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Abstract: In this paper, a new branch-and-cut algorithm for mixed integer bi-level programming is proposed. For achieving 
this purpose, a historical perspective of the development of enumeration methods in the field of bi-level linear programming 
is considered. Then, we present some obstacles for using branch and bound method based on them, and an algorithm 
is developed to solve for mixed integer bi-level problem. Finally, we use a preference function to determine the choice of 
branching and specialized cuts in a branch and cut tree. Computational results are reported and compared favorably to those 
of previous methods and then implications discussed. The results show that not only the proposed algorithm can find high 
quality solutions for solving a number of the problems, but also it is competitive with other famous published algorithms.
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1.	 Introduction

An interactive process in which a central unit 
(leader) coordinates a lower level unit (follower) is 
called hierarchical organizations. When the follower 
afforded some level of autonomy, this process 
becomes more complex to implement, coordinate 
and optimize. Moreover, in some instances, the 
objectives of the follower may conflict with those 
of the leader. In mathematical programming 
environment, these interactive processes are existed 
and known as bi-level or multi-level programming. 
Linear bi-level programming problems (BLPP) 
generally involve a hierarchy of two optimization 
problems, in the following form:

1 1
1 1:max

x
P Z c x d y= +

1 1 1. .s t A x B y g+ ≤

x X∈
2 2max

y
c x d y+

2 2 2. .s t A x B y g+ ≤

y Y∈

Where x and y are the variables of problem P1 
divided into two classes, namely the upper-level 
variables x and the lower-level variables y. Besides, 
the functions
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1 1 2 2,c x d y c x d y+ +  

are called upper level and lower level objective 
function,  

1 1 1A x B y g+ ≤  

and
2 2 2A x B y g+ ≤

are known as upper level and lower level constraints 
respectively. Upper-level constraints involve variables 
from both levels. In this paper, a special class of 
BLPP is considered and its model is supposed to 
have the following characteristics:

-- In the upper level problem, the constraints do 
not include any variable from the lower level 
problem.

The most competitive facility location problems 
lay in this group, in fact decisions about the 
location of facilities (for the first decision maker 
(leader)), capacities of facilities, transportations 
and so on are full free of lower level variables, 
the lower level variables may take into accounts 
in upper level’s objective function. 

-- For any feasible solution of upper-level problem, 
there is a feasible solution for the lower-level 
problem.

In the problems, which a level of service is 
objective, when one company is not able to 
service a customer, the other company do it. As 
a result, in this case for any feasible solution of 
upper-level problem, there is a feasible solution 
for the lower-level problem.

A special case of this type of problem is discrete 
competitive facility location problem (Beresnev, 
2009). Jeroslow showed that Bi-level programming 
problems are NP-hard even in the “simplest case”, 
the linear BLPP (Jeroslow, 1985) while (Hansen 
et al., 1992) proved that the problem is strong NP-
hardness. Regarding to solution approaches, many 
algorithms were proposed in literature. Gümüş 
studied global optimization of bi-level programming 
problems (Gümüş and Floudas, 2005), and proposed 
a convex relaxation of the inner problem followed 
by its equivalent representation via necessary and 
sufficient optimality conditions. The approximated 
branch and bound global optimal principles presented 
a branch and bound framework. The first precise 
global optimization approach for the calculation of the 

flexibility test that is bi-level nonlinear optimization 
model is introduced in (Floudas et al., 1999). Then 
they demonstrate its applicability to a heat exchanger 
network problem, a pump and pip problem, a 
reactor-cooler system and a prototype process flow 
sheet model. Pistikopoulos introduced methods 
based on parametric programming to transform 
the bi-level problem into a family of single level 
optimization problems which can be solved to global 
optimality (Pistikopoulos et al., 2007), and presented 
computational results on several small benchmarks 
linear-linear, linear-quadratic, quadratic-linear and 
quadratic-quadratic type problems. Moreover, two 
new methods for bi-level programming problem 
are proposed (Gümüş and Floudas, 2005). In the 
case of bi-level linear programming different 
algorithms proposed in (Vicente, 2001), (Colson 
et  al., 2005) and (Domínguez and Pistikopoulos, 
2010). Dempe considered the case characterized by 
continuous upper-level variables and integer lower-
level variables, and used a cutting-plane approach to 
approximate the lower-level feasible region (Dempe, 
2001). Wen considered the opposite case, where 
the lower-level problem is a linear program and the 
upper-level problem is an integer program (Yang, 
1990). Linear programming duality employed to 
derive exact solutions. In The discrete case, Moore 
developed a basic enumeration scheme to identify 
feasible solutions (Bard and Moore, 1990). Beside 
these methods an applicable Lagrangean based 
algorithm also proposed in (Rahmani A, 2015) and 
the metaheuristic method using particle swarm 
optimization method has been used for solving a 
special class of Bi-level problem (Mirhassani, 2015).

