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Abstract:
Industrial Engineering, through its role as design, planning and organizational body of the industrial production, 
has been crucial for the success of manufacturing companies for decades. The potential, expected over the 
course of Industry 4.0 and through the application of Data Analytic tools and methods, requires a coupling to 
established methods. This creates the necessity to extend the traditional job description of Industrial Engineering 
by new tools from the field of Data Analytics, namely Industrial Data Science. Originating from the historic 
pioneers of Industrial Engineering, it is evident that the basic principles will remain valuable. However, further 
development in view of the data analytic possibilities is already taking place. This paper reviews the origins of 
Industrial Engineering with reference to four pioneers, draws a connection to current day usage, and considers 
possibilities for future applications of Industrial Data Science.
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1.	 Introduction

Ever since the First Industrial Revolution in the 
18th century, optimization measures and operational 
decisions in the manufacturing industry rely on 
quantitative and fact-based assessments. Fact-based 
decision-making has always been the cornerstone 
within the field of engineering, extensively taught 
by technical education and widely practiced in real-
world operations.

Modern advancements due to the still on-going 
digitalization and globalization of nowadays world 
of work represent a logical continuation of the 

observable movements in science and technology. 
Against the background of this natural and inevitable 
development, emerging potentials through Data 
Science do not necessarily represent a paradigm 
shift, but rather a continuation of the development 
of Industrial Engineering (IE). This development 
may greatly extend the established tools of today‘s 
engineers, but still draws on traditional IE principles 
that have been known for decades if not centuries.

In view of the inflated expectations with regard to 
Data Science‘s problem solving capabilities and its 
promises of economic rationalization, this paper 
draws references to some of the main representatives 
and pioneers of IE, such as Frank and Lillian 
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Gilbreth, John Burbidge, William E. Deming and 
Eliyahu M. Goldratt.

These five pioneers are among the most prominent 
contributors to the field of industrial engineering and 
sparked novel research directions. By examining the 
respective field of research of these four pionieers 
of IE, this paper provides a comprehensive review 
of the historical development of IE to date. Based 
on the patterns of this historical development, 
this paper outlines a broad view of contemporary 
movements, before also considering emerging 
trents for future research objectives within these 
four branches of research. Summarizing, the paper 
embraces these pioneers of IE and it aims to help 
rediscovering established ideas and principles of 
Industrial Engineering at times when Data Science is 
permeating the manufacturing domain.

2.	 Fundamentals

2.1.	 Origin of scientific management

The roots of IE stem from Frederick W. Taylor, whose 
main work Principles of Scientific Management was 
instrumental in shaping the course of industrial 
manufacturing (Taylor, 1911). By many, Taylor 
is considered to be one of the most influential 
scientists of the 19th and 20th century. In addition to 
his contribution to the invention of high-speed steel, 
Taylor is best known for working in the area of labor 
studies. His principles build on the assumption that 
work needs guidance by precise instructions given 
by management. This is based on the postulate 
that there is just one safest and most efficient way 
to accomplish a given work task. To identify this 
sequence, Taylor proposed a five-step process:

1.	 Select 10-15 worker from varied factories/
backgrounds, trained in a targeted activity

2.	 Observe each elementary movement the tool 
usage during execution of the activity

3.	 Measure the execution time of each element and 
select the fastest method for each

4.	 Eliminate all incorrect, slow or unnecessary 
movements from the best practice

5.	 List the fastest method and the best tools for 
performing the activity in a table

These five focusing steps help to identify and 
document optimal movement sequences and suitable 
tool usage in a standardized manner, using time 

recordings of any activity. With standard processes, 
best practice workflows are established; the efforts 
of the continuous improvement process are secured 
and made available across plants (Deuse et  al., 
2020). Along the belief in One Best Way to perform 
a given task, Scientific Management strictly enforces 
fact-based decision-making based on quantitatively 
measurable data. Thus, quantifiably optimal solutions 
take the place of practices previously determined 
by formerly used rule-of-thumb methods (Merkle, 
1980). The onset of a worldwide adoption of 
Scientific Management Principles defines a starting 
point for the continuous evolution of Taylor‘s vision. 
It led to the emergence of IE and it is well established 
in modern manufacturing.

