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Abstract: The uses and interpretation 
of reductio ad absurdum argument-
ation in mathematical proof and dis-
covery are examined, illustrated with 
elementary and progressively sophisti-
cated examples, and explained. 
Against Arthur Schopenhauer’s ob-
jections, reductio reasoning is defen-
ded as a method of uncovering new 
mathematical truths, and not merely of 
confirming independently grasped ma-
thematical intuitions. The application 
of reductio argument is contrasted 
with purely mechanical brute algo-
rithmic inferences as an art requiring 
skill and intelligent intervention in the 
choice of hypotheses and attribution of 
contradictions deduced to a particular 
assumption in a contradiction’s deri-
vation base within a reductio proof 
structure.   

Resumé:  On examine, illustre avec 
des exemples élémentaires et pro-
gresssivement sophistiqués, et expli-
que les usages et les interprétations du 
raisonnement reductio ad absurdum 
dans les preuves et les découvertes 
mathématiques. Afin de répondre aux 
objections d’Arthur Schopenhauer 
contre ce raisonnement, on le présente 
comme une méthode qui confirme des 
intuitions mathématiques et qui dé-
voile des nouvelles vérités mathé-
matiques. On compare l’application 
des arguments reductio aux inférences 
purement algorithmiques et méca-
niques pour souligner que l’usage des 
ces arguments est un art qui exige de 
l’habileté et de l’intelligence dans la 
sélection d’hypothèse à réfuter et dans 
la déduction d’une contradiction. 
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1.  A useful method 
 
It is one of the most time-honored and powerful methods of 
mathematical reasoning. Argumentum reductio ad absurdum is an 
indispensable mode of inference to which, with a bit of careful 
reformulation, every logical and mathematical argument can be 
reduced. Relatively easy to master in its simplest applications, 
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reductio style reasoning poses a number of heuristic problems that 
have not always been appreciated in discussions of its role in 
mathematical discovery and proof. 

The discussion to follow explains the logical structure and 
illustrates the utility of reductio arguments in mathematics. It 
highlights the fact that reductio ad absurdum needs to be 
understood as an art, rather than a brute algorithm. The method of 
reducing an assumption to an absurdity requires judgment and 
finesse in order to be applied successfully, in contrast with such 
comparatively more pedestrian rules of inference as modus 
ponendo ponens and tollendo tollens. When these aspects of 
reductio reasoning are explained, it becomes possible to recognize 
what is truly remarkable and distinctive about the unlimited 
potential of indirect proof. 

We reason by reductio ad absurdum when we assume the 
negation of what we are trying to prove, and then, from this 
assumption, together with other explicit or background 
assumptions, we are able to deduce an explicit contradiction. The 
assumptions in that case are said to have been reduced to an 
absurdity. Since the definition of a deductively valid inference 
prohibits the valid deduction of a false conclusion from true 
assumptions, and since a contradiction is always necessarily or 
logically false, it follows that at least one of the assumptions from 
which the contradictory false conclusion is deduced must itself be 
false. If the responsibility for the deduction of a false proposition 
falls squarely on the hypothesis made for purposes of indirect proof 
or reductio ad absurdum, which is generally the negation of the 
proposition to be proved, then that hypothesis must be false. This, 
finally, implies without further ado that the hypothesis, the 
negation of the target proposition, is true. The target proposition, 
the negation of the reductio hypothesis is thereby proved on the 
strength of the contradiction that has been produced. It is a 
contradiction that would otherwise obtain, in that event, were the 
hypothesis true. The hypothesis in this way is shown by the method 
not to be true; for, if it were, then it would imply a logical 
contradiction. Proving by reductio ad absurdum that the hypothesis 
of the reductio argument is false is logically equivalent to 
demonstrating by indirect proof that the target proposition is true, 
which is the purpose of the argument all along.1 
 
 
 

 
1 I have been influenced throughout much of this discussion by the dispute 
concerning traditional methods of construing the logical form of reductio 
inferences, as in Copi’s popular textbook, Symbolic Logic, 2nd ed. (1955), begun 
by Scherer (1971) and Lambros (1973. 
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2. Breviary of reductio-style arguments  
 
Indirect proofs or reductio ad absurdum arguments often offer the 
best, most compact and convincing demonstrations of a conclusion. 
This is particularly so where the conclusion is a necessary truth, the 
denial of which is self-contradictory, or where the denial of the 
conclusion can easily be shown to contradict the argument’s 
assumptions in light of reasonably accepted background 
assumptions. 

The use of reductio reasoning is seen in this simple 
inference: 

1. Susan will not run for President.  [Hypothesis for  
reductio]                                

2. If Susan will not run for President, then Mark will 
not run for Vice-President. [Background 
assumption]                      

3. Mark will run for Vice-President.  [Background      
assumption]    

 
_______________

  
4. Mark will not run for Vice-President.(1,2,) 

[Contradiction with (3)] 
5. Susan will run for President.  [Negation of    

assumption (1)]   

The task is to prove the conclusion in proposition (5), that 
Susan will run for President. We reason indirectly by assuming that 
the conclusion is false in assumption (1). Along with the 
assumption in (2) that if Susan will not run for President, then 
Mark will not run for Vice-President, and the assumption that Mark 
will run for Vice-President, we conclude in (4) that Mark will not 
run for Vice-President—a proposition that contradicts the 
assumption we are independently prepared to accept as true in (3). 
If we are certain of (2) and (3), then we can only suppose the 
contradiction results from assumption (1). As a consequence, we 
reject assumption (1) and deduce its negation by indirect proof or 
reductio ad absurdum in conclusion (5). The deductive grounds for 
(5) are that if assumption (1) were true, it would lead to the outright 
logical contradiction in (3) and (4), and that therefore (1) is not 
true. 

