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Abstract: An exact method for the estimation of the cycle service level has been proposed for periodic review stock policies 
in a discrete demand context for any known i.i.d. demand distribution. However, the implementation of this method in real 
environments has previously to manage some important and eventually cumbersome issues such as: (i) the identification of 
the appropriate demand distribution and its validation; (ii) the estimation of the parameters of the demand distribution; and 
(iii) the calculation of temporal aggregates of the demand distribution in order to estimate the expected service level. This 
paper shows some difficulties linked to these issues and proposes an alternative approach based on the observed demand 
frequencies, so that these issues are avoided and the accuracy of the service level estimation seems to be improved.
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1.	 Introduction

Probably the most important and useful problem 
studied by inventory control is the selection of the 
stock policy and the estimation of its parameters. 
For example, in the periodic review (R, S) policy, 
the review period R is usually predetermined by fac-
tors like the transportation schedule, so in practice 
managers see this problem as the determination of 
the optimal base stock level S such that total costs 
are minimized or some target customer service level 
is fulfilled. Estimating the parameters of the stock 
policy subject to a target service constraint is by far 
the most frequent approach in practice.

This paper focuses on the cycle service level (CSL) 
and periodic review policy but the approach pro-
posed in this paper also applies even if an alterna-
tive service metric or continuous review policy is 
selected. Finally, the demand distribution is assumed 
to be i.i.d. and discrete and sample demand data is 
available.

(Cardós et  al. 2009) propose a comprehensive set 
of procedures for the exact calculation of CSL with 
backlog and lost sales, not only for the periodic re-
view policy but also for the continuous review one 

and also approximate expressions in every case. 
These expressions apply for any i.i.d. demand dis-
tribution being discrete and known. For the sake of 
simplicity, this paper focuses on the case in which 
backlog is allowed and whose exact estimation of 
the CSL, according to (Cardós, Babiloni, Palmer, & 
Albarracín J.M. 2009) can be obtained by the expres-
sion
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being F(·) the cumulative distribution function of 
demand, S the base stock, R the cycle and L the 
lead time. The application of that formula, or the 
appropriate one in different circumstances such 
as for example in a demand lost context or when a 
base stock policy is used, is just the last step of the 
procedure to compute the service level using sample 
data, as shown in Figure 1. Usually it is assumed in 
the literature that the demand distribution is known, 
but in practice it is not the case so that we have to 
cope with the first steps of the estimation procedure. 
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Figure 1. Procedure steps to estimate the 

service level from sample data.

The purpose of this paper is twofold: (i) to gain 
insight into the practical and technical difficulties 
of estimating the service level from demand sample 
data and its effect on the accuracy of the service level; 
and (ii) to propose an alternative non parametric 
approach so that these issues are avoided.

The rest of this paper is organized as follows. 
Section 2 presents the most important practical 
issues related with the estimation of the service 
level considering: (i) demand distribution selection 
and validation using sample data even when they 
are scarce, (ii) alternatives for the estimation of the 
demand distribution parameters, and (iii) calculation 
of the temporal aggregates of the demand. Section 3 
is devoted to introduce our proposed non parametric 
approach and provide some illustrative examples. 
Finally, conclusions and further research are 
presented in Section 4.

2.	 Steps to Estimate the Service 
Level

2.1.	 Demand Distribution Selection and 
Validation 

The demand distribution pattern has to be modelled 
from the available demand data. Continuous 
distributions are very used for modelling the demand 
pattern (Dunsmuir and Snyder 1989), (Schultz 1987), 
(Yeh et al. 1997) and normal distribution is especially 
frequent even for discrete demand. Although 
normal distributions may provide acceptable results 
even in the discrete demand case depending on its 
characteristics (average, variance, etc) it is more 

accurate modelling the discrete demand with a 
discrete distribution (Janssen et al. 1996), (Strijbosch 
et al. 2000), (Vereecke and Verstraeten 1994).

Poisson distribution is recommended by (Silver et al. 
1998) for slow moving class A items. Compound 
Poisson distribution is also used when the probability 
of zero demand is significant but (Strijbosch, Heuts, 
& van der Schoot 2000) explain that this compound 
distribution is the result of modelling the number of 
received orders as Poisson and also the size of the 
orders, but this is often an unrealistic starting point 

Table 1. Data of three class A items from an spare parts 
system.