The term IE includes all tasks concerned with ‘the 
design, improvement and installation of integrated 
systems of people, materials, information, equipment 
and energy. It draws upon specialized knowledge 
and skills in the mathematical, physical and social 
sciences together with the principles and methods of 
engineering analysis and design, to specify, predict 
and evaluate the results to be obtained from such 
systems’, as defined by the Institute of Industrial and 
Systems Engineers (IISE, 2021).

As such, Industrial Engineers lead continuous 
improvement processes and provide system 
understanding, method knowledge and problem-
solving-competences, along the ever-evolving 
requirements of various other skills (Richter & 
Deuse, 2011). In this context, we consider the ability 
to utilize Industrial Data Science as the latest addition 
to this catalogue of competences.

2.2.	 Emergence of Industrial Data Science
The domain of Data Analytics experienced an 
increase in attention over the past years. Industrial 
Data Science (IDS) refers to the use of Data Analytics 
in industrial applications (Mazarov et al., 2019). Early 
applications of structural data analysis date back 
almost 70 years before the work of Taylor. A U.S. 
naval officer and hydrographer, named Matthew F. 
Maury, recommended supplementing the previously 
undescribed nautical charts with information, such 
as longitude, latitude and other notes that seafarers 
collected on their routes (Maury, 1963). This served to 
shorten the time at sea, since each seafarer could profit 
from the experiences of the others. He supplemented 
the pure information of the route with many additional 
variables, which all have an influence on the target 
variable ‘journey time’. He found patterns in this data, 
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derived structures and generated knowledge from it. 
In doing so, he piloted a process, which we nowadays 
interpret as the basic problem solving approach of 
Industrial Data Science (Wierse & Riedel, 2017).

In manufacturing, Taylor was among the first 
to identify a demand of data for fact-based 
decision-making within an industrial production 
environment. Due to scale and complexity of the 
ever-increasing data acquisition, manual methods 
for data processing become uneconomical. Hence, 
manufacturing companies seek the use of IDS for 
the efficient evaluation and utilization of implicitly 
available knowledge. As for Knowledge Discovery 
in Databases, IDS includes all non-trivial measures 
to identify valid, novel, potentially useful, and 
ultimately understandable patterns in industrial 
datasets (Fayyad et al., 1996). It draws on methods 
from multiple disciplines: Machine Learning, 
responsible for generation and generalization of 
knowledge by computers and Statistics, the science 
of collecting, organizing and deriving conclusions 
from data, being the most relevant (Awad & 
Khanna, 2015). This basic idea behind the analysis 
of data is methodically carried out in the industrial 
environment today according to the Cross-Industry 
Standard Process for Data Mining (CRISP-DM). 
With this five-step procedure, todays data scientists 
perform projects in a structured way from business 
understanding to deployment (Chapman et  al., 
2000). We interpret CRISP-DM as a formalization 
of the basic procedures of Maury and Taylor with a 
view to today’s conditions and challenges.

The application of these methods and procedures 
in today’s industrial environment is both effective 
and unavoidable. This is explained by the increased 
complexity in making decisions, as in nowadays 
systems more variables have to be considered. 
Simultaneously digitalization has also provided the 
infrastructure needed to record more data on these 
variables. The integration of computer technology 
in the form of Embedded Systems in industrial 
processes is standard today and enables the recording 
of a wide variety of data on products and processes. 
With the help of these Cyber-Physical Systems, 
all steps from data acquisition with sensors to data 
storage in databases can be carried out in order to use 
IDS methods to make intelligent, targeted decisions 
based on the analysis of every variable required 
(Lee, 2006).