More interesting examples occur throughout all of 
mathematics. Again, we can begin with a relatively simple 
illustration. Suppose that I want to prove that there is no greatest 
even number. I assume the opposite of the conclusion I hope to 
establish, by assuming on the contrary that there is a greatest even 
number, which I call ‘N’. If N is an even number, no matter how 
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great, then I can always obtain an even number greater than N by 
adding 2 to N. Thus, I have reduced the assumption that there is a 
greatest even number to an absurdity in the form of an outright 
logical contradiction, that N is the greatest even number (by 
assumption), and that N is not the greatest even number (from the 
fact that N + 2 is necessarily an even number greater than N). The 
argument can be reconstructed in this way: 

  

1. There is a greatest even number, N.  [Hypothesis    
for reductio] 

2. If N is an even number, then N + 2 is an even 
number greater than N.  [Concept of even number] 

 
_______________ 

3. N + 2 is an even number greater than N. (1,2) 
4. N is the greatest even number.        

 [Contradiction with (5)] 
5. N is not the greatest even number. [Contradiction 

with (4)]   
6. There is no greatest even number. [Negation of 

assumption (1)] 

A related but trickier and to that extent more interesting 
example is discussed by the Cambridge University philosopher 
Frank Ramsey in his posthumous book, Foundations of 
Mathematics and Other Logical Essays. Ramsey’s argument, 
which he probably did not originate, demonstrates that there are at 
least two persons living on Earth who have precisely the same 
number of hairs on their heads from the assumption that there are at 
least two more persons living on Earth than there are hairs on any 
one person’s head (see Ramsey 1931, 35).  

The reasoning is by reductio ad absurdum. We assume, 
contrary to the conclusion, that it is false or that it is not the case 
that there are two persons living on Earth who have precisely the 
same number of hairs on their heads, but that every person has a 
different number of hairs on his or her head than every other 
person. The hypothesis quickly leads to a logical contradiction. The 
assumption, which states that the conclusion of the argument is 
false, is reduced to an absurdity. If the hairiest person has N hairs, 
and if, as seems reasonable, there are at least two more persons 
living on Earth than there are hairs on any one person’s head, then 
there are at least N + 2 people living on Earth. If the person with 
the fewest hairs is totally bald, then that person has 0 hairs on his or 
her head, and the hairiest person by the assumptions we have 
already made can have at most (N + 2) – 1 or N + 1 hairs on his or 
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her head. If every person has a different number of hairs, as we are 
supposing in assuming for reductio purposes that the conclusion of 
Ramsey’s argument is false, then one and only one person living on 
Earth, the hairiest, has precisely N + 1 hairs. This flatly contradicts 
the assumption that the hairiest person has N hairs. Assuming that 
the conclusion of Ramsey’s argument is false, that no two persons 
have precisely the same number of hairs on their heads, but that 
every person living on Earth has a different number of hairs, 
reduces in stages to the logical absurdity that some person has both 
precisely N and N + 1 hairs, or that some person both has precisely 
N and does not have precisely N hairs, on the assumption that there 
are at least two more persons living on Earth than there are hairs on 
any one person’s head. The argument can be reconstructed in this 
way for comparison with the previous example: 

1.The hairiest person living on Earth has N hairs              
on his or her head. 

2. There are at least N + 2 persons living on Earth. 
3. It is not the case that at least two persons living on 

Earth have precisely the same number of hairs on their 
heads; everyone has a different number of hairs.   
[Hypothesis for reductio] 

 
_______________ 

4. If there are at least N + 2 persons living on Earth, 
and if they all have a  different number of 
hairs on their heads, then, if a totally bald person 
has 0 hairs, then the hairiest person living on Earth 
has at least (N + 2) – 1 or N + 1 hairs. 

5. The hairiest person living on Earth has  precisely N 
hairs on his or her head and the hairiest person 
living on Earth does not have precisely N (but at 
least N + 1) hairs on his or her head. 
[Contradiction between (1) and (4)]   

6. At least two persons living on Earth have precisely the 
same number of hairs on their heads.         
[Negation of assumption (3)]     

Reductio arguments can sometimes appear superficially to 
be logically inconsistent. This is because they draw inferences from 
false assumptions, and, in fact, from assumptions that the 
arguments themselves are designed to prove false. Such a 
characterization is nevertheless a misdescription of how reductio 
arguments work. Reductio arguments merely hypothesize 
propositions that later in the proof are shown to be false, in order to 
expose their falsehood by using them to derive an absurdity or 
contradiction. Whereas in non-reductio arguments the assumptions 
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with which the argument begins remain propositions to the truth of 
which the argument is committed throughout, or at least 
conditionally to the proposition that if the assumptions are true, as 
logically they (might be), then so is the conclusion, in reductio 
arguments, false assumptions are rejected as part of the argument’s 
conclusion, and their negations are deduced instead.2  

