MEDINA

 INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 2, AUGUST - 2014 (55-65) 65

our processor is based on the Koblitz curves and has a higher

performance (area and time) than the processor presented in

Azarderakhsh (2013) because our design has a latency of 5M to

compute the point addition, and it uses two digit-level multipliers

and a window method that allows us to reduce the amount of

point addition operations.

Conclusions

This work presents the design of elliptic curve cryptoprocessors

to compute the scalar multiplication over GF(2163) using the GNB.

The Lopez-Dahab, halve-and-add and w‒NAF algorithms are

used to design the cryptoprocessors, which are described using

generic structural VHDL, synthesized on the Stratix IV FPGA

(EP4SGX180HF35C2).

Considering the hardware verification results, the 16-NAF cryp-

toprocessor performs the scalar multiplication in less time (5.05

s), and the 2-NAF halve-and-add cryptoprocessor uses fewer

area resources than the other processors, in this case, 22670

ALUTs. All the cryptoprocessors use roughly 17% of the ALUTs

of the FPGA.

Additionally, it is important to mention that the algorithms are

synthetized on the same hardware platform using Quartus II, are

simulated in Modelsim, and are verified using SignalTAP and

Matlab; the cryptoprocessors use two digit-level finite field multi-

pliers over GF(2163) in the GNB; the expansion coefficients for the

private key k are obtained using the software Maple; and the FSMs

use a data dependence graph to perform kP to achieve the minimal

states.

Future work will be oriented to increase the performance of the

designed cryptoprocessors and the hardware implementation of

the GF(2233) processors. Additionally, new cryptoprocessors will

be designed based on elliptic curves that are not included in the

National Institute of Standards and Technology (NIST), such as the

Hessian and Edwards curves that perform the scalar multiplication

kP.

References

Amara, M., & Siad, A. (2011). Hardware implementation of arith-

metic for elliptic curve cryptosystems over GF(2^m). In World

Congress on Internet Security (WorldCIS) (pp. 73-78). London:

IEEE.

Azarderakhsh, R., & Masoleh, R. (2010). A Modified Low Complexity

Digit-Level Gaussian Normal Basis Multiplier. Arithmetic of Finite

Fields (pp. 25-40). Turkey: Springer.

Azarderakhsh, R., & Masoleh, R. (2013). High-performance imple-

mentation of point multiplication on Koblitz Curves. IEEE Transac-

tions on Circuits and Systems, 60(1), 41 - 45.

Chester, R., & Mukhopadhyay, D. (2008). Progress in Cryptology -

INDOCRYPT 2008. Kharagpur: Springer.

Cui, X.-N., & Yang, J. (2012). An FPGA based processor for Elliptic

Curve Cryptography. In International Conference on Computer

Science and Information Processing (CSIP) (pp. 343-349).

Shaanxi: IEEE.

Ghanmy, N., Khlif, N., Fourati, L., & Kamoun, L. (2012). Hardware

implementation of elliptic curve digital signature algorithm EC-

DSA on Koblitz curves. In International Symposium on Communi-

cation Systems, Networks & Digital Signal Processing (CSNDSP)

(pp. 1 - 6). Poznan: IEEE.

Hankerson, D., Menezes, A., & Vanstone, S. (2004). Guide to Elliptic

Curve Cryptography. Springer.

Huang, T., Chang, C., Chiou, C., & Tan, S. (2011). Non-XOR ap-

proach for low-cost bit-parallel polynomial basis multiplier over

GF(2^m). Information Security, IET, 5(3) 152-162.

IEEE std 1363. (2000). 1363-2000 IEEE Standard Specifications for

Public-Key Cryptography. IEEE Computer Society.

Itoh, T., & Tsujii, S. (1988). A fast algorithm for computing multiplica-

tive inverses in GF(2^m) using normal bases. Information and

Computation, 78(3), 171-177.