Some consider the use of IDS tools and methods as 
part of the Fourth Industrial Revolution, often called 

Industry 4.0. Other state that it has traits of a more 
gradual development of quantitative approaches that 
extend the traditional tools of IE. The emergence of 
IDS shows distinct characteristics of an evolutionary 
process and is in line with the development trend of 
the past century. Following approaches such as Lean 
Thinking or Agile Manufacturing, IDS represents the 
latest facet of this traditional evolution of production 
principles. The advent of the Internet of Things and 
the availability of Big Data storage systems support 
the need for data-driven decisions. The approach 
for data-based decision-making has a predeceasing 
model in time management and is presented in the 
following section on the basis of the process chain 
of data analytics.

2.3.	 Process chain of Industrial Data 
Science

IE and IDS involve closely related tasks for a 
fact-based decision-making processes. With the 
process chain of time management, all activities 
for fact-based decision-making are broken down 
into subtasks and handled consecutively. This has 
led to the development of the process chain of data 
analytics, which follows a similar approach. In four 
stages, tasks of data collection, analysis, use and 
administration are carried out (Figure 1).

Figure 1. Process Chain of Industrial Data Science.

Since all fact-based decisions require a data basis 
for quantification, the first step in the process chain 
is to access all data sources that are necessary and 
related to the current task or project. This often 
includes the identification of relevant sources for 
a given analysis task, recoding missing data with 
suitable collection methods, and providing the data 
to an analysing system. The step is closely related to 
the initial phases of the well-established CRISP-DM 
and required not only a good data understanding but 
also a solid business understanding. After ensuring 
a reliable end-to-end access to relevant data, the 
next step of the process chain is to analyse the 
provided data. For this, a suitable method for the 
analysis task must be selected from the wide range 
of available options. A number of pre-processing 
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steps and transformations for subsequent usage may 
accompany the application of the analysis. While the 
first two steps are arguably necessary, a monetary 
gain will only arise through the operational use 
of the information generated during the analysis. 
Hence, the third step is to apply the results of the 
analysis to the industrial use case, creating economic 
value. This includes both the application of selective 
analyses for specifically targeted questions as well 
as the implementation of continuous monitoring 
systems. Finally, to administrate these tasks a wealth 
of supporting duties needs to be fulfilled. Among 
others, this includes assigning a long-term data 
stewardship, allocating a clear data governance, 
ensuring an end-to-end data security or securing an 
ethical data usage.

3.	 Pioneer Case Studies

3.1.	 Time and Motion Study – Frank and 
Lillian Gilbreth

Past. Temporal measurements of industrial process 
increments form the basis for operational planning 
and decision-making processes. For IE, time data 
is essential for the analysis, design, modelling 
and simulation of production systems as well as 
for the design of workplaces and the control of 
manufacturing and assembly systems. Time and 
Motion Study enables an Industrial Engineer to 
control and plan from a quantitative basis, according 
to Taylor’s basic idea. Frank and Lillian Gilbreth, 
whom we consider pioneers of Time and Motion 
Study, recognized at the beginning of the 20th 
century that the conversion of movements into time 
data is essential for work analyses (Gilbreth, 1912). 
The Gilbreth Clock allowed a detailed analysis 
with regard to a tasks duration and usefulness, so 
that value-adding and non-value-adding elements 
become distinctive. The stopwatch was the device for 
manual data recording.Gilbreth determined that the 
time to carry out an activity for a singular sequence 
with equal practice, equal aptitude and equal effort of 
the workers within realistic limits depends solely on 
the method used. Asa B. Segur assigned standardized 
time values to the standard elements in industrial 
processes devised by Gilbreth by studying numerous 
workers of different skill levels (Maynard & Zandin, 
2001). This enabled analyzing work processes using 
a standardized scheme. Thus, Motion Time Analysis 
is considered the first predetermined motion time 
system.

Present. Still, time recordings hold a fundamentally 
vital role for process management. Predetermined 
motion time systems are still widespread today. 
Numerous companies leverage the MTM method, 
developed between 1940 and 1950, to analyze 
manual work processes today. In German-speaking 
countries, over 250 companies belong to the MTM 
Association, thus representing over 2 million 
employees (MTM ASSOCIATION e. V., 2021). This 
underlines the relevance of precise data recording and 
attention to detail. Today, time data from production 
forms the core of strategic and operational process 
planning. The analysis of work processes via video 
recordings and motion capturing approaches makes 
the use of systems of predetermined times even more 
direct and universal (Bortolini et al., 2020).