Arthur Schopenhauer provides a useful illustration of 
reductio reasoning in mathematics in his 1847 work, On the 
Fourfold Root of the Principle of Sufficient Reason. The context is 
one in which Schopenhauer is considering the limitations of 
rigorous mathematical demonstration, and proposes to rephrase the 
sixth proposition in Book I of Euclid’s Elements as a reductio 
argument requiring a somewhat imaginative construction. 
Schopenhauer criticizes Euclid’s style of mathematical proof for its 
lack of intuitive insight into what he refers to as the ground of 
being (ratio essendi) of mathematical theorems. He maintains that 
reductio reasoning in mathematics offers only conviction 
(convictio) based on reasoning (Vernunft) without understanding 
(Verstand). The latter epistemic state he believes can only result 
from a perceptual grasp of the basis for a mathematical truth, which 
reductio thinking never affords. Proof by contradiction, according 
to Schopenhauer, at most convinces us that a propositions is true 
without offering any satisfactory insight into why it is true, a 
position he develops at greater length in the first edition and first 
volume of later editions of his treatise, The World as Will and 
Representation (see Jacquette, forthcoming). In the Fourfold Root, 
Schopenhauer nevertheless presents a faithful reconstruction of 
Euclid’s reductio proof, when he writes: 

Let abc be a triangle having the angle abc equal to 
the angle acb, then the side ac is equal to the side 
ab. 
For if ac is not equal to ab, then one of them is 
greater than the other. Let ab be greater; from ba cut 
off bd equal to ac, and draw dc. Now since (in the 
triangles dbc, abc), db equals ac, and bc is common 
to both, the two sides db and bc are equal to the two 
sides ac and cb, each taken separately, and the angle 
dbc is equal to the angle abc is equal to the triangle 

 
2 Here we might further distinguish between an arguer’s versus an argument’s 
commitments. The former is a subjective matter of what an individual advancing 
an argument happens to believe, whereas the latter is a more objective matter of 
what the argument states and of what must be true in order for the argument to be 
sound or at least to be intelligibly propounded. The present context requires only 
argument commitments, although in many instances an arguer’s commitments 
will naturally coincide with those of the arguer’s argument. 
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dcb, the greater is equal to the smaller, which is 
absurd. Therefore ab is not equal to ac, 
consequently ab is equal to ac. (Schopenhauer 1974, 
201) 

Another remarkable example of reductio reasoning appears 
again in Book X of Euclid’s Elements. Bertrand Russell provides a 
useful paraphrase of Euclid’s reasoning in his (1919) book, 
Introduction to Mathematical Philosophy,  to show that there exists 
no fraction m/n = square root of 2, which is to say that the square 
root of 2 must be irrational. The argument proceeds by reductio, 
involving the deduction of a contradiction from the assumption that 
the conclusion is not true. Russell reasons that if there did exist a 
fraction equal to the square root of 2, then it would have to be true 
that (m/n)2 = 2. From this conclusion, it would further follow that 
m2/n2 = 2, whereby both m and n per impossibile would both need 
to be simultaneously even and odd. This, however, we know, is 
impossible. Indeed, it is an outright logical contradiction on the 
further undeniable assumption that a number is even if and only if 
it is not odd. Whatever m/n is, it will be reducible to an equivalent 
fraction in lowest terms; suppose, then, that m/n is already in 
lowest terms. It follows by definition in that case that m and n 
cannot both be even, or it would not be in lowest terms. Yet m and 
n must both be even. If m2/n2 = 2, then m2 = 2n2, which is to say 
that m2 is divisible without remainder by 2, something that is 
possible only if m2 is itself an even number, on the grounds that no 
odd number multiplied by itself is equal to an even number. It 
further follows then that n2 = m2/2, which is to say that n2 is 
equivalent to a number that is divisible without remainder by 2. 
This is possible once again, for the same reason as before, only if n 
is itself an even number (Russell 1919, 67). Thus, m and n must 
and cannot possibly both be even numbers. The argument upholds 
a useful lemma in Socrates’ discussion with the slave boy in Plato’s 
early aporetic dialogue, the Meno, where Socrates presupposes but 
does not try rigorously to demonstrate that no rational number 
between 2 and 3 exactly measures the length of the diagonal of a 
square with a side length of 2. Socrates, instead, proceeds entirely 
intuitively, a practice Schopenhauer would commend, drawing 
diagrams of the square and its diagonal in the sand with a stick 
(Meno 82e). 

