
PME

I
J

http://polipapers.upv.es/index.php/IJPME

International Journal of
Production Management
and Engineering

doi:10.4995/ijpme.2017.6512

Received 2016-08-18 Accepted: 2017-01-09

An Effective Branch-and-cut algorithm in Order to Solve the Mixed
Integer Bi-level Programming

 Arsalan Rahmani a and Majid Yousefikhoshbakht b*

aDepartment of Mathematics, University of Kurdistan, Sanandaj, Iran.
bYoung Researchers & Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

a Arsalan.rah@gmail.com
b khoshbakht@iauh.ac.ir

Abstract: In this paper, a new branch-and-cut algorithm for mixed integer bi-level programming is proposed. For achieving
this purpose, a historical perspective of the development of enumeration methods in the field of bi-level linear programming
is considered. Then, we present some obstacles for using branch and bound method based on them, and an algorithm
is developed to solve for mixed integer bi-level problem. Finally, we use a preference function to determine the choice of
branching and specialized cuts in a branch and cut tree. Computational results are reported and compared favorably to those
of previous methods and then implications discussed. The results show that not only the proposed algorithm can find high
quality solutions for solving a number of the problems, but also it is competitive with other famous published algorithms.

Key words: Mixed-integer bi-level programming, Branch and cut method, Fathoming branch.

1.	 Introduction

An interactive process in which a central unit
(leader) coordinates a lower level unit (follower) is
called hierarchical organizations. When the follower
afforded some level of autonomy, this process
becomes more complex to implement, coordinate
and optimize. Moreover, in some instances, the
objectives of the follower may conflict with those
of the leader. In mathematical programming
environment, these interactive processes are existed
and known as bi-level or multi-level programming.
Linear bi-level programming problems (BLPP)
generally involve a hierarchy of two optimization
problems, in the following form:

1 1
1 1:max

x
P Z c x d y= +

1 1 1. .s t A x B y g+ ≤

x X∈
2 2max

y
c x d y+

2 2 2. .s t A x B y g+ ≤

y Y∈

Where x and y are the variables of problem P1
divided into two classes, namely the upper-level
variables x and the lower-level variables y. Besides,
the functions

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 1

https://doi.org/10.4995/ijpme.2017.6512
mailto:khoshbakht%40iauh.ac.ir?subject=
http://creativecommons.org/licenses/by-nc-nd/4.0/

1 1 2 2,c x d y c x d y+ +

are called upper level and lower level objective
function,

1 1 1A x B y g+ ≤

and
2 2 2A x B y g+ ≤

are known as upper level and lower level constraints
respectively. Upper-level constraints involve variables
from both levels. In this paper, a special class of
BLPP is considered and its model is supposed to
have the following characteristics:

-- In the upper level problem, the constraints do
not include any variable from the lower level
problem.

The most competitive facility location problems
lay in this group, in fact decisions about the
location of facilities (for the first decision maker
(leader)), capacities of facilities, transportations
and so on are full free of lower level variables,
the lower level variables may take into accounts
in upper level’s objective function.

-- For any feasible solution of upper-level problem,
there is a feasible solution for the lower-level
problem.

In the problems, which a level of service is
objective, when one company is not able to
service a customer, the other company do it. As
a result, in this case for any feasible solution of
upper-level problem, there is a feasible solution
for the lower-level problem.

A special case of this type of problem is discrete
competitive facility location problem (Beresnev,
2009). Jeroslow showed that Bi-level programming
problems are NP-hard even in the “simplest case”,
the linear BLPP (Jeroslow, 1985) while (Hansen
et al., 1992) proved that the problem is strong NP-
hardness. Regarding to solution approaches, many
algorithms were proposed in literature. Gümüş
studied global optimization of bi-level programming
problems (Gümüş and Floudas, 2005), and proposed
a convex relaxation of the inner problem followed
by its equivalent representation via necessary and
sufficient optimality conditions. The approximated
branch and bound global optimal principles presented
a branch and bound framework. The first precise
global optimization approach for the calculation of the