Future. IDS research deals with automatic data 
access through image recognition via machine 
learning or the use of sensor technology. The ease 
of access to the technology underlying vision-based 
and sensor-based analysis serves as enabler for 
further development. It is equally conceivable to 
apply Gilbreth’s visionary ideas to the use of robots 
and to the optimization of industrial human-machine 
interaction (Wang et  al., 2011). Motion data in the 
form of human silhouettes or human skeletons 
elaborates human movement. Additionally, the 
movement of robots can be captured by the control 
system. The combination of such data as well as an 
enrichment by other data sources and the necessary 
forces for the different tasks forms the basis for 
the analysis and optimization of the technology-
determined workstations (Figure 2).

The usage of machine learning is a possible 
potential to be explored for automatically analyzing 
recorded motions. It allows suggestions of process 
improvements based on MTM studies using motion 
capturing data (Deuse et al., 2019). The integration of 
MTM approaches with Virtual Reality (VR) provides 
the advantage of preventing suboptimal workplace 
designs during the planning phase without the need 
for physical mock-ups (cardboard engineering) for 
data collecting (Gorobets et al., 2021).

3.2.	 Group Technology – John Burbidge
Past. For IE, Group Technology is essential for 
production optimization. The term describes 
the approach of grouping objects and resources 
according to their similarity. Organizing processes 
and structures is often more efficient and effec-tive 
based on such groupings. Sergei P. Mitrofanov was 
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the first to research the idea of classifying process 
methods based on the shape of the resulting products 
using the research results of A. P. Sokolowski 
(Sokolowski, 1938; Mitrofanov, 1946). He 
established a classification system that structured 
work pieces according to function, shape and 
technological features based on his finding to work 
on similar parts of a group with the same equipment 
of a lathe (Burbidge, 1991). John Burbidge, whom 
we consider as pioneer of Group Technology, based 
his research on Mitrofanov and Sokolowski and 
successfully applied the grouping on a larger scale 
(Burbidge, 1975). Thereby, he validated the prior 
research and coined the terms ‘group’ as a set of 
machines, and ‘family’ as a set of parts. Burbidge 
introduced a production analysis method with the 
Production Flow Analysis. According to his research, 
products passing through the same machines 
should also be manufactured in one machine group 
(Burbidge, 1963).

Present. Searching and finding similarities in 
industrial processes is essential for economically 
successful enterprises and possible with four different 
procedures: Classification systems, production-
analytical methods, cluster-analytical methods and 
artificial intelligence methods. Classification is the 
key method used by Sokolowski and Mitrofanov. 
Production-analytical methods use the frequency of 
the production sequences or work piece-resource-
matrices for part family formation. Cluster analytical 
methods use methods of multivariate statistics, such 
as regression, to analyze different characteristic 
values for similarities and identify homogeneous 

groups between which there is a possibility of 
dissimilarity. Last, it is possible to use knowledge-
based approaches and artificial neural networks, 
both methods of artificial intelligence for part 
family formation (Eversheim & Deuse, 1997; 
Kusiak & Dagli, 1994). Those approaches help with 
different challenges, such as building structures in 
low volume and high mix productions. Levelling 
taking into account product families helps serving 
transparency, calming of variability and leads to 
output improvement (Bohnen et al., 2013). Research 
in practical pattern recognition by using sensors 
and software for analyzing images, characters 
and text show high potential (Feng & Hua, 2020). 
For subsequent analyses, it is necessary to record 
different data which is then analyzed for similarities. 
Visualization using flowcharts allows easy access the 
subject matter.