A well-known approach to solve a linear BLP problem 
is transferring into a nonlinear programming problem 
using Kuhn-Tucker conditions. Bard and Falk (1982) 
reported several obstacles to the development of 
algorithms for solving BLMIP problems. In this 
regard they deliver a branch and bound method 
(Bard and Moore, 1990) and DeNegre proposed 
a simple branch-and-cut algorithm (Denegre and 
Ralphs, 2009). For others related works see Hansen 
et al. (1992), Shi et al. (2006), Vicente et al. (1996), 
Beresnev (2013) and Beresnev and Melnikov 
(2014). The goal of this work is to demonstrate 
that it is possible, in principle, to generalize the 
greatly successful branch-and-cut (by using suitable 
branching and cutting rules) framework commonly 
used to solve mixed integer linear programs to 
this very challenging computational setting. Our 
implementation is quite rudimentary and intend only 
as a demonstration of the concept. The algorithm 
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demonstrates a better performance respect to the 
branch-and bound algorithm (Bard and Moore, 
1990; Beresnev and Melnikov, 2014), and branch 
and cut algorithm (Denegre and Ralphs, 2009). It 
can be implemented in a straightforward way using 
existing software. The computational results show 
the algorithm efficiency in terms of solution quality 
and running time.

The rest of the paper is as follows. In Section 2, 
we describe the mathematical models and the 
challenge of solving the models by generalizing 
solution methods for single-level mathematical 
programming problems. In Section 3, we propose a 
branch-and-cut algorithm for MIBLPs and section 4 
illustrates the algorithm via an example and provides 
some preliminary computational results. Finally, in 
Section 5, we provide conclusions and directions for 
future work.

2.	 Definitions and Notation 

Bard and Falk (Bard and Falk, 1982) utilized the 
following notation and definitions in their work.

BLPP Constraint Region:

( , ) | , , ,x y A x B y g A x B y g x X y Y1 1 1 2 2 2# # ! !X = + +" ,

Projection of Ω onto the Leader’s Decision Space:

( ) | , ,X x X y Y A x B y g A x B y g1 1 1 2 2 27! ! # #X = + +" ,

Follower’s Feasible Region for x X∈  Fixed:

( ) |x y Y A x B y g2 2 2! #X = +" ,

Follower’s Rational Reaction Set for ( )x X∈Ω :

( ) { | argmax[ | ( )]}M x y Y y c x d y y xy
2 2! ! ! X= +

Inducible Region:

( , ) | ( , ) , ( )x y x y y M xR ! !X= " ,

In order to make P1 well posed it is assumed that Ω is 
non-empty and compact, and for each decision taken 
by the leader there is some room to move for the 
follower, or ( )x Q!X . 

Definition 1: If ( )y M x∈  then y is said to be optimal 
with respect to x; such a pair is said to be bi-level 
feasible.

Definition 2:  A point (x*, y*) is said to be an optimal 
solution to the BLPP if

a)	 (x*, y*) is bi-level feasible; and,
b)	 For all feasible pairs (x,y); c1x+d1y≤c1x*+d1y*.

Definition 3: We said (x, y) is valid for a cut (set); if 
it satisfied in this cut (set).

Definition 4: An inequality defined by (a,b,g) is said 
valid for set S, if for all pairs ( , )x y S∈ ; ax+by ≤ g

Bard and Moore postulated several obstacles to 
the development of algorithms to solve P1 (Bard 
and Moore, 1990). They established 3 observations 
for general mixed integer programming problems. 
Fathoming in normal linear programming scenarios 
presents problems and follows 3 observations. 

Observation1: The solution of the relaxed BLPP 
does not provide a valid upper bound on the solution 
of the mixed integer BLPP.