flexibility test that is bi-level nonlinear optimization
model is introduced in (Floudas et al., 1999). Then
they demonstrate its applicability to a heat exchanger
network problem, a pump and pip problem, a
reactor-cooler system and a prototype process flow
sheet model. Pistikopoulos introduced methods
based on parametric programming to transform
the bi-level problem into a family of single level
optimization problems which can be solved to global
optimality (Pistikopoulos et al., 2007), and presented
computational results on several small benchmarks
linear-linear, linear-quadratic, quadratic-linear and
quadratic-quadratic type problems. Moreover, two
new methods for bi-level programming problem
are proposed (Gümüş and Floudas, 2005). In the
case of bi-level linear programming different
algorithms proposed in (Vicente, 2001), (Colson
et al., 2005) and (Domínguez and Pistikopoulos,
2010). Dempe considered the case characterized by
continuous upper-level variables and integer lower-
level variables, and used a cutting-plane approach to
approximate the lower-level feasible region (Dempe,
2001). Wen considered the opposite case, where
the lower-level problem is a linear program and the
upper-level problem is an integer program (Yang,
1990). Linear programming duality employed to
derive exact solutions. In The discrete case, Moore
developed a basic enumeration scheme to identify
feasible solutions (Bard and Moore, 1990). Beside
these methods an applicable Lagrangean based
algorithm also proposed in (Rahmani A, 2015) and
the metaheuristic method using particle swarm
optimization method has been used for solving a
special class of Bi-level problem (Mirhassani, 2015).

A well-known approach to solve a linear BLP problem
is transferring into a nonlinear programming problem
using Kuhn-Tucker conditions. Bard and Falk (1982)
reported several obstacles to the development of
algorithms for solving BLMIP problems. In this
regard they deliver a branch and bound method
(Bard and Moore, 1990) and DeNegre proposed
a simple branch-and-cut algorithm (Denegre and
Ralphs, 2009). For others related works see Hansen
et al. (1992), Shi et al. (2006), Vicente et al. (1996),
Beresnev (2013) and Beresnev and Melnikov
(2014). The goal of this work is to demonstrate
that it is possible, in principle, to generalize the
greatly successful branch-and-cut (by using suitable
branching and cutting rules) framework commonly
used to solve mixed integer linear programs to
this very challenging computational setting. Our
implementation is quite rudimentary and intend only
as a demonstration of the concept. The algorithm

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Rahmani, A. and Yousefikhoshbakht, M.

2

http://creativecommons.org/licenses/by-nc-nd/4.0/

demonstrates a better performance respect to the
branch-and bound algorithm (Bard and Moore,
1990; Beresnev and Melnikov, 2014), and branch
and cut algorithm (Denegre and Ralphs, 2009). It
can be implemented in a straightforward way using
existing software. The computational results show
the algorithm efficiency in terms of solution quality
and running time.

The rest of the paper is as follows. In Section 2,
we describe the mathematical models and the
challenge of solving the models by generalizing
solution methods for single-level mathematical
programming problems. In Section 3, we propose a
branch-and-cut algorithm for MIBLPs and section 4
illustrates the algorithm via an example and provides
some preliminary computational results. Finally, in
Section 5, we provide conclusions and directions for
future work.

2.	 Definitions and Notation

Bard and Falk (Bard and Falk, 1982) utilized the
following notation and definitions in their work.

BLPP Constraint Region:

(,) | , , ,x y A x B y g A x B y g x X y Y1 1 1 2 2 2# # ! !X = + +" ,

Projection of Ω onto the Leader’s Decision Space:

() | , ,X x X y Y A x B y g A x B y g1 1 1 2 2 27! ! # #X = + +" ,

Follower’s Feasible Region for x X∈ Fixed:

() |x y Y A x B y g2 2 2! #X = +" ,

Follower’s Rational Reaction Set for ()x X∈Ω :

() { | argmax[| ()]}M x y Y y c x d y y xy
2 2! ! ! X= +

Inducible Region:

(,) | (,) , ()x y x y y M xR ! !X= " ,

In order to make P1 well posed it is assumed that Ω is
non-empty and compact, and for each decision taken
by the leader there is some room to move for the
follower, or ()x Q!X .

Definition 1: If ()y M x∈ then y is said to be optimal
with respect to x; such a pair is said to be bi-level
feasible.

Definition 2: A point (x*, y*) is said to be an optimal
solution to the BLPP if

a)	 (x*, y*) is bi-level feasible; and,
b)	 For all feasible pairs (x,y); c1x+d1y≤c1x*+d1y*.

Definition 3: We said (x, y) is valid for a cut (set); if
it satisfied in this cut (set).

Definition 4: An inequality defined by (a,b,g) is said
valid for set S, if for all pairs (,)x y S∈ ; ax+by ≤ g

Bard and Moore postulated several obstacles to
the development of algorithms to solve P1 (Bard
and Moore, 1990). They established 3 observations
for general mixed integer programming problems.
Fathoming in normal linear programming scenarios
presents problems and follows 3 observations.

Observation1: The solution of the relaxed BLPP
does not provide a valid upper bound on the solution
of the mixed integer BLPP.