As a final example, consider another of Euclid’s proofs in 
his writings on number theory to show that there is no greatest 
prime number. The argument is similar in structure to that offered 
above to show that there is no greatest even number. A prime 
number is a whole number that is evenly divisible (which is to say, 
without remainder) only by 1 and itself. We might visualize a 
number line stretching out infinitely and containing prime numbers 
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scattered about its length. As we go further and further toward 
higher and higher numbers, we might imagine that eventually, with 
so many lower numbers to serve as possible even divisors that 
eventually the primes will give out and there will occur a greatest 
prime number. Imagination or conceivability by itself is thus no 
sure guide to the question as to whether there is or is not a greatest 
prime number. It is precisely here that reductio ad absurdum steps 
in to answer the question definitely in favor of the conclusion that 
there is no greatest prime. The argument proceeds as follows. 
Assume as a hypothesis for reductio, much as before, that there is a 
greatest prime number, which we may call N. Now, however, no 
matter how large N is, we can always produce a number greater 
than N by multiplying together all the primes less than N and 
adding 1. The reason why this operation produces a prime number 
is a more complicated matter. For present purposes, it is enough to 
appreciate the reductio structure of the reasoning involved in 
reaching the conclusion. We assume the negation of a proposition 
we believe to be true, and whose negation would therefore be false. 
Then we derive a contradiction from the hypothesis. The 
contradiction in this application is that N is the greatest prime 
number and N is not the greatest prime number, on the grounds that 
the above formula provides a way of using the value of N to 
construct a prime number greater than N, for any prime number N, 
no matter how large. The method in this case parallels very closely 
the previous example in which we assume that N is the greatest 
even number, for which we have an even simpler and more obvious 
method of constructing from N an even number larger than it, for 
any even number N.  

 
 

3. Mathatical discovery reductio ad absurdum 
 
The above illustrations of reductio reasoning in mathematics 
suggest a somewhat misleading interpretation of the method. It can 
appear when reductio arguments are presented in textbook cases 
that the inference pattern of indirect proof generally requires that 
we somehow already know what conclusion to aim at, and then we 
cast about for a way to prove the proposition that has been 
independently projected, finding a route to the conclusion by 
assuming the conclusion’s negation and generating a contradiction. 
It is precisely this sort of apparent limitation that Schopenhauer 
exploits in defending his view of the importance of mathematical 
intuition versus formal demonstration. That the reality of working 
with reductio ad absurdum is also a mode of mathematical 
discovery rather than routine proof of foregone intuited conclusions 
is clear from several considerations.  
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First, however trustworthy our intuitions may seem even to 
professional practitioners with a good grasp of mathematical 
relations and a proven track record of accurate apprehensions of 
mathematical truths, it always remains an open question whether or 
not the intuition of a mathematical conclusion is true unless or until 
a formal proof can be rigorously presented. This is an aspect of the 
use of reductio reasoning in mathematics that Schopenhauer 
completely overlooks. Schopenhauer is right to credit mathematical 
intuition with important insight into where mathematical truth 
might be found, but not yet to where it actually exists in the 
absence of exact demonstration. It is better, all things considered, 
as a result, to regard mathematical intuitions as something more 
like the hypotheses and educated guesses that scientists make in 
trying to establish logically contingent truths about physical 
phenomena and laws of nature. The mathematician is guided by 
instinct and experience and possibly an a priori grasp of essential 
relations to be tested beyond mere psychological certainty by the 
experiment of trying to see whether or not a rigorous formal proof 
in support of such intuitions is actually forthcoming. The point is 
rather a general one, affecting the nature of all mathematical 
methodology, and not just reductio reasoning; yet the particular 
implication holds as well for reductio proof, thereby categorizing it 
also as a species of mathematical discovery in every practical 
application.3  

We must try to imagine what any honest mathematician is 
compelled to conclude from the fact, if it turns out to be a fact, that 
a reductio proof is simply not available for a particular strongly 
intuited conclusion concerning the truth of a mathematical 
proposition. The situation is presumably precisely the same as with 
respect to the observationally or experimentally unconfirmable 
truth of a proposition in natural science, despite its initial 
plausibility. The mathematician similarly relies heavily on intuition 
of what looks as though it must be the case where mathematical 
properties and relations are concerned, but then subjects such 
intuitions, no matter how firm or psychologically deep-rooted, to 
the test of rigorous proof. If proof can be provided, well and good, 
and reductio ad absurdum, as one of the most powerful proof 
methods in mathematics, plays an important role in this stage of 
mathematical discovery. If no proof is found, the mathematician 
confronts the merely negative fact that the guiding intuition may or 
may not be true, but in any event cannot as yet be acknowledged as 
definitely true. More work needs to be done in that case, just as in 

                                                 
3 The analogy between hypothetical reasoning in mathematics and the natural 
sciences is often associated with the work of Imre Lakatos. See especially 
Lakatos (1976, 1978a, 1978b). See also Kampis, Kvasz, and Stoltzner (Eds.) 
(2002). 
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the parallel circumstances facing the natural scientist proposing and 
testing hypotheses by conjecture and refutation. A judicious 
mathematician might continue to express belief in the proposition’s 
truth, but in lieu of proof it would not be responsible mathematical 
practice to label such a proposition that anything more than a 
provisionally unsubstantiated even if widely accepted supposition.  