Observation2: Solutions to the relaxed BLPP that 
are in the inducible region cannot, in general, be 
fathomed.

Observation3: Not all integer solutions to the 
relaxed BLPP with some of the follower’s variables 
restricted can, in general, be fathomed.

In the BLPP, unfortunately, only observation1 can be 
applied with any degree of confidence.

Observation 2 needs some strong qualification and 
observation3 must be discarded altogether.

To initialize the cutting plane procedure, first 
introduce some notations: 

With any loss of the generality let all variables are 
binary, and n the number of binary variables of upper 
level problem. 

k: The order number of a generated node in a branch-
and-cut tree:

Jk
0 ={j | xj is a free binary variable, j=1,2,…,n}

Jk
+ ={j | xj is a fixed at 1, j=1,2,…,n}

Jk
– ={j | xj is a fixed at 0, j=1,2,…,n}
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3.	 Branch and Cut Algorithm

One common route with many classes of 
mathematical programs for achieving global 
optimality in the branch and bound and branch and 
cut algorithm, is the development of a bounding 
strategy. Based on the observations, the bounding, 
fathoming, and branching procedures employed in 
traditional LP-based branch-and-bound algorithms 
is not applicable in a straightforward way. In this 
section, we use previous works that describe how to 
overcome these challenges to develop a generalized 
branch-and-cut algorithm for MIBLP that follows 
the same basis used in MILP.

3.1.	 Bounding
Wen in (Yang, 1990) proved the following lemmas:

Lemma 1: Given two linear programming problems:

P2: max Z2=cx P3: max Z3=cx

s.t.  Ax ≤ b s.t.  Ax ≤ b+θ

x ≤ 0 x ≤ 0

Where, θ is a parameter vector. Let Z2
* be the optimal 

objective value of P2 , V2
* the dual optimal solution of 

P2 , Z3
* the optimal objective value of P3 ; and V3

* the 
dual optimal solution of P3 . Then

 Z3
* ≤ Z2

* +V2
* θ

Proof: see (Yang, 1990)

Lemma 2: The optimal value of the leader’s 
objective function in the P1 is less than or equal to 
the optimal objective function value in the following 
problem P4.

P4: max Z2=c1x+d1y

s.t.  A1x+B1y ≤ g1

A2x+B2y ≤ g2

,x X y Y∈ ∈
Proof: see (Yang, 1990)

Theorem 1: Consider the following problem P5( x ):

P5( x ): max Z5=d1y
s.t.  A1x+B1y ≤ g1 

A2x+B2y ≤ g2

y≥0

Let Z5
* be the optimal objective function value for 

the problem P5 and V5
* the optimal dual solution of 

the problem P5 . Then the following upper bound,Z5
U  

is established for the leader’s objective function 
value in problem P1 when x = x is fixed.

0
5 5 5 5( ) max{( ),0}

k k

U
j j j j

j J j J

Z Z c V a c V a
+

∗ ∗ ∗

∈ ∈

= + − + −∑ ∑

That is Z5
U≥d1y*+c1x* 

Where aj is the j th column vector of the matrix
1

2

A
A

 
 
  . 

Proof: see (Yang, 1990)

Generating Valid Inequalities

There is two more observation, which is related to 
feasible cuts:

Observation4: If an inequality is valid for set Ω, it 
is also valid for the main Bi-level problem, i.e. set R

Observation5: Let (x,y) ∈ Ω, but (x,y) is not bi-level 
feasible (i.e. y ∉M(x)), then if one inequality is valid 
for Ω -{(x,y)}, it is also valid for the main Bi-level 
problem (R)

Because of the relationship Ω⊆R, Observation4 
is derived. So, we can remove fractional solutions 
which are LP (removal of the lower-level optimality 
and integrally restrictions) resulting from the R; and 
based on Observation5 we can separate points from 
the R that are integer but not bi-level feasible. 