Future. As manufacturing processes and products 
become more complex, simplification becomes more 
difficult. The search for similarities based on shape or 
machine group is also no longer efficient in variable 
production environments due to the high complexity 
of products and increased amount of different 
manufactured variants. For the homogenization 
of the product routes of a production the use of 
statistical methods like Modified Jaccard Index 
is feasible (Maschek et  al., 2014). Other methods 
for identifying process-routes weaknesses and 
subsequent their improvement, such as Value Stream 
Mapping as a tool from the field of lean management 
are also evolving with the tools currently available 
to map, predict and control dynamic effects on value 

Figure 2. Convolutional Neuronal Networks (CNN) with 2 Graph Layers, 2 fully connected layers as one Machine Learning 
Method to Enhance MTM (Own figure, MTM Summit 2021).
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streams. Emerging technologies provide completely 
integrated production environments with real-
time data gathering and transmission (Valamede & 
Akkari, 2020). The cloud connects all resources on 
the manufacturing floor to supervisory and control 
terminals and and combines data from different 
sources. This is combined with ontology-driven 
modeling-based graphical database technology 
or a multi-agent system based on Cyber-Physical 
Systems to visualize the productivity of customer-
driven dynamic manufacturing processes. (Huang 
et al., 2019)

Another approach to simplify complex process 
systems is Process Mining. Based on business 
process management, Van der Aalst developed 
a method for analyzing the data of event logs of 
processes that uses the process knowledge implicit 
in these events to graphically represent process 
sequences and information of process steps on the 
basis of paths, thus making potentials visible (van 
der Aalst et  al., 2012). Process mining techniques 
can help increasing the management productivity 
by modelling production planning processes in a 
manufacturing company (ER et al., 2018). With this 
information it is possible to identify the commonly 
unrecorded operations implemented to adapt the 
production plan to any changes in demand. This 
improves the ability to optimize its production 
process by balancing production efficiency and 
flexibility (Corallo et  al., 2020). In combination 
with different IT systems of a company, process 
mining enables the visualization and optimization 
of both value-added production processes and their 
management and planning processes (Knoll et  al., 
2019).

Considering Burbidge‘s ideas, we see the consistent 
use of all data as a logical step to streamline 
processes by searching for similarities and forming 
groups, especially in highly complex systems. For 
IDS, using Process Mining in industrial systems is 
the logical next step in the development of Group 
Technology.

3.3.	 Quality Management – William E. Deming
Past. Quality Management (QM) holds an integral 
part of continuous improvement in IE, since it serves 
as a prominent starting point for process improvement 
and often acts as significant driver of costs. Early on, 
Taylor acknowledged QM as a crucial factor for the 
maximization of productivity in industrial processes. 
In the 1920s, Walter A. Shewhart recognized that 

preventing quality related issues is significantly 
more economical than sorting out defective parts 
or repairing them, as Taylor had suggested. His 
invention of Quality Control Charts serves as a 
static method for process control that allows for 
scientifically based and economically founded 
decisions based on recorded process metrics. For this 
purpose, it was necessary to develop target metrics 
and a tolerance range for all processes recorded on 
the control chart. The observed deviation between 
actual system performance and target metrics allowed 
for unprecedented levels of process monitoring and 
control (Shewhart, 1931). We consider William E. 
Deming, a student of Shewhart, as pioneer in the 
field of QM, for he specified and propagated the early 
ideas. While initially unnoticed in the Western world, 
Japanese companies adopted Deming’s methods in 
the 1950s and established his status as a visionary in 
QM. Particularly successful was the application of 
Statistical Process Control, which aimed for efficient 
process operation by producing more specification-
confirmative products while causing less rework 
or scrap. Consideration of the temporal course of 
statistical values, such as current the range between 
actual and target metric, paired with the visualization 
on control charts allowed for detection of negative 
deviation as well as short-term adjustments during 
production (Deming, 1950).

Present. Several of Deming’s approaches can 
be found in widely used standards, such as the 
prominent PDCA-Cycle that is included in the ISO 
9001. The principles of Statistical Process Control 
lead to the emergence of the ideal of Zero-Defect 
Manufacturing (ZDM) that modern manufacturing 
companies still seek to achieve. ZDM aims to 
reduce defects through prevention and targets the 
development of workers desire to perform a job 
correctly at all times (Wang, 2013). To quantifiably 
record the occurrence of any defects, manufacturing 
companies utilize different strategies or platforms to 
bundle the wide range of potential sources for quality 
data. Such collections allow using newer approaches, 
such as Machine Learning, to detect different types 
of defects on a large scale (Schulte et al., 2020). A 
mayor task is building autonomous QM systems that 
achieve trustworthy results within an Industry 4.0 
setting, while remaining economically viable.