Second, as another way in which reductio reasoning in 
mathematics constitutes a method of discovery rather than mere 
confirmation of prescient truths, reductio argumentation can 
sometimes lead to entirely unexpected mathematical consequences. 
Here an appropriate analogy with experimental and experiential 
thinking in the natural sciences is suggested. The phenomenon in 
question is sometimes called serendipity. The discovery of 
penicillin is a shopworn but still illuminating example. Generally, 
what happens in serendipitous discovery is that an investigator is 
trying to achieve a certain result that does not work out quite as 
expected, but along the way, something unanticipated occurs that 
leads to new truths. Again, the analogy between mathematics and 
the natural sciences is striking. The fungus penicillium, commonly 
found in bread mold, was known in some form from ancient times. 
It was not until 1929, however, that Alexander Fleming noticed that 
penicillium accidentally occurring on a Petri culture dish inhibited 
the spread of a Staphylococcus bacterial colony. Only then was it 
conjectured that the mold might be producing a substance capable 
of checking the growth of bacteria. The important point is that there 
was no prior hint that bread mold might be antibacterial. If the 
mold and bacterium had not through sheer accident appeared on the 
agar-agar culture in the Petri dish, and if Fleming had not noticed 
the effect of penicillium on Staphylococcus, the discovery might 
have awaited many years or never been made. Other examples of 
serendipity in the natural sciences abound. The chemical synthesis 
of Urea, the invention of Teflon, and even the discovery of 
America by Christopher Columbus, if the history books have their 
facts straight, were all accidental discoveries of this type. Search 
for a sea route west to the Indies in the fifteenth century, and you 
might find something very different than you envisioned. The same 
can be true even in the formal sciences, as epitomized by the use of 
reductio reasoning in the discovery of elliptic and hyperbolic non-
Euclidean mathematics. 

Two nineteenth-century mathematicians, the Russian 
Nikolai Ivanovich Lobachevsky and the German Bernhard 
Riemann, discovered internally consistent systems of geometry by 
means of reductio mathematical reasoning that were different from 
Euclid’s classical geometry. The fifth or so-called parallels 
postulate in Euclid’s Elements states: ‘If a straight line crossing two 
straight lines makes the interior angles on the same side less than 
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two right angles, the two straight lines, if extended indefinitely, 
meet on that side on which the angles are less than the two right 
angles’. In effect, the parallels postulate says that for a line and a 
point in the same plane, exactly one line parallel to the line can be 
drawn through the point.  

It had long been a question among geometers whether 
Euclid’s fifth postulate was independent of the other four axioms in 
Euclid’s system of twenty-three definitions, five common notions, 
and five axioms or postulates. A standard technique for testing the 
independence of any member of a set of mathematical axioms is to 
deny the truth of the axiom whose independence is being 
examined, and then check to see whether a contradiction results. 
The method can thus be understood as an application of reductio, 
where a proposition otherwise thought to be true is denied and a 
contradiction is sought as an implication of the hypothesis along 
with other background assumptions. In this case, the hypothesis is 
the negation of Euclid’s fifth or parallels postulate, and the 
background assumptions are the remaining four axioms or 
postulates of Euclid’s geometry.  

The strategy in this application is one in which, if a 
contradiction obtains then, it follows the fifth or parallels postulate 
is proved reductio ad absurdum, and, as a dividend, that therefore 
the postulate must be independent of the other four postulates. If 
the fifth postulate were not independent, then putting its negation 
together with the remaining four postulates would not generate a 
contradiction. For in that event, the fifth postulate would have been 
proven reductio ad absurdum from, and hence could not be 
independent of, the other four postulates.  

What Riemann and Lobachevsky soon discovered was that 
no contradiction whatsoever obtains in a reductio argument 
combining the negation of Euclid’s fifth postulate with the other 
four. This is a negative result, and as such does not definitively 
establish that the fifth postulate is dependent on or independent of 
the first four postulates. The method at such an impasse leaves 
open the possibility in principle that a contradiction might still be 
derived within the framework consisting of the reductio hypothesis 
and other assumptions, but that no such contradiction has yet been 
deduced.  

Previously, the Italian mathematician, Giovanni Girolamo 
Saccheri, had arrived at the same conclusion in his 1733 treatise, 
Euclides ab Omni Naevo Vindicatus (translatable as Euclid 
Liberated from All Flaws). Saccheri went on to explore the 
possibilities of elliptic and hyperbolic geometries, based on a denial 
of Euclid’s fifth postulate. In the case of elliptic geometries, 
denying the fifth postulate takes the form of supposing that instead 
of there being just one line passing through a point outside of and 
parallel to a given line, there are none at all; whereas hyperbolic 
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geometries suppose that there are infinitely many lines parallel to 
the given line. Saccheri rejected elliptic geometry on the grounds 
that other Euclidean postulates must be revised in order to preserve 
consistency, and instead carried forward a kind of hyperbolic 
geometry up to the point where he concluded that the mathematics 
was logically inconsistent.  

The problem of whether Euclid’s fifth postulate was truly 
independent of the other four as a result was not entirely 
satisfactorily resolved. Thus the question persisted until late into 
the nineteenth century. Where Riemann and Lobachevsky 
improved upon Saccheri’s discovery was in the development of 
alternative non-Euclidean geometries based on the failure of the 
reductio effort to prove Euclid’s fifth postulate from the first four. 
They persevered in hammering out the problems encountered in 
denying the fifth postulate in order to extend new systems of 
geometry in which there could be zero (Lobachevsky) or infinitely 
many (Riemann) parallel lines through a point outside a given line. 
As is well known, these elegant geometries were admired but 
assumed to lack application until Albert Einstein found a use for 
them in describing the pathways of light rays passing through 
immense distances in space and traversing large gravitational 
fields.4 