For generating valid cuts, first of all, the relaxation 
problem P5 is solved, let (x,y) be the optimum solution 
to the P5 then if the solution is integer feasible, then 
feasibility condition (y ∈ M (x)) must be verified. 
This is done by solving the lower-level problem with 
the fixed upper-level solution x. Assume the solution 
is ŷ, if d 2ŷ=d 2 y then (x,y) is bi-level feasible solution, 
otherwise in the next step, an inequality removing 
(x,y) from Ω. The point (x, ŷ) is bi-level feasible and 
provides a valid lower bound on the optimal solution 
value of the original IBLP. In the case of d 2ŷ > d 2 y 
(x,y) is not bi-level feasible, because it does not 
satisfy y ∈ M( x ) and we may still use (x, ŷ) to bound 
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the original problem, but we would like to add an 
inequality to P5 that is valid for P1 and violated by 
(x, y). The following simple procedure shows how to 
generate such an inequality.

Let (x,y) be a feasible point in upper and lower levels 
constraints without integer constraints and S be the 
set of constraints binding at (x,y) , then following cut 
is valid for the main Bi-level problem P1.

1Fx Ey G+ ≤ −

Which , ,i i i
i S i S i S

F a E b G g
∈ ∈ ∈

= = =∑ ∑ ∑  and ai , 
bi , gi are the coefficient of x, y and right hand side 
respectively.

3.2.	 Branching
The algorithm which delivered by Moore and Bard 
(Bard and Moore, 1990), is forced to branch after 
producing an infeasible integer solution but here 
we are free to employ the well-developed branching 
strategies used in traditional algorithms for ILP, such 
as pseudo-cost branching, or the recently introduced 
reliability branching (Achterberg et al., 2005). 

A branching technique for bi-level problems is dis-
cussed in following paragraph. 

Let a solution of P5 be in hand and 0
ki J∈ i.e. xi be 

a free variable, From theorem 1, an upper bound is 
obtainable by 5

UZ . Now, let 5
UZ + , 5

UZ −  be the value of 
5
UZ for 1ix = or 0ix = respectively. The upper bound 

is 5
UZ = max { 5

UZ +  , 5
UZ − }. As part of the iterative pro-

cess, the upper bounds have to be checked against 
the current upper bound on the objective function Z*. 
If the upper bound on that particular branch is not 
greater than the current best solution then that branch 
fathomed. Now we propose the following algorithm 
to solve the mixed integer bi-level linear program-
ming problem.

4.	 The proposed algorithm 

The algorithm depends heavily on the preceding 
observations, lemmas and theorem. Especially the 
relaxation of the problem from a two-level problem 
to a simple MIP, which is easy and quickly solvable 
compared to solving a complex bi-level linear 
programming problem. Establishing the relaxed 
problems is the first priority of the algorithm and is 
completed in steps 1 and 2. This provides a lower 
bound for the problem by fixing all leaders’ binary 
variables to zero, in both the leader’s objective 

function and the follower’s objective function. By 
the way the follower’s objective function does not 
contain any leader’s binary variables. Therefore, 
all terms in follower’s objective function related to 
leader reduce to a constant at the time of optimization 
and hence will not affect optimum solution. This 
allows the ignoring of the leader’s variables in the 
formulation of the follower’s objective function. The 
algorithm outlined in 7 steps.

Step 1: Initialization

N = 0; k = 0

N is a place-keeper of the current level in the tree, k 
is the counter for evaluating nodes

0 {1,2,..., }kJ n= {}kJ + = {}kJ − =

0, 1,2,...,jT j n= =

This indicates that all the leader’s variables are free.

Step 2: Relaxed solution

Let x is the solution related to the kth node. Solve 
problem P5 with the fixed x and obtains y: 5 ( , )P x y→ . 
These results in 5Z ∗ , the optimal objective function 
value, and 5V ∗  , the optimal dual solution.

Follower solution: solve follower problem by fixing 
x and obtain ŷ

If the problem results in 1 1ˆ( , )Z x y Z ∗≥ ; then 
Z1

*=Z1 (x, ŷ ) otherwise 1 1Z Z∗ ∗=

Step 3: Branching

Calculate the upper bound of the leader’s objective 
function from the previous node, (k-1), and xN=0. 
This denoted as 5

U
NZ − . Similarly calculates 5

U
NZ + where

1Nx = . ,maxZ Z ZN
U

N
U

N
U

5 5 5
–= +" ,  and 1N NT T= + .

Step 4: Cut generation

Generate the following cuts:

Z c x d y1
1 1#f+ +)

1Fx Ey G+ ≤ −
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Which S is the set of constraints binding at 1( , )x y , 
, ,i i i

i S i S i S
F a E b G g

∈ ∈ ∈

= = =∑ ∑ ∑ and ai ,bi ,ci  are the 

coefficient of x, y and right hand sight respectively.