Future. Quality control is usually reactionary and 
can only detect defects, not proactively prevent 
them. As an ongoing research subject, modern QM 
is primarily concerned with predicting future quality. 
The increased data availability allows drawing 
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conclusions about the quality of products that are 
still in production, only using the recorded process 
data. Utilizing supervised and unsupervised Machine 
Learning models, allows for advanced quality-based 
process control (Lieber et al., 2013). Additionally, it 
enables the prediction of quality-related features and 
identification of ideal process parameters (Schmitt 
et al., 2019) (Figure 3).

Random forest integrated inside the Bayesian op-
timization approach are one option to enable orga-
nizations to manage large-scale product quality pre-
diction in process industrial cyber–physical systems 
(Wang et al., 2020). In another example, measure-
ments such as tightening data of screw driving pro-
cesses help to predict the final condition of engines 
without requiring end-of-line testing (West et al., 
2021). Identifying process anomalies and predicting 
likely assembly defects with IDS enables early initi-
ation of corrections, such as a partial deconstruction.

3.4.	 Production Control – Eliyahu M. Goldratt

Past. With the Theory of Constraints (ToC), Eliyau M. 
Goldratt introduced a novel approach to Production 
Control in 1984. According to ToC, the output of 
every production system is inevitably constrained 
by one single limiting factor. Similar to the weakest 
link in a chain, such a factor poses a bottleneck for 
the entire system. All improvement activities must 
target that bottleneck, since optimizations of non-
bottleneck stations do not improve the performance 
of the system but cause increased Work in Process 
(Goldratt & Cox, 1984). With regard to Production 
Control, this meant that the control system must also 
primarily account for the bottleneck. To implement 
bottleneck-oriented Production Control, Goldratt 

proposed the Drum-Buffer-Rope (DBR) method. In 
the ToC, DBR is a method for process scheduling 
that increases production flow by leveraging the 
system’s bottleneck (Goldratt & Fox, 1986). Through 
DBR, only a bottleneck needs scheduling, which is 
easier than scheduling every job at every station. 
In addition, the bottleneck’s capacity provides a 
simple way to plan due dates, since it matches the 
system’s overall output. Through the development of 
ToC and its application using DBR, Goldratt made 
an innovative contribution that shaped the further 
course of IE.

Present. While ToC and DBR were primarily aiming 
to manage static bottlenecks, modern production 
systems often encounter shifting bottlenecks. Due 
to variability-related factors, such bottlenecks 
move between workstations over time. Adaptations 
of the ToC, led to new methods for real-time 
bottleneck identification. Such methods require 
continuous monitoring of the production system, 
which only became possible in the last decade due 
to the increasing digitalization. Whereas Goldratt, 
for example, suggested interviewing employees 
to identify bottlenecks, these methods utilized 
quantified metrics. A prominent example is the Active 
Period Method (APM) that identifies a bottleneck as 
the station working the longest without interruption. 
APM assumes that stations in interconnected 
production systems starve or block each other. An 
active machine running for extended periods is more 
likely to block or starve other machines. Hence, the 
machine with the longest uninterrupted active period 
has the largest effect on the overall output and acts as 
the current bottleneck (Roser et al., 2002). Near real-
time knowledge of bottleneck locations, as well as 

Figure 3. Framework for predictive model-based quality inspection (Schmitt et al., 2020).
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knowledge of the relative frequency of occurrence, 
enables a targeted Production Control and real-
time fault repair prioritization (Wedel et al., 2015). 
However, identification methods do not manage to 
avoid productivity losses at shifting bottlenecks, but 
only help to mitigate the effects.