The moral of this episode in the history of mathematics for 
present purposes is that reductio reasoning in mathematics serves 
in at least a second important way as a mode of discovery of 
previously unsuspected mathematical structures, properties, 
relations, and theorems. Were it not for the availability of reductio 
proof as a method of establishing the independence of one axiom 
from a set of axioms to which it belongs, as in the case of the 
accidental revelation of penicillin as an antibacterial agent, there 
might have been no discovery of the formally remarkable and 
scientifically useful non-Euclidean geometries. Applying reductio 
experimentally, as in the serendipitous discovery of non-Euclidean 
geometries, to test for an axiom’s independence from other axioms, 
is only one use of the method of indirect proof in mathematics. The 
example illustrates the general point that mathematicians use 
reductio reasoning, contrary to Schopenhauer’s complaint, not 
merely to establish truths that are pre-demonstratively intuited, but 
also to discover new truths. The early mathematicians who denied 
Euclid’s fifth or parallels postulate in order to see whether or not 
the axiom was provable together with the remaining four postulates 
by the deduction of a contradiction may have had their suspicions, 
but they evidently did not know with certainty in advance what the 

 
4 Among many valuable sources, see, in particular, Bonola (1955), Rosenfeld 
(1987) and Trudeau (1987).  
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answer would be. As far as their prior beliefs were concerned, until 
they completed the experiment, the outcome could have been the 
very opposite. In that case, the fifth postulate would have been 
proven reductio ad absurdum, from which the postulate’s logical 
dependence on the other four axioms would also have been 
discovered. Since the postulate was not, and, in retrospect, could 
not have been proved in this way, the failure of the reductio opened 
the door to the discovery of a field of an indefinitely large family of 
non-Euclidean geometries representing an important advance in 
mathematical knowledge. 

 
 

4. Where blame for contradiction falls  
 
It is a curiosity about reductio reasoning generally, and one rich 
with philosophical significance, especially for mathematical 
applications, that the contradiction obtaining in an indirect proof 
framework can be attributed to any of the assumptions on which 
the contradiction rests. Logicians sometimes speak of ‘blaming’ the 
contradiction on a particular chosen assumption in the argument, 
thereby reducing it to an absurdity and supporting the deduction of 
its negation.  

Ordinarily, one expects that the contradiction in a reductio 
argument is to be blamed on the reductio hypothesis, but there is no 
imperative necessitating this choice. Thus, in the example given 
above, proposing to prove that there is no greatest even number N, 
it is equally open to a logician, upon validly deriving an explicit 
contradiction within the proof, to blame the contradiction on the 
hypothesis that there exists a greatest even number N, or on any of 
the other assumptions in the argument. We could in principle 
alternatively attribute the contradiction instead to the assumption 
that if N is an even number, then N + 2 is an even number greater 
than N. This would clearly be a difficult way to go, given the fact 
that the assumption reflects the meaning of the concept of an even 
number as a fundamental arithmetical truth. Still, it remains a 
possibility as far as the logical structure of reductio ad absurdum is 
concerned; blaming the contradiction on the reductio hypothesis is 
not dictated by logical principle.  

In other applications of reductio reasoning, both in and 
outside of mathematics, there may be other equally acceptable 
choices. Take, for example, the first reductio argument represented 
above, in which the conclusion is ostensibly that Susan will not run 
for President. Here the intent of the argument does not remotely 
approach the inevitability of the reductio designed to prove that 
there is no greatest even number. As far as the internal content of 
the argument and one’s general background knowledge is 
concerned, there is no compulsion to blame the contradiction on the 
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assumption that Susan will run for President. We could with equal 
a priori justification blame the contradiction on the background 
assumption (2) that if Susan will not run for President, then Mark 
will not run for Vice-President, or (3) that Mark will run for Vice-
President. Either of these assumptions could presumably be held 
responsible for the contradiction rather than the hypothesis. Merely 
referring to this proposition as the reductio hypothesis and to the 
other premises of the argument as background assumptions cuts no 
logical ice. The occurrence of the contradiction shows only that the 
premises considered conjointly imply a contradiction. Since the 
contradiction is eliminated by the negation of any of the premises, 
whether labeled as the reductio hypothesis or as background 
assumption, the contradiction, to continue the culpability metaphor, 
could be considered to arise as the fault of any one of the premises.  

The general methodological problem to be considered with 
respect to reductio reasoning generally and in mathematics more 
particularly is whether a given use of argmentum reductio ad 
absurdum by itself can ever be properly understood to determine 
the expected result of its application. Do we really know that Susan 
will not run for President, or only that either Susan will not for 
President or that Mark will not run for Vice-President, or that it is 
not the case that if Susan will not run for President, then Mark will 
not run for Vice-President? Moving beyond the transparency of the 
reductio proof to show that there is no greatest even number to the 
reductio proof that there is no greatest prime number, how do we 
know, short of further appeal to mathematical truths, themselves 
standing in need of formal demonstration, that there is no greatest 
prime number N, or merely that either there is no greatest prime 
number or that it is not the case that the product of all the primes 
less than N plus 1 is a prime number greater than N? If such a 
number is prime, then it is certainly greater than N, but we might 
be in doubt as to whether the number is prime, and whether such an 
algorithm is guaranteed in absolutely every case in every position 
along the number line to produce a prime number. The proposition 
can of course be independently proved, although it might be 
wondered even so whether the proof of this key proposition does 
not somehow depend on the assumption that there is no greatest 
prime number, thereby involving both demonstrations in a 
significance-depriving vicious circularity. 