Step 5: Optimality check

If 5 1
U
NZ Z+ ∗< then set TN=2; go to Step 6.

The next step requires that if the algorithm has 
arrived at a node at the bottom of the tree (there is 
no free variable) then it can proceed back up the tree, 
examining branches and their upper bounds along the 
way. Each upper bound compared to the current best 
solution to determine whether the branch fathomed 
or must be considered further. This described in the 
next step.

Step 6: Backtracking

If TN=2 then set TN=0, N=N–1.

If N=0 (i.e. we came back to the top of the tree, and 
all possible nodes are evaluated) go to Step 7. Else, 
TN=TN+1.

If 1 0Nx = then the upper bound 5 5
U U
N NZ Z+ =  and 1 1Nx = ; 

Else 5 5
U U
N NZ Z− =  and 1 0Nx = ; go to Step 4.

Step 7: Termination

Stop algorithm execution and output the solution.

The following simple numerical example illustrates 
the algorithm. In this example we use the notation 
P(i,–j), it means that the variable xi is fixed to one, 
the variable xj is fixed to zero and the other variables 
are free. 

Example 1: 

P6: max 15x1+2x2+20x3+10x4+10y1+15y2+20y3+5y4+12y5

max 5y1+3y2 +8y3+4y4+y5

6x1+5x2+10x3+12x4+6y1+3y2+9y3+2y4+2y5≤12

2x1+4x2+13x3+7x4+5y1+y2+3y3+3y4+y5≤19

3x1+8x2+9x3+9x4+10y1+5y2+6y3+4y4+6y5≤15

4x1+3x2+12x3+14x4+4y1+3y2+5y3+y4+6y5≤30

xi, yj ∈ {0,1}

In the initialization phase let 1 2 3 4( , , , )x x x x x=  are 
free and try to solve the following problem where 
x=0: 

7 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1

2

3

4

5

() : max10 15 20 5 12
6 3 9 2 2 12 (1)
5 3 3 19 (2)
10 5 6 4 6 15 (3)
4 3 5 1 6 30 (4)
0 1, (5)
0 1, (6)
0 1, (7)
0 1, (8)
0 1, (9)

P y y y y y
y y y y y
y y y y y
y y y y y

y y y y y
y
y
y
y
y

+ + + +
+ + + + ≤
+ + + + ≤
+ + + + ≤

+ + + + ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤

This gives (0,1,0.809,0,0.857) with the 
objective value 41.487 and dual solution 
V7

*()=(1.143,0,1.619,0,0,3.476,0,0,0) the related 
optimal solution for the following problem is 
y=(0,0,1,1,0) with the objective value 25. 

The binding constraints of this solution are:

Constraint One:

(6x1+5x2+10x3+12x4+6y1+3y2+9y3+2y4+2y5≤12), 

Constraint Three: 

(3x1+8x2+9x3+9x4+10y1+5y2+6y3+4y4+6y5≤15) and the 
constraint Six: 

(0≤y2≤1), so, F=(6,5,10,12)+(3,8,9,9), 
E=(6,3,9,2,2)+(10,5,6,4,6)+(0,1,0,0,0) and 
G=12+15+1, therefore the binding cut is:  

9x1+13x2+19x3+21x4+16y1+9y2+15y3+6y4+8y5≤27� (10)

and the objective cut is: 

15x1+2x2+20x3+10x4+10y1+15y2+20y3+5y4+12y5≥26�(11)

The first choice facing the algorithm is processing 
with x1=0 or x1=1. (Our choice variable is random; 
one can use an appropriate heuristic to select 
sequence of variables like greedy algorithms) The 
choice is made dependent on the relative values of the 
upper bounds for each branch. In this particular case 
under examination these values are 7 = 41.476UZ −   
and 7 = 44.762UZ + . At this point it would be a useful 
exercise to show the development of these numbers.

Now consider that if 1 0x =  then 0 {2,3,4}kJ = and 
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{}kJ + = , since all 7j jc V a∗− ’s are negative excepting 
1 7 1 3.286c V a∗− =  then 7 = 41.476UZ − , and if 1 1x =  

then 0 {2,3,4}kJ = , {1}kJ + =  and 7 = 44.762UZ + .