Jeevananthan, S., & Muthukumar, B. (2010). High speed hardware

implementation of an elliptic curve cryptography (ECC) co-pro-

cessor. In Trendz in Information Sciences & Computing (TISC) (pp.

176-180). Chennai: IEEE.

Johnson, D., Menezes, A., & Vastone, S. (2001). The Elliptic Curve

Digital Signature Algorithm (ECDSA). International Journal of In-

formation Security, 1(1), 36-63.

Juhas, T. (2007). The Use of Elliptic Curves in Cryptography. Re-

trieved from: http://munin.uit.no/bitstream/handle/10037/1091/

thesis.pdf?sequence=5

Knudsen, W. (1999). Elliptic Scalar Multiplication Using Point Halving.

Advances in Cryptology - ASIACRYPT (pp. 135-149). Berlin:

Springer.

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of

computation, 48(1987), 203-209.

Lai, J.-Y., Hung, T.-Y., Yang, K.-H., & Huang, C.-T. (2010). Proceed-

ings of IEEE International Symposium on Circuits and Systems (IS-

CAS) (pp. 3933 - 3936). Paris: IEEE.

Lee, C., & Chiou, C. (2012). Scalable Gaussian Normal Basis Multi-

pliers over GF(2^m) Using Hankel Matrix-Vector Representation.

Journal of Signal Processing Systems, 69(2), 197-211.

Lopez, J., & Dahab, R. (1999). Fast Multiplication on Elliptic Curves

Over GF(2^m) without precomputation. Cryptographic Hard-

ware and Embedded Systems, 1717, 316-327.

Mahdizadeh, H., & Masoumi, M. (2013). Novel Architecture for effi-

cient FPGA implementation of elliptic curve cryptographic pro-

cessor over GF(2^163). IEEE transactions on very large scale inte-

gration (VLSI) systems, 21(12), 1-4.

Malik, M. (2010). Efficient implementation of Elliptic Curve Cryptog-

raphy using low-power Digital Signal Processor. In International

Conference on Advanced Communication Technology (ICACT)

(pp. 1464-1468). Phoenix Park: IEEE.

Masoleh, R. (2006). Efficient algorithms and architectures for field

multiplication using Gaussian normal basis. IEEE Transactions on

Computers, 55(1), 34-47.

Mercurio, S., & Rodriguez, F. (2006). Elliptic Curve Scalar Multiplica-

tion using Point Halving on Reconfigurable Hardware Platforms

(pp. 1-5). Mexico: CiteSeerX.

Miller, V. (1986). Advances in Cryptology. In CRYPTO ’85 Proceed-

ings. Santa Barbara: Springer.

Morales, S., Uribe, F., & Badillo, A. (2011). A reconfigurable GF(2^m)

elliptic curve cryptographic coprocessor. In Southern Confer-

ence on Programmable Logic (SPL) (pp. 209 - 214). Cordoba:

IEEE.

NIST. (2013). Digital Signature Standard. Gaithersburg: Federal In-

formation Processing Standards.

Rahuman, A., & Athisha, G. (2010). Reconfigurable architecture for

elliptic curve cryptography. In International Conference on Com-

munication and Computational Intelligence (INCOCCI) (pp. 461-

466). Erode: IEEE.

Schroeppel, R. (2000). United States Patent No. EP1232602.

Solinas, J. (2000). Efficient Arithmetic on Koblitz Curves. Designs,

Codes and Cryptography, 19(2-3), 195-249.

Trujillo, V., & Velasco, J. (2010). Hardware Architectures for Elliptic

Curve Cryptoprocessors Using Polynomial and Gaussian Normal

Basis over GF(2^233). Lecture Notes in Computer Science, 6480,

79-103.

Wang, Z., & Fan, S. (2012). Efficient Montgomery-Based Semi-Sys-

tolic Multiplier for Even-Type GNB of GF(2^m). IEEE Transactions

on Computers, 61(3), 415-419.