Observation2: Solutions to the relaxed BLPP that
are in the inducible region cannot, in general, be
fathomed.

Observation3: Not all integer solutions to the
relaxed BLPP with some of the follower’s variables
restricted can, in general, be fathomed.

In the BLPP, unfortunately, only observation1 can be
applied with any degree of confidence.

Observation 2 needs some strong qualification and
observation3 must be discarded altogether.

To initialize the cutting plane procedure, first
introduce some notations:

With any loss of the generality let all variables are
binary, and n the number of binary variables of upper
level problem.

k: The order number of a generated node in a branch-
and-cut tree:

Jk
0 ={j | xj is a free binary variable, j=1,2,…,n}

Jk
+ ={j | xj is a fixed at 1, j=1,2,…,n}

Jk
– ={j | xj is a fixed at 0, j=1,2,…,n}

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

An Effective Branch-and-cut algorithm in Order to Solve the Mixed Integer Bi-level Programming

3

http://creativecommons.org/licenses/by-nc-nd/4.0/

3.	 Branch and Cut Algorithm

One common route with many classes of
mathematical programs for achieving global
optimality in the branch and bound and branch and
cut algorithm, is the development of a bounding
strategy. Based on the observations, the bounding,
fathoming, and branching procedures employed in
traditional LP-based branch-and-bound algorithms
is not applicable in a straightforward way. In this
section, we use previous works that describe how to
overcome these challenges to develop a generalized
branch-and-cut algorithm for MIBLP that follows
the same basis used in MILP.

3.1.	 Bounding
Wen in (Yang, 1990) proved the following lemmas:

Lemma 1: Given two linear programming problems:

P2: max Z2=cx P3: max Z3=cx

s.t.  Ax ≤ b s.t.  Ax ≤ b+θ

x ≤ 0 x ≤ 0

Where, θ is a parameter vector. Let Z2
* be the optimal

objective value of P2 , V2
* the dual optimal solution of

P2 , Z3
* the optimal objective value of P3 ; and V3

* the
dual optimal solution of P3 . Then

 Z3
* ≤ Z2

* +V2
* θ

Proof: see (Yang, 1990)

Lemma 2: The optimal value of the leader’s
objective function in the P1 is less than or equal to
the optimal objective function value in the following
problem P4.

P4: max Z2=c1x+d1y

s.t.  A1x+B1y ≤ g1

A2x+B2y ≤ g2

,x X y Y∈ ∈
Proof: see (Yang, 1990)

Theorem 1: Consider the following problem P5( x ):

P5( x ): max Z5=d1y
s.t.  A1x+B1y ≤ g1

A2x+B2y ≤ g2

y≥0

Let Z5
* be the optimal objective function value for

the problem P5 and V5
* the optimal dual solution of

the problem P5 . Then the following upper bound,Z5
U

is established for the leader’s objective function
value in problem P1 when x = x is fixed.

0
5 5 5 5() max{(),0}

k k

U
j j j j

j J j J

Z Z c V a c V a
+

∗ ∗ ∗

∈ ∈

= + − + −∑ ∑

That is Z5
U≥d1y*+c1x*

Where aj is the j th column vector of the matrix
1

2

A
A

 
 
  .

Proof: see (Yang, 1990)

Generating Valid Inequalities

There is two more observation, which is related to
feasible cuts:

Observation4: If an inequality is valid for set Ω, it
is also valid for the main Bi-level problem, i.e. set R

Observation5: Let (x,y) ∈ Ω, but (x,y) is not bi-level
feasible (i.e. y ∉M(x)), then if one inequality is valid
for Ω -{(x,y)}, it is also valid for the main Bi-level
problem (R)

Because of the relationship Ω⊆R, Observation4
is derived. So, we can remove fractional solutions
which are LP (removal of the lower-level optimality
and integrally restrictions) resulting from the R; and
based on Observation5 we can separate points from
the R that are integer but not bi-level feasible.

For generating valid cuts, first of all, the relaxation
problem P5 is solved, let (x,y) be the optimum solution
to the P5 then if the solution is integer feasible, then
feasibility condition (y ∈ M (x)) must be verified.
This is done by solving the lower-level problem with
the fixed upper-level solution x. Assume the solution
is ŷ, if d 2ŷ=d 2 y then (x,y) is bi-level feasible solution,
otherwise in the next step, an inequality removing
(x,y) from Ω. The point (x, ŷ) is bi-level feasible and
provides a valid lower bound on the optimal solution
value of the original IBLP. In the case of d 2ŷ > d 2 y
(x,y) is not bi-level feasible, because it does not
satisfy y ∈ M( x ) and we may still use (x, ŷ) to bound

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Rahmani, A. and Yousefikhoshbakht, M.