Item Ranked Average Variance r p
Pearson's 

test
A1 1 5,9550 11,9221 5,9429 0,4995 Pass
A2 13 0,2415 4,6251 0,0522 0,0133 Fail
A3 47 0,0549 0,3069 0,1789 0,0120 Fail

because data demand is usually aggregated on a 
daily basis becoming into a compound Bernouilli 
distribution. 

Negative binomial distribution can be used as an 
alternative to the Poisson distribution especially 
when the sample variance exceeds the sample mean. 
Not surprisingly (Syntetos and Boylan 2006) point 
out that the negative binomial distribution is able to 
model demand patterns belonging to every demand 
category (smooth, erratic, intermittent and lumpy).

First of all, from a practical point of view, the most 
suitable distributions are Poisson and negative 
binomial. Usually the demand pattern is selected as 
Poisson when the variance differs from the average 
in no more than 10 per cent; if not so a negative 
binomial distribution is preferred. Bernouilli 
compound distributions are rarely used because of 
the kind of difficulties explained below.

In order to illustrate the main difficulties related with 
the distribution function selection, we consider the 
daily demands of three items of class A from the spare 
parts of an airline company during 911 consecutive 
days (see Table 1). There are 941 items and selected 
ones are ranked 1, 13 and 47 respectively considering 
the number of units demanded during the period. 
Obviously items A1, A2 and A3 belong to class A. 
In these three cases variance is much higher than 
the average, so following the usual rule a negative 
binomial distribution is selected and its parameters r 
and p are estimated. Last column shows the results of 
the Pearson’s chi-squared test.
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Demand histogram of item A1 seems to fit to 
a negative binomial distribution (see Figure 1) 
confirmed by Pearson’s chi-squared test. 

Demand histograms of items A2 and A3 do not seem 
to fit a negative binomial distribution (see Figures 
2 and 3) and obviously Pearson’s chi-squared test 
fails in both cases. Unfortunately usually the validity 
of the demand distribution is not checked because: 

(i) the application of this test is quite cumbersome 
and impractical for large inventories; (ii) Poisson 
and negative binomial are usually the only available 
options; and (iii) there is not a manageably 
distribution function able to fit demand patterns with 
so many peaks. It could be argued that these peaks 
could be anomalies in the demand but this is not the 
case for items A2 and A3. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
data 18 53 81 95 88 105 107 92 76 60 42 37 21 11 8 8 3 3 0 1 0 2 0 0 0
NB fitted 15 44 76 101 113 112 102 88 71 55 41 30 21 15 10 7 4 3 2 1 1 0 0 0 0
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Figure 2. Demand Histogram for item A1 and negative binomial expected frequencies.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
data 888 5 4 0 1 0 3 1 1 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 4 0 0
NB fitted 727 37 19 13 10 8 7 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
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Figure 3. Demand Histogram for item A2 and negative binomial expected frequencies.
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Additionally, the validation of a demand distribution 
using a statistical test requires a number of non zero 
demand periods but it is not always possible as it 
happens with A3 item even being a class A item.

2.2.	 Estimation of Parameters 
Second, the estimation of the parameters of 
a demand distribution may be obtained using 
maximum likelihood estimators which estimate the 
parameters in order to make the observed data the 
most probable. These estimators have a number of 
desirable properties, but in some cases the estimators 
are unsuitable or do not exist. For example, the 
estimation of the parameters of a Bernouilli 
compound distribution requires the use of a computer 
to solve simultaneously two equations

� (2)

being p the probability of zero demand, λ the Poisson 
rate, n the size of the sample, xi the demand data and 
m the number of non zero demands. This situation 
also applies to the negative binomial distribution.

Another estimation approach is the method of 
moments which uses as many moments as parameters 
have to be estimated, replaces the moments by the 

sample moments and derives the expressions of the 
parameters. For example, for the negative binomial 
distribution with parameters r and p

� (3)

being x̂ and 2ŝ  the sample moments of first and 
second order. Maximum likelihood estimators tend 
to offer better estimations than the moments method, 
but the estimators based on moments can be quickly 
and easily calculated.