We leave these questions of number theory aside in order to 
concentrate instead on a more philosophically interesting 
implication. The lesson to be learned from the multiple potential 
blame-ability of any of the premises on which the contradiction in a 
reductio inference depends is that reductio ad absurdum is not 
what I propose to call brute-algorithmic. Rather, the application of 
reductio proof methods, wherever there is more than one premise 
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as hypothesis of the argument, requires decision and proficiency, 
and ultimately a capacity for justifying the choice of a particular 
assumption on which to blame a resulting contradiction that is not 
automatically entailed by the fact that a contradiction is validly 
derivable.  

Effective use of reductio ad absurdum in this very broad 
sense is an art. The hypothesis for a reductio argument must be 
chosen, along with the background assumptions, and these must 
admit of rationalization if the proof is to hold any weight. We must 
know what we want to prove and assume its negation, and we must 
know what additional assumptions may need to be adduced in order 
to generate a logical contradiction. We must be prepared in a good 
application of reductio reasoning to defend these choices, and to 
argue that we are not overlooking an explicit or implicit assumption 
other than the hypothesis that may be essential to the contradiction. 
The method does not simply grind along mechanically, although it 
depends on deductive canons. It requires intelligent decision and 
intervention at the beginning and end, in setting up the argument at 
the outset and in choosing an assumption afterward to hold 
responsible for any contradictions derived in the course of 
transacting the proof.  

Again, there is an instructive analogy to be made out here 
between the structure of reductio reasoning and the possibility of 
alternative explanations and the search for hidden factors in the 
interpretation of observational phenomena and scientific 
experimentation. The question always remains, when an 
experiment has been performed or an empirical observation 
explained, whether the implications have been rightly understood, 
or whether there exists another less obvious explanation lurking 
behind the scenes of what immediately occurs to the investigator 
that would have invalidated a preferred surmise. The successful 
application of reductio ad absurdum similarly requires a skillful 
navigation among alternative explanations of how a contradiction 
arises, on precisely which premises a logical inconsistency with a 
reductio argument structure ought to be attributed. The proponent 
of an application of reductio reasoning must always be prepared to 
argue for these choices in defense of the argument’s conclusion, 
which in practice as in principle might be differently handled by 
different reasoners, should the inference come under challenge.  

The art rather than brute algorithmic stature of reductio 
reasoning is reinforced by the fact that there is no formal reduction 
of reductio ad absurdum to any logical inference rule or 
combination of inference rules in propositional logic supportable 
by truth table analysis. We can formalize the logical structure of the 
natural deduction inference rule of reductio reasoning in this way: 

α ├ β ∧ ¬β 
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___________ 

 ¬α 

 The trouble is that the inference indicator, ├, is not a truth 
functional operator. If we try to reduce the inference rule to a truth 
functional relation, the best we can do is something like: [α → [β ∧ 
¬β]] → ¬α.5 This proposition, although it is a tautology of 
propositional logic, does not adequately represent the logic of 
reductio reasoning. In order to detach the conclusion of a reductio 
inference, symbolized here as ¬α, the antecedent of the main 
conditional would need to be true. That is, it would need to be true 
that α → [β ∧ ¬β]. This subconditional, however, is only true when 
α is false. This requirement implies a further problem which can be 
expressed in two related ways. First, the formula above reduces 
logically to ¬α → ¬α, in which nothing distinctive of reductio 
reasoning remains. Second, a reductio proof as reconstructed above 
is supposed to prove that ¬α is true. We have just seen that the 
subconditional α → [β ∧ ¬β] that needs to be true in order validly 
to detach ¬α is itself true only when α is false. If this is the only 
circumstance under which ¬α can be detached, then the derivation 
of the contradiction is altogether irrelevant, since a conditional with 
a false antecedent is true by default, according to truth table 
definition, regardless of the form, content, or truth value of the 
consequent.   

The implication is that truth table analysis by itself does not 
support the special form of reasoning and corresponding inference 
rule of reductio ad absurdum. The further implication once again is 
that reductio reasoning is a method of craft rather than a matter of 
brute algorithm. To the extent that correct and effective use of 
reductio inference can be mechanized or computationalized, it must 
simulate through expert system programming the same kind of 
informal judgments that intelligent logically competent human 
reasoners make in choosing an hypothesis together with 
background assumptions, formally drawing a contradictory 
inference from this foundation, and blaming the inference on the 
hypothesis, to the exclusion of any other ground of contradiction.   

 
 

5. Triviality of reductio constructability 
 
A final problem to be addressed in understanding reductio 
argumentation in mathematical reasoning is that of the triviality of 

 
5 Lewis Carroll makes a similar point in ‘What the Tortoise Said to Achilles’ 
(1895). 
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reductio ad absurdum inference constructibility. Any deductively 
valid inference whatsoever can be reconstructed as a deductively 
valid reductio argument. What does this imply with respect to the 
significance of offering a reductio proof in support of a conclusion? 
Is there anything distinctive or unique about the structure of 
reductio reasoning, particularly in mathematics, as a consequence? 