So, for the first iteration 0 {2,3,4}kJ = , {1}kJ + =  and 
{}kJ − =  is considered. 

Using (1,0,0,0)x =  the integer linear programming 
problem 7Z , becomes:

7 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

(1) : max10 15 20 5 12
6 3 9 2 2 6
5 3 3 17
10 5 6 4 6 12
4 3 5 1 6 26
16 9 15 6 8 17

10 15 20 5 12 11
0 1j

P y y y y y
y y y y y
y y y y y
y y y y y

y y y y y
y y y y y

y y y y y
y

+ + + +
+ + + + ≤
+ + + + ≤
+ + + + ≤

+ + + + ≤
+ + + + ≤

− − − − − ≤ −
≤ ≤

This gives (0,1,0.1,1,0) with the objective value 7.8 
and dual solution 7 (1) (0.8,0,0,0,0,0,0,0.3,0,2.2,0)V ∗ = , 
the related optimal solution for the follower problem 
is (0,1,0,1,0)  with the objective value 35, so till now

35Z ∗ = . 

The binding constraints of this solution are one, 
eights and tenth, so the next cuts are:

6x1+5x2+10x3+12x4+6y1+4y2+9y3+3y4+2y5≤9

15x1+2x2+20x3+10x4+10y1+15y2+20y3+5y4+12y5≥36

Now, if 2 0x =  then 0 {3,4}kJ =  and {1}kJ + = , then
5 = 44.762UZ − , and if 2 1x =  then 0 {3,4}kJ = , 

{1,2}kJ + =  and 7 = 28.09UZ + .

So, for the next iteration (k=2) 0 {3,4}kJ = , {1}kJ + =  
and {2}kJ − =  is considered. 

Using (1,0,0,0)x =  the integer linear programming 
problem 7 (1, 2)P − , in the example, now becomes:

7 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

(1, 2) : max10 15 20 5 12
6 3 9 2 2 6
5 3 3 17
10 5 6 4 6 12
4 3 5 1 6 26
16 9 15 6 8 3

10 15 20 5 12 21
0 1j

P y y y y y
y y y y y
y y y y y
y y y y y

y y y y y
y y y y y

y y y y y
y

− + + + +
+ + + + ≤
+ + + + ≤
+ + + + ≤

+ + + + ≤
+ + + + ≤

− − − − − ≤ −
≤ ≤

This problem is infeasible and then this branch is 
fathomated. 

The backtracking can now take place. It will examine 
the node associated with x2=1 and conclude that 
since 7 28.09UZ + = , is less than the current Z *=35, the 
node is fathomated. By examining the other nodes, 
the following results obtained:

Node k=3:

0 {3,4}kJ = , {}kJ + = , {1,2}kJ − = , 7 24.8UZ + = ,
7 41.47UZ − = , 35Z ∗ = .

Node k=4:

0 {4}kJ = , {}kJ + = , {1,2,3}kJ − = , 7 24.8UZ + = , 
7 41.47UZ − = , 35Z ∗ = .

Node k=5:

0 {}kJ = , {}kJ + = , {1,2,3,4}kJ − = , 7 41.47UZ − = ,
35Z ∗ = : the end of branch

Node k=6: 

0 {4}kJ = , {4}kJ + = , {1,2}kJ − = , 7 23.19UZ + = , 
35Z ∗ = : fathoming

Node k=7:

0 {4}kJ = , {3}kJ + = , {1,2}kJ − = , 7 17UZ + = , 
7 35.47UZ − = , 35Z ∗ = :  7 ( 1, 2,3)P − −  is infeasible 

and fathomed.

Therefore, in this example, only 7 of the 30 nodes 
were considered, and only one of the possible 16 
leaves was met. In compared to the branch and bound 
method [12] that 18 of the 30 nodes were considered, 
and 4 of the possible 16 leaves were formulated is 
promising. This measure will be further discussed in 
the computational results section.