2.3.	 Obtaining Temporal Aggregates of the 
Demand 

First of all, it should be noted that the probability of 
no demand during R consecutive periods is needed 
in expression (1) and can be calculated directly 
whatever the demand distribution would be as

 	 (4)

Once the demand distribution has been selected 
and its parameters have been estimated, the last 
step before applying expression (1) is to develop 
temporal aggregates of the demand. For example, the 
cumulative distribution in L consecutive periods FL(S)
is the kind of temporal aggregate needed to compute 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
data 901 1 1 0 0 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NB fitted 413 73 42 30 24 20 17 15 13 12 11 10 9 8 8 7 7 6 6 6 5 5 5 5 4 4 4 4 4 4 3
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Figure 4. Demand Histogram for item A3 and negative binomial expected frequencies.

50 Int. J. Prod. Manag. Eng. (2014) 2(1), 47-52 Creative Commons Attribution-NonCommercial 3.0 Spain

Cardós, M., Babiloni, E., Estellés, S. and Guijarro, E.



CSL and it can be obtained using the properties of 
the sum of i.i.d. distribution functions. We only need 
to develop an expression for FL(S) in a convenient 
form to be used. This is quite straightforward for 
Poisson and negative binomial distributions since 
both maintain their own distribution and

 

	 (5)

However it is not so easy for many other distributions 
such as Bernouilli compound that becomes into a 
binomial compound distribution and its aggregates 
involve quite complex and long calculations. 
Anyway, FL(S) can always be obtained based on F(.) 
using the convolution of two discrete distributions

 

	 (6)

3.	 Proposed non Parametric 
Approach

The difficulties explained below appear when 
demand data do not fit a convenient distribution 
function such as Poisson or negative binomial. These 

problems are difficult to manage when they occur, 
but there are also interactions among them making 
it harder. For example, if you improve the fitting of 
the distribution function using a complex compound 
distribution, then it leads to an impractical analytical 
expression for the demand during the lead time. 

We propose a different approach by defining the 
demand distribution as

 	 (7)

being fri the sample relative frequency. This 
formulation avoids the need of identifying and 
validating the demand distribution and has no 
parameters to be estimated.

The performance of this approach can be illustrated 
with an example where we know the demand 
distribution and we compare the performance of 
parametric and non parametric approaches. First, 
the demand is the sum of a Poisson distribution with 
λ=0.01 and three times a Bernouilli distribution with 
p=0.1 being p the probability of non zero demand. 
Second, we compute the exact CSL using expressions 
(1), (4) and (6). Third, demand is simulated 30 times 
for 1,000 consecutive days and parametric and non 
parametric estimations of CSL are obtained each time 
using the generated sample data. Finally the average 
CSL estimation for each base stock and procedure is 
obtained (see Figure 5) resulting in better estimates 
from the non parametric one.

1 2 3 4 5 6 7 8 9 10
exact 0,566 0,567 0,969 0,977 0,977 1,000 1,000 1,000 1,000 1,000
non parametric 0,565 0,565 0,969 0,975 0,975 1,000 1,000 1,000 1,000 1,000
negative binomial 0,749 0,870 0,929 0,961 0,978 0,987 0,993 0,996 0,998 0,999
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Figure 5. Illustrative example comparing the parametric and non parametric procedures for 
different base stocks (S=1..10)
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4.	 Conclusions and Practical 
Implications

Although exact estimation procedures are available 
for computing CSL and other service level metrics 
in discrete contexts, its estimation remains being a 
challenge due to the practical difficulties involved in 
identifying and validating the demand distribution, 
estimating the parameters of the distribution and 
developing temporal aggregates. 

When demand patterns can be modelled using 
Poisson or negative binomial distributions, then 
the estimation of the service level is quite simple 
because of their distribution properties. Other 
discrete distributions like Bernouilli compound may 
be an interesting alternative when the probability 
of no demand is quite high, but the calculation of 
temporal aggregates become much more complex. 
Anyway, the validation of the demand distribution is 

always very time-consuming so that usually it is not 
performed extensively.

As a consequence, we propose a non parametric 
approach that outperforms the conventional 
parametric estimation: (i) it is not necessary to 
estimate the parameters of the distribution or 
to validate the distribution pattern; and (ii) the 
estimation of the service level seems to outperform 
the parametric one.

Given the impact and practical implications of these 
results in operational management, further research 
will focus on developing an extensive experiment in 
order to check the influence of sample size and other 
factors including the demand characteristics.
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