To appreciate the fact, first of all, that any valid inference 
can be properly reconstructed as a valid reductio, we shall not try 
to argue definitively by mathematical induction, or the like, but 
simply point toward this conclusion by studying a few 
characteristic examples. Consider inferences by modus ponendo 
ponens, modus tollendo tollens, and hypothetical syllogism. The 
argument that from P and if P then Q we can infer that therefore Q 
can be restructured as a reductio in this way. Suppose as a 
hypothesis for reductio that not-Q. It follows from if P then Q that 
therefore not-P, which contradicts the assumption that P, and on the 
strength of the contradiction we are entitled to conclude that the 
hypothesis, not-Q, is false, or simply that Q or that Q is true. Or 
take the argument that from not-Q and if P then Q we can infer that 
therefore not-P. This can be restructured as a deductively valid 
reductio inference by supposing as a hypothesis for reductio that P. 
It follows from P and if P then Q that Q, which contradicts the 
assumption that not-Q, and on the strength of the contradiction 
once again we are validly entitled to conclude the negation of the 
hypothesis, thereby inferring that not-P, just as in the original 
modus tollendo tollens inference. Finally, to reconstruct 
hypothetical syllogism as a reductio, assume that it is not the case 
that if P then R, for the inference if P then Q, if Q then R, therefore, 
if P then R. From not-(if P then R) it follows that P and not-R, from 
P and if P then Q it follows that Q, and from Q and if Q then R it 
follows that R. Thus, we derive the contradiction R and not-R, on 
the strength of which we are validly entitled to deduce the negation 
of the reductio hypothesis, not-not-(if P then R), or simply if P then 
R.  

The point is that none of these standard forms of argument 
is overtly reductio in form because none involves the explicit 
deduction of a syntactical contradiction. We can nevertheless 
convert any such argument into a reductio by introducing the 
negation of the conclusion into an updated assumption set, and 
making use, just as we would in more forthrightly reductio 
arguments, of other common inference rules, in order to produce an 
outright contradiction, from which the original conclusion of the 
deductively valid inference follows as a deductively valid 
consequence. More generally, we can see in a classical bivalent 
truth functional propositional logic that if from the assumptions 
P,…,Q in any argument it deductively validly follows that R, then 
we can convert the argument P,…,Q├ R to a deductively valid 



Mathematical Proof and Discovery Reductio ad Absurdum 259 
 

reductio style inference with a modified assumption set including 
the hypothesis not-R, whereby ¬R, P,…,Q├ R. The reason is that 
(classically) if P,…,Q├ R, then ¬R, P,…,Q├ S, ¬S (or S ∧ ¬S), for 
any proposition S; and from S, ¬S (or S ∧ ¬S) it deductively 
validly follows that R. 

Given that any deductively valid inference can be converted 
into a deductively valid reductio counterpart inference, what 
remains of interest in reductio reasoning? Are we saying anything 
special when we say that a certain conclusion follows reductio ad 
absurdum that we could not say by appealing to another form of 
deductively valid logical inference? The right answer to this 
pertinent question has two parts, one of them obvious and the 
second perhaps somewhat less so. We note in the first place that 
just because any deductively valid inference can be morphed into a 
deductively valid reductio inference, it does not yet follow that any 
deductively valid reductio inference can similarly be redesigned as 
an equivalent deductively valid non-reductio inference. Many 
standard forms of argument, as we have seen, including but 
certainly not limited to modus ponendo ponens, modus tollendo 
tollens, and hypothetical syllogism, among numerous others, unlike 
reductio, are fully justified by truth table analysis. There is 
therefore a very clearcut formal difference between at least some 
reductio arguments and standard inferences, such that we are 
saying something significant when we say that a particular 
inference holds reductio ad absurdum and that a particular 
conclusion is derivable reductio ad absurdum.  

More interestingly, perhaps, especially from the standpoint 
of argumentation theory as it applies to mathematical reasoning, the 
mere fact, whenever it is a fact, that a reductio inference is 
reducible to another non-reductio type of inference, does nothing to 
change the relative epistemic value of reductio reasoning as distinct 
from other standard modes of inference. Reasoning by reductio, a 
matter of art, and hence with a style of its own, as we have now 
argued, calls upon the reasoner to pursue specific tasks. The 
reasoner must look for and advance a particular reductio 
hypothesis, consider its truth value and implications against a 
background of other assumptions, work toward an explicit 
contradiction, and then arrive at the negation of the hypothesis as a 
conclusion. In this process, in the course of meeting the formal 
requirements of a reductio in contrast with another mode of proof, 
as we have dramatically seen in the serendipitous discovery by 
reductio methods of non-Euclidean geometries in the history of 
mathematics, logic is led to reveal truths that might otherwise have 
never or at least not so easily been disclosed. It is precisely in the 
activity of seeking a distinctively reductio-style proof, more or less 
experimentally, to determine if an appropriate hypothesis 
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supporting a contradiction can be identified, that the kinds of 
mathematical intuitions Schopenhauer regards as standing in 
opposition to proof by contradiction reductio ad absurdum, can 
often most efficiently be gained.6  
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