4

http://creativecommons.org/licenses/by-nc-nd/4.0/

the original problem, but we would like to add an
inequality to P5 that is valid for P1 and violated by
(x, y). The following simple procedure shows how to
generate such an inequality.

Let (x,y) be a feasible point in upper and lower levels
constraints without integer constraints and S be the
set of constraints binding at (x,y) , then following cut
is valid for the main Bi-level problem P1.

1Fx Ey G+ ≤ −

Which , ,i i i
i S i S i S

F a E b G g
∈ ∈ ∈

= = =∑ ∑ ∑ and ai ,
bi , gi are the coefficient of x, y and right hand side
respectively.

3.2.	 Branching
The algorithm which delivered by Moore and Bard
(Bard and Moore, 1990), is forced to branch after
producing an infeasible integer solution but here
we are free to employ the well-developed branching
strategies used in traditional algorithms for ILP, such
as pseudo-cost branching, or the recently introduced
reliability branching (Achterberg et al., 2005).

A branching technique for bi-level problems is dis-
cussed in following paragraph.

Let a solution of P5 be in hand and 0
ki J∈ i.e. xi be

a free variable, From theorem 1, an upper bound is
obtainable by 5

UZ . Now, let 5
UZ + , 5

UZ − be the value of
5
UZ for 1ix = or 0ix = respectively. The upper bound

is 5
UZ = max { 5

UZ + , 5
UZ − }. As part of the iterative pro-

cess, the upper bounds have to be checked against
the current upper bound on the objective function Z*.
If the upper bound on that particular branch is not
greater than the current best solution then that branch
fathomed. Now we propose the following algorithm
to solve the mixed integer bi-level linear program-
ming problem.

4.	 The proposed algorithm

The algorithm depends heavily on the preceding
observations, lemmas and theorem. Especially the
relaxation of the problem from a two-level problem
to a simple MIP, which is easy and quickly solvable
compared to solving a complex bi-level linear
programming problem. Establishing the relaxed
problems is the first priority of the algorithm and is
completed in steps 1 and 2. This provides a lower
bound for the problem by fixing all leaders’ binary
variables to zero, in both the leader’s objective

function and the follower’s objective function. By
the way the follower’s objective function does not
contain any leader’s binary variables. Therefore,
all terms in follower’s objective function related to
leader reduce to a constant at the time of optimization
and hence will not affect optimum solution. This
allows the ignoring of the leader’s variables in the
formulation of the follower’s objective function. The
algorithm outlined in 7 steps.

Step 1: Initialization

N = 0; k = 0

N is a place-keeper of the current level in the tree, k
is the counter for evaluating nodes

0 {1,2,..., }kJ n= {}kJ + = {}kJ − =

0, 1,2,...,jT j n= =

This indicates that all the leader’s variables are free.

Step 2: Relaxed solution

Let x is the solution related to the kth node. Solve
problem P5 with the fixed x and obtains y: 5 (,)P x y→ .
These results in 5Z ∗ , the optimal objective function
value, and 5V ∗ , the optimal dual solution.

Follower solution: solve follower problem by fixing
x and obtain ŷ

If the problem results in 1 1ˆ(,)Z x y Z ∗≥ ; then
Z1

*=Z1 (x, ŷ ) otherwise 1 1Z Z∗ ∗=

Step 3: Branching

Calculate the upper bound of the leader’s objective
function from the previous node, (k-1), and xN=0.
This denoted as 5

U
NZ − . Similarly calculates 5

U
NZ + where

1Nx = . ,maxZ Z ZN
U

N
U

N
U

5 5 5
–= +" , and 1N NT T= + .

Step 4: Cut generation

Generate the following cuts:

Z c x d y1
1 1#f+ +)

1Fx Ey G+ ≤ −

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

An Effective Branch-and-cut algorithm in Order to Solve the Mixed Integer Bi-level Programming

5

http://creativecommons.org/licenses/by-nc-nd/4.0/

Which S is the set of constraints binding at 1(,)x y ,
, ,i i i

i S i S i S
F a E b G g

∈ ∈ ∈

= = =∑ ∑ ∑ and ai ,bi ,ci  are the

coefficient of x, y and right hand sight respectively.

Step 5: Optimality check

If 5 1
U
NZ Z+ ∗< then set TN=2; go to Step 6.

The next step requires that if the algorithm has
arrived at a node at the bottom of the tree (there is
no free variable) then it can proceed back up the tree,
examining branches and their upper bounds along the
way. Each upper bound compared to the current best
solution to determine whether the branch fathomed
or must be considered further. This described in the
next step.