5.	 Computational Results

The branch-and-cut algorithm was implemented in 
AIMMS 12, utilizing CPLEX 11 as solver. To our 
knowledge, the best general algorithm proposed in 
the literature is the one of Bard and Moore (1990), 
Beresnev (2013) or Beresnev and Melnikov (2014). 
A comprehensive comparison of these algorithms is 
not at hand. We also evaluated our algorithm on a set 
of problems in which the leader’s objective function 

Int. J. Prod. Manag. Eng. (2017) 5(1), 1-10Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

An Effective Branch-and-cut algorithm in Order to Solve the Mixed Integer Bi-level Programming

7

http://creativecommons.org/licenses/by-nc-nd/4.0/


variable coefficients were established randomly 
between –30 and +30. The follower’s objective 
function variable coefficients were placed between 
–12 and +12. The constraint matrix coefficients were 
all between –18 and +18 and the bj , or resource 
values were restricted to be within the range 0.5 to 
0.75 of the sum of the aj for the j th constraint.

The instances were classified based on the number 
of upper level variables and the number of lower 
level variables. In Table 2, 10 randomly constructed 
problems were solved for each problem type and 
compared with an algorithm proposed in Beresnev 
(2013). A larger sample size would be deemed 
statistically more significant. In these tables, 
constructed problems were randomly solved for each 
problem type, and a combination of n (the number 
of upper level binary variables) and m (the number 
of lower level binary variables) for n=5,10,15 and 
m=5,10,15 are considered.

Also, the following notations were used in the 
Table 2.

E.N: The number of evaluated nodes as a percentage 
of total nodes in the tree 

N.I: Number of MIP problems solved as a percentage 
of leaves in the tree

N.O: The number of nodes where the optimal solution 
was obtained as a percentage of nodes in the tree

Av.T: The Average CPU Time (sec) for algorithms

In order to compare the performance of the proposed 
methods, a set of test problems was generated as 
described in Table 1. The instances were classified 
based on the number of potential facilities and the 
number of customers.

Table 1. Characteristics of randomly generated problems.

No Prob. Size Total nodes Leaves
1 5 5× 62 32

2 5 10× 62 32

3 5 15× 62 32

4 10 5× 2046 1024

5 10 10× 2046 1024

6 10 15× 2046 1024

7 15 5× 65534 32768

8 15 10× 65534 32768

9 15 15× 65534 32768

As shown in Table 2, the number of iterations in 
Branch and cut based method was less than the 
number of iterations in Branch and bound algorithm 
and it was able to solve the problem faster because 
of using the appropriate cuts. It is well known that in 
regards to the time solution, the algorithm is superior 
that solves less MIP cases, and usually enumeration 
methods are slow, because they encounter too many 
MIP sub problems, in the above and based on our 
computational results we fairly reduce the MIP sub 
problems and it let to achieve optimal solutions in 
more reasonable time.  

6.	 Conclusions

Through the paper some of the difficulties 
regarding to the solving mixed integer bi-level 
linear programming problems were described and a 
branch-and-cut algorithm proposed. The algorithm 
is based on two different cuts for mixed integer bi-
level linear programming problems. The first one is 
the binding cut and the second is the objective cut. 
For the branching and fathoming rule, the extensions 
of an upper bound theorem of MIP problem are 

Table 2. Results of 10 samples for each type problems.

No.
Branch and cut based method

Branch and bound based method from (Beresnev, Branch-and-
bound algorithm for a competitive facility location problem, 2013)

E.N N.I N.O Av.T E.N N.I N.O Av.T
1 33% 21% 14% 227 55% 39% 27% 513
2 45% 18% 15% 245 75% 73% 34% 678
3 37% 34% 21% 281 64% 44% 21% 691
4 15% 7% 4% 268 15% 7% 4% 839
5 38% 21% 7% 331 51% 41% 11% 880
6 43% 38% 11% 393 43% 38% 22% 818
7 22% 13% 7% 395 37% 27% 13% 1320
8 15% 11% 4% 442 43% 33% 25% 1495
9 21% 14% 5% 496 54% 48% 30% 1618
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applied. The first advantage of this approach is the 
ability to exploit the vast solvers for solving mixed 
integer bi-level linear programming problems. More 
than it, we believe that the proposed method has the 
ability of adopts itself with the other algorithm for 
improvement itself or the other algorithms that are 
good cases for developing the algorithm. Besides 
that, one can using upper bound theorems to the 
general bi-level programming problem to develop 
the algorithm would seem to be the most logical 

course, or even works on primal heuristics, additional 
classes of valid inequalities, branching rules based 
on disjunctions involving more than one variable, 
and so on are good cases in the future works. 
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