Future. In modern manufacturing systems, 
identifying bottlenecks will continue to be the 
focus of research due to the prevailing dynamics 
of increasingly complex systems. To minimize 
bottleneck-related losses of potential outputs, 
anticipatory knowledge about future system 
behavior is required. This thought led to the idea 
of bottleneck prediction, as a current subject of 
research. Predicting a bottleneck shifting before 
it occurs, allows a production control system to 
counteract this change and prevent a shift. While 
established approaches for bottleneck detection 
require a measurable effect, their nature is similar to 
fire-fighting strategies known in maintenance. Only 
by anticipating an emerging bottleneck, the effect can 
be controlled without effecting the overall output. In 
addition, the recent idea of bottleneck prescription 
proposes a novel type of system that fully subjects 
a system‘s control mechanism to the predictions of 
future bottleneck occurrences (West et  al., 2022). 
Since a bottleneck’s existence is inevitable, this 
approach will not eliminate a bottleneck, but it can 
avoid or reduce the adverse influence of shifting 
bottlenecks. Predicting bottlenecks requires a real-
time, databased bottleneck identification capability 
(Deuse et  al., 2016; Roser et  al., 2017). While 
theoretical approaches to bottleneck prediction 
are emerging in the scientific literature, practical 
implementation represents a future need for action 
in IDS (Figure 4).

4.	 Discussion
The development of the individual fields of industrial 
engineering shows the strong connection to data 
analysis from the beginning. The pioneers mentioned, 
Gilbreth, Burbidge, Deming and Goldratt, proved 
the dependence of optimisation and improvement 
on data analysis. The present solutions prove the 
relevance of this approach equally. Industrial Data 
Science is therefore the logical evolutional step of 
working with data in Industrial Engineering. Many 
manufacturing companies face much more complex 
and complicated problems in parallel. For these 
companies, we consider Industrial Data Science as 
a novel tool that enables them to utilize the original 
ideas of the four pioneers in a more efficient, large-
scale and goal-oriented fashion.

The different fields of IE need to be differentiated 
in this context. Every company uses the ideas of 
Gilbreth, Burbidge and Deming, in many productions 
they are even the basis of optimisations and the 
continuous improvement process in different sectors. 
The methods of Industrial Data Science extend the 
previous procedures making them reach the next 
stage of their development. Image recognition 
enables fast, accurate time recordings, machine 
learning enables the automatic creation of work 
plans of products of the same group and product 
and process quality can be dynamically detected, 
predicted and thus predictively improved in real 
time.

Industrial Data Science is influencing the field of 
Bottleneck Analysis, pioneered by Goldratt, in a 
different way. Although Goldratt‘s ideas have a 
fundamental character for all production systems, 

Figure 4. Methodology for Bottleneck Analysis with corresponding research based on West et al. (2022).
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the detection of a bottleneck is not possible for 
every company with the developed methods. This 
is a result of the dynamic behavior of the different 
variables affecting the processes and consequently 
the occurrence of shifting Bottlenecks. In addition, 
different methods for bottleneck detection do not 
always have the same result. This complicates the 
interpretation of the analyses and their target-oriented 
use. The application of Industrial Data Science is an 
Enabler in this field, as it allows industrial users to 
generate more knowledge about their processes and 
to analyse a larger amount of data more precisely. 
This opens up the field of bottleneck analysis to a 
variety of other companies.

These two functions, Enable and Extend, can be 
transferred to other fields of IE. Kingman and 
Little, for example, are Pioneers in the field of 
Operations Research (Kingman, 1961). They have 
mathematically proven correlations between queue 
length, arrival time and utilisation of a system (Little, 
1961). This dependencies are used to Material 
Flow and Buffer research questions in production 
environments in the literature (Lödding, 2013). This 
works under certain boundary conditions. In this 
field, Industry 4.0 and Machine Learning approaches 
can be both Enabler and Extender by enhancing 
the current limits of application of their ideas by 
capturing further influencing parameters, making 
them measurable and providing tools to recognise 
even more complex patterns (Gallina et al., 2021).

What applies to this practical field of IE can be 
transferred to the organisational field. Projects have 
existed for thousands of years, but it was not until the 
1940s that US military industry-academic-research 
project management was formalized in institutional 
processes (Johnson, 2013). Getting combined with 
Systems Engineering and Operations Research 
later, it became an essential aspect of the Industrial 
Engineer‘s tasks (Johnson, 1997). As of today, the 
IIoT and different AI approaches connect project 
management directly to events the shopfloor.