Step 6: Backtracking

If TN=2 then set TN=0, N=N–1.

If N=0 (i.e. we came back to the top of the tree, and
all possible nodes are evaluated) go to Step 7. Else,
TN=TN+1.

If 1 0Nx = then the upper bound 5 5
U U
N NZ Z+ = and 1 1Nx = ;

Else 5 5
U U
N NZ Z− = and 1 0Nx = ; go to Step 4.

Step 7: Termination

Stop algorithm execution and output the solution.

The following simple numerical example illustrates
the algorithm. In this example we use the notation
P(i,–j), it means that the variable xi is fixed to one,
the variable xj is fixed to zero and the other variables
are free.

Example 1:

P6: max 15x1+2x2+20x3+10x4+10y1+15y2+20y3+5y4+12y5

max 5y1+3y2 +8y3+4y4+y5

6x1+5x2+10x3+12x4+6y1+3y2+9y3+2y4+2y5≤12

2x1+4x2+13x3+7x4+5y1+y2+3y3+3y4+y5≤19

3x1+8x2+9x3+9x4+10y1+5y2+6y3+4y4+6y5≤15

4x1+3x2+12x3+14x4+4y1+3y2+5y3+y4+6y5≤30

xi, yj ∈ {0,1}

In the initialization phase let 1 2 3 4(, , ,)x x x x x= are
free and try to solve the following problem where
x=0:

7 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1

2

3

4

5

() : max10 15 20 5 12
6 3 9 2 2 12 (1)
5 3 3 19 (2)
10 5 6 4 6 15 (3)
4 3 5 1 6 30 (4)
0 1, (5)
0 1, (6)
0 1, (7)
0 1, (8)
0 1, (9)

P y y y y y
y y y y y
y y y y y
y y y y y

y y y y y
y
y
y
y
y

+ + + +
+ + + + ≤
+ + + + ≤
+ + + + ≤

+ + + + ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤

This gives (0,1,0.809,0,0.857) with the
objective value 41.487 and dual solution
V7

*()=(1.143,0,1.619,0,0,3.476,0,0,0) the related
optimal solution for the following problem is
y=(0,0,1,1,0) with the objective value 25.

The binding constraints of this solution are:

Constraint One:

(6x1+5x2+10x3+12x4+6y1+3y2+9y3+2y4+2y5≤12),

Constraint Three:

(3x1+8x2+9x3+9x4+10y1+5y2+6y3+4y4+6y5≤15) and the
constraint Six:

(0≤y2≤1), so, F=(6,5,10,12)+(3,8,9,9),
E=(6,3,9,2,2)+(10,5,6,4,6)+(0,1,0,0,0) and
G=12+15+1, therefore the binding cut is:

9x1+13x2+19x3+21x4+16y1+9y2+15y3+6y4+8y5≤27� (10)

and the objective cut is:

15x1+2x2+20x3+10x4+10y1+15y2+20y3+5y4+12y5≥26�(11)

The first choice facing the algorithm is processing
with x1=0 or x1=1. (Our choice variable is random;
one can use an appropriate heuristic to select
sequence of variables like greedy algorithms) The
choice is made dependent on the relative values of the
upper bounds for each branch. In this particular case
under examination these values are 7 = 41.476UZ −
and 7 = 44.762UZ + . At this point it would be a useful
exercise to show the development of these numbers.

Now consider that if 1 0x = then 0 {2,3,4}kJ = and

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Rahmani, A. and Yousefikhoshbakht, M.

6

http://creativecommons.org/licenses/by-nc-nd/4.0/

{}kJ + = , since all 7j jc V a∗− ’s are negative excepting
1 7 1 3.286c V a∗− = then 7 = 41.476UZ − , and if 1 1x =

then 0 {2,3,4}kJ = , {1}kJ + = and 7 = 44.762UZ + .

So, for the first iteration 0 {2,3,4}kJ = , {1}kJ + = and
{}kJ − = is considered.

Using (1,0,0,0)x = the integer linear programming
problem 7Z , becomes:

7 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

(1) : max10 15 20 5 12
6 3 9 2 2 6
5 3 3 17
10 5 6 4 6 12
4 3 5 1 6 26
16 9 15 6 8 17

10 15 20 5 12 11
0 1j

P y y y y y
y y y y y
y y y y y
y y y y y

y y y y y
y y y y y

y y y y y
y

+ + + +
+ + + + ≤
+ + + + ≤
+ + + + ≤

+ + + + ≤
+ + + + ≤

− − − − − ≤ −
≤ ≤

This gives (0,1,0.1,1,0) with the objective value 7.8
and dual solution 7 (1) (0.8,0,0,0,0,0,0,0.3,0,2.2,0)V ∗ = ,
the related optimal solution for the follower problem
is (0,1,0,1,0) with the objective value 35, so till now

35Z ∗ = .

The binding constraints of this solution are one,
eights and tenth, so the next cuts are:

6x1+5x2+10x3+12x4+6y1+4y2+9y3+3y4+2y5≤9

15x1+2x2+20x3+10x4+10y1+15y2+20y3+5y4+12y5≥36

Now, if 2 0x = then 0 {3,4}kJ = and {1}kJ + = , then
5 = 44.762UZ − , and if 2 1x = then 0 {3,4}kJ = ,

{1,2}kJ + = and 7 = 28.09UZ + .

So, for the next iteration (k=2) 0 {3,4}kJ = , {1}kJ + =
and {2}kJ − = is considered.

Using (1,0,0,0)x = the integer linear programming
problem 7 (1, 2)P − , in the example, now becomes:

7 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

(1, 2) : max10 15 20 5 12
6 3 9 2 2 6
5 3 3 17
10 5 6 4 6 12
4 3 5 1 6 26
16 9 15 6 8 3

10 15 20 5 12 21
0 1j

P y y y y y
y y y y y
y y y y y
y y y y y

y y y y y
y y y y y

y y y y y
y

− + + + +
+ + + + ≤
+ + + + ≤
+ + + + ≤

+ + + + ≤
+ + + + ≤

− − − − − ≤ −
≤ ≤

This problem is infeasible and then this branch is
fathomated.

The backtracking can now take place. It will examine
the node associated with x2=1 and conclude that
since 7 28.09UZ + = , is less than the current Z *=35, the
node is fathomated. By examining the other nodes,
the following results obtained:

Node k=3:

0 {3,4}kJ = , {}kJ + = , {1,2}kJ − = , 7 24.8UZ + = ,
7 41.47UZ − = , 35Z ∗ = .

Node k=4:

0 {4}kJ = , {}kJ + = , {1,2,3}kJ − = , 7 24.8UZ + = ,
7 41.47UZ − = , 35Z ∗ = .

Node k=5:

0 {}kJ = , {}kJ + = , {1,2,3,4}kJ − = , 7 41.47UZ − = ,
35Z ∗ = : the end of branch

Node k=6:

0 {4}kJ = , {4}kJ + = , {1,2}kJ − = , 7 23.19UZ + = ,
35Z ∗ = : fathoming

Node k=7:

0 {4}kJ = , {3}kJ + = , {1,2}kJ − = , 7 17UZ + = ,
7 35.47UZ − = , 35Z ∗ = : 7 (1, 2,3)P − − is infeasible

and fathomed.

Therefore, in this example, only 7 of the 30 nodes
were considered, and only one of the possible 16
leaves was met. In compared to the branch and bound
method [12] that 18 of the 30 nodes were considered,
and 4 of the possible 16 leaves were formulated is
promising. This measure will be further discussed in
the computational results section.

5.	 Computational Results

The branch-and-cut algorithm was implemented in
AIMMS 12, utilizing CPLEX 11 as solver. To our
knowledge, the best general algorithm proposed in
the literature is the one of Bard and Moore (1990),
Beresnev (2013) or Beresnev and Melnikov (2014).
A comprehensive comparison of these algorithms is
not at hand. We also evaluated our algorithm on a set
of problems in which the leader’s objective function

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

An Effective Branch-and-cut algorithm in Order to Solve the Mixed Integer Bi-level Programming

7

http://creativecommons.org/licenses/by-nc-nd/4.0/

variable coefficients were established randomly
between –30 and +30. The follower’s objective
function variable coefficients were placed between
–12 and +12. The constraint matrix coefficients were
all between –18 and +18 and the bj , or resource
values were restricted to be within the range 0.5 to
0.75 of the sum of the aj for the j th constraint.

The instances were classified based on the number
of upper level variables and the number of lower
level variables. In Table 2, 10 randomly constructed
problems were solved for each problem type and
compared with an algorithm proposed in Beresnev
(2013). A larger sample size would be deemed
statistically more significant. In these tables,
constructed problems were randomly solved for each
problem type, and a combination of n (the number
of upper level binary variables) and m (the number
of lower level binary variables) for n=5,10,15 and
m=5,10,15 are considered.

Also, the following notations were used in the
Table 2.