With Lean principles as a pillar of IE and self-
optimisation equally as a pillar of Lean principles, 
the question of effort and benefit in IE has always 
arisen. With the value-creating processes at the 
centre of its own basic idea, Industrial Engineering, 
as a staff unit only indirectly involved in value 
creation, constantly questions itself. Sustainable 
economic successes by finding the right balance 
between good work preparation and targeted 
continuous improvement have proven the role of 

IE in the past (Deuse et  al., 2006). The expansion 
through and development towards Industrial Data 
Science poses the question of effort and benefit 
again. The initial effort to enable its production 
to use modern approaches to data analysis seems 
large. In addition to increasing the knowledge of 
the workforce involved, physical resources must be 
digitised or replaced, hardware must be purchased 
and installed, and software licences must be 
acquired. In addition to increasing the knowledge 
of the workforce involved, a company must digitise 
or replace physical resources, purchase and install 
hardware and acquire software licences. In addition, 
sensors support the former manual data acquisition, 
artificial intelligence helps with decisions or even 
relieves the industrial engineer.

The rapid development of recent years refutes 
those arguments in different ways. First, the initial 
costs on the hardware side are declining due to 
the high demand and the resulting sharp increase 
in availability. Open source solutions also make 
simplify starting with interface management and 
IIoT in order to be able to analyse data using different 
methods (Strauß et al., 2018). At the same time, the 
range of educational opportunities in the industrial 
sector has grown considerably, so employees can 
easily be empowered. Second and most relevant, 
digitalization and the application of IDS has a direct 
impact on a company‘s financial performance (Eller 
et  al., 2020). The development of the individual 
areas of IE and the markets as such shows that 
a company without targeted digitization and the 
application of data science will not be marketable in 
the future. Strategic and operational implementation 
is essential for success (Dold & Speck, 2021). IDS 
helps the Industrial Engineer in multiple ways and 
sometimes replaces some decisions, but brings new 
challenges to the job profile. Domain knowledge is 
still indispensable for industrial issues, the industrial 
engineer must select and connect the right data 
sources as well as manage the targeted application 
of Hardware, AI approaches and employee‘s data-
science-education. The benefits overcome the effort 
of implementing IDS mid- and long-term by a 
multiple.

5.	 Conclusion

The case studies of the pioneers of IE have shown 
the development of Scientific Management in four 
different domains as a rather evolutionary process. 
The contemporary trend towards a more widespread 
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application of Industrial Data Science is an 
inevitable result of a decade-spanning development 
process. Leveraging the growing data sources is 
merely the next logical step in an environment that 
relies on fact-based and quantified decision-making. 
Thus, the application of Data Science in Industrial 
Engineering under the umbrella of Industrial Data 
Science will continue to grow in importance in the 
coming decades.

At their core, manufacturing companies will continue 
to use the original concepts of the discussed pioneers, 
but increase the effectiveness through the addition 
of digital and data-driven methods and tools, even 
in other fields of Industrial Engineering. Accessing, 
analyzing, applying and administrating data is going 
to be vital for future applications of Industrial Data 
Science.

The pioneers presented in the paper, as well as their 
associated research areas, were selected primarily 
due to their high relevance to IE. Nevertheless, 
these representatives have to be called a selection of 
pioneers. In the continuing development of Scientific 
Management since Taylor, many scientists have 

distinguished themselves. As research limitations, 
we would therefore emphasize the small number 
of pioneers studied and the selection of application 
examples.

For future competitiveness, an Industrial Engineer‘s 
collection of applicable methods and tools has to be 
expanded to accommodate for the capabilities of 
IDS. At the same time, companies must create the 
technical and educational basis for applying IDS in 
order to be able to assert themselves in the market. 
In addition, the multitude of requirements for an 
integrated and networked application of industrial 
data analysis in dynamic value creation networks 
will shape the further course of IDS research.
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