E.N: The number of evaluated nodes as a percentage
of total nodes in the tree

N.I: Number of MIP problems solved as a percentage
of leaves in the tree

N.O: The number of nodes where the optimal solution
was obtained as a percentage of nodes in the tree

Av.T: The Average CPU Time (sec) for algorithms

In order to compare the performance of the proposed
methods, a set of test problems was generated as
described in Table 1. The instances were classified
based on the number of potential facilities and the
number of customers.

Table 1. Characteristics of randomly generated problems.

No Prob. Size Total nodes Leaves
1 5 5× 62 32

2 5 10× 62 32

3 5 15× 62 32

4 10 5× 2046 1024

5 10 10× 2046 1024

6 10 15× 2046 1024

7 15 5× 65534 32768

8 15 10× 65534 32768

9 15 15× 65534 32768

As shown in Table 2, the number of iterations in
Branch and cut based method was less than the
number of iterations in Branch and bound algorithm
and it was able to solve the problem faster because
of using the appropriate cuts. It is well known that in
regards to the time solution, the algorithm is superior
that solves less MIP cases, and usually enumeration
methods are slow, because they encounter too many
MIP sub problems, in the above and based on our
computational results we fairly reduce the MIP sub
problems and it let to achieve optimal solutions in
more reasonable time.

6.	 Conclusions

Through the paper some of the difficulties
regarding to the solving mixed integer bi-level
linear programming problems were described and a
branch-and-cut algorithm proposed. The algorithm
is based on two different cuts for mixed integer bi-
level linear programming problems. The first one is
the binding cut and the second is the objective cut.
For the branching and fathoming rule, the extensions
of an upper bound theorem of MIP problem are

Table 2. Results of 10 samples for each type problems.

No.
Branch and cut based method

Branch and bound based method from (Beresnev, Branch-and-
bound algorithm for a competitive facility location problem, 2013)

E.N N.I N.O Av.T E.N N.I N.O Av.T
1 33% 21% 14% 227 55% 39% 27% 513
2 45% 18% 15% 245 75% 73% 34% 678
3 37% 34% 21% 281 64% 44% 21% 691
4 15% 7% 4% 268 15% 7% 4% 839
5 38% 21% 7% 331 51% 41% 11% 880
6 43% 38% 11% 393 43% 38% 22% 818
7 22% 13% 7% 395 37% 27% 13% 1320
8 15% 11% 4% 442 43% 33% 25% 1495
9 21% 14% 5% 496 54% 48% 30% 1618

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Rahmani, A. and Yousefikhoshbakht, M.

8

http://creativecommons.org/licenses/by-nc-nd/4.0/

applied. The first advantage of this approach is the
ability to exploit the vast solvers for solving mixed
integer bi-level linear programming problems. More
than it, we believe that the proposed method has the
ability of adopts itself with the other algorithm for
improvement itself or the other algorithms that are
good cases for developing the algorithm. Besides
that, one can using upper bound theorems to the
general bi-level programming problem to develop
the algorithm would seem to be the most logical

course, or even works on primal heuristics, additional
classes of valid inequalities, branching rules based
on disjunctions involving more than one variable,
and so on are good cases in the future works.

Competing interests

The author(s) declare(s) that there is no conflict of
interest regarding the publication of this paper.

References
Achterberg, T., Koch, T., Martin, A. (2005). Branching rules revisited. Operations Research Letters, 33(1), 42-54. https://doi.org/10.1016/j.

orl.2004.04.002 Colson, B., Marcotte, P., Savard, G. (2005). Bilevel programming: A survey. 4OR, 3(2), 87-107. https://doi.
org/10.1007/s10288-005-0071-0

Bard, J.F., Falk, J.E. (1982). An explicit solution to the multi-level programming problem. Computer and Operations Research, 9(1), 77-100.
https://doi.org/10.1016/0305-0548(82)90007-7

Bard, J.F., Moore, J.T.A. (1990). A branch and bound algorithm for the bilevel programming problem. SIAM Journal on Scientific and
Statistical Computing, 11(2), 281-292. https://doi.org/10.1137/0911017

Beresnev, V.L. (2009). Upper Bounds for Objective Functions of Discrete Competitive Facility Location Problems. Journal of Applied and
Industrial Mathematics, 3(4), 419-432. https://doi.org/10.1134/S1990478909040012

Beresnev, V.L. (2013). Branch-and-bound algorithm for a competitive facility location problem. Computers & Operations Research, 40(8),
2062-2070. http://dx.doi.org/10.1016/j.cor.2013.02.023

Beresnev, V.L., Melnikov, A.A. (2014). Branch-and-bound method for the competitive facility location problem with prescribed choice of
suppliers, Diskretn. Anal. Issled. Oper., 21(2), 3-23.

Dempe, S. (2001). Discrete bilevel optimization problems. Technical Report D-04109, Institut fur Wirtschaftsinformatik, Universitat Leipzig,
Leipzig, Germany.

Denegre, S., Ralphs, T.K. (2009). A Branch-and-Cut Algorithm for Bilevel Integer Programming. In Proceedings of the 11th INFORMS
Computing Society Meeting, 65-78.

Domínguez, L.F., Pistikopoulos, E.N. (2010). Multiparametric programming based algorithms for pure integer and mixed-integer
bilevel programming problems. Computers and Chemical Engineering, 34(12), 2097-2106. https://doi.org/10.1016/j.
compchemeng.2010.07.032

Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gümüş, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C. A. (2013).
Handbook of test problems in local and global optimization (Vol. 33). Springer Science & Business Media.

Gümüş, Z.H., Floudas, F. (2005). Global optimization of mixed-integer bilevel programming problem. Computational Management Science,
2(3), 181-212. https://doi.org/10.1007/s10287-005-0025-1

Hansen, P., Jaumard, B., Savard, G. (1992). New branch-and-bound rules for linear bilevel programming. SIAM Journal on Scientific and
Statistical Computing, 13(5), 1194-1217. https://doi.org/10.1137/0913069

Jeroslow, R.G. (1985). The polynomial hierarchy and a simple model for competitive analysis. Mathematical Programming, 32(2), 146-164.
https://doi.org/10.1007/BF01586088

Mirhassani, S.A., Raeisi, S., Rahmani, A. (2015). Quantum binary particle swarm optimization-based algorithm for solving a class of bi-level
competitive facility location problems. Optimization Methods and Software, 30(4), 756-768. https://doi.org/10.1080/10556788.201
4.973875

Pistikopoulos, E.N, Georgiadis, M.C, Dua, V. (2007). Multi-Parametric Programming: Theory, Algorithms, and Applications, Volume 1,
Weinheim: Wiley-VCH, 1. https://doi.org/10.1002/9783527631216

Rahmani, A., Mirhassani, S. A. (2015). Lagrangean relaxation-based algorithm for bi-level problems. Optimization Methods and Software,
30(1), 1-14. https://doi.org/10.1080/10556788.2014.885519

Shi, C., Lu, J., Zhang, G., Zhou, H. (2006). An Extended Branch and Bound Algorithm for Linear Bilevel Programming. Applied Mathematics
and Computation, 180(2), 529-537. https://doi.org/10.1016/j.amc.2005.12.039

Vicente, L. (2001). Bilevel programming: Introduction, history and overview. In C. A. Floudas and P. M. Pardalos (eds.) Encyclopedia of
optimization, 178-180. Springer: US. https://doi.org/10.1007/0-306-48332-7_38

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

An Effective Branch-and-cut algorithm in Order to Solve the Mixed Integer Bi-level Programming

9

https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1007/s10288-005-0071-0
https://doi.org/10.1007/s10288-005-0071-0
https://doi.org/10.1016/0305-0548(82)90007-7
https://doi.org/10.1137/0911017
https://doi.org/10.1134/S1990478909040012
http://dx.doi.org/10.1016/j.cor.2013.02.023
https://doi.org/10.1016/j.compchemeng.2010.07.032
https://doi.org/10.1016/j.compchemeng.2010.07.032
https://doi.org/10.1007/s10287-005-0025-1
https://doi.org/10.1137/0913069
https://doi.org/10.1007/BF01586088
https://doi.org/10.1080/10556788.2014.973875
https://doi.org/10.1080/10556788.2014.973875
https://doi.org/10.1002/9783527631216
https://doi.org/10.1080/10556788.2014.885519
https://doi.org/10.1016/j.amc.2005.12.039
https://doi.org/10.1007/0-306-48332-7_38
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vicente, J., Savard, L., Judice, G. (1996). Discrete Linear Bilevel Programming Problem. Journal of Optimization Theory and Applications,
89(3) 597-614. https://doi.org/10.1007/BF02275351

Wen, U., Yang. Y. (1990). Algorithms for solving the mixed integer two-level linear programming problem. Computers & Operations Research,
17(2), 133-142. https://doi.org/10.1016/0305-0548(90)90037-8

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Rahmani, A. and Yousefikhoshbakht, M.

10

https://doi.org/10.1007/BF02275351
https://doi.org/10.1016/0305-0548(90)90037-8
http://creativecommons.org/licenses/by-nc-nd/4.0/

