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Abstract:
The U-shaped assembly lines help to have more flexibility than the straight assembly lines, where the operators can 
perform tasks in both sides of the line, the entrance and the exit sides. Having more than one operator in any station 
of the line can reduce the line length and thereby affects the number of produced products. This paper combines the 
U-shaped assembly line balancing problem with the multi-manned assembly line balancing problem in one problem. 
In addition, the processing times of the tasks are considered as stochastic, where they are represented as random 
variables with known means and variances. The problem is formulated as a mixed-integer linear programming and 
the cycle time constraints are formulated as chance-constraints. The proposed algorithm for solving the problem is 
a differential evolution algorithm. The parameter of the algorithm is optimized using experimental design and the 
computational results are done on 71 adapted problems selected from well-known benchmarks.
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1. Introduction

The assembly lines play an important role in 
industry. They reduce the learning aspects by 
dividing the assembly work into a set of stations that 
move in some kind of transportation system, such as 
conveyer belt, and they help to produce products in 
a fixed time called the cycle time. The assembly line 
balancing problem is the problem that is related to 
optimizing the assignment of the tasks to the stations 
in order to achieve some specific objectives, such as 
minimizing the number of stations and minimizing 
the cycle time. The simplified assumptions of the 
problem consist of three set of constraints. The first 
set of constraints is the set of assignment constraints, 
which ensures that each task is assigned in only one 
station. The second set of constraints is the cycle time 
constraints, which ensures that the total processing 

time of any station doesn’t exceed the cycle time. 
The third set of constraints ensures that each task has 
to be assigned after its predecessors. The problem 
in research is classified into two categories, which 
are the simple assembly line balancing problems 
(SALBP) that only cover the simplified assumptions, 
and the general assembly line balancing problems 
(GALBP) which contain some other constraints 
related to the practical relevancies.

The U-shaped assembly line balancing problem 
(UALBP) represents one of GALBP. Its additional 
practical constraints are related the shape of the 
line, where the modification here is done on 
the precedence constraints by considering the 
successors beside the predecessors in the assignment 
procedure. The reason of having the successors in 
the assignment procedure is the shape of the line 
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allows to have the operators inside the line, where 
they can perform tasks either in the entrance or the 
exist sides of the line. The multi-manned assembly 
line balancing problem (MALBP) is another form 
of GALBP. It adds another set of constraints to 
the problem by considering the sequencing of the 
tasks that may restrict assign tasks to the additional 
operators in the same station. The contribution of 
this paper is that it combines both of UALBP and 
MALBP in one problem and presents a new mixed-
integer programming model for such new problem. 
In addition, the problem is solved under uncertainty 
by having the stochastic processing times of the 
tasks. Therefore, the mathematical model shows the 
cycle time constraints as chance-constraints. Due to 
the combinatorial nature of the problem that makes it 
one of the NP-hard problems, the selected approach 
for solving it is an efficient metaheuristic called 
differential evolution algorithm (DE).

The paper is organized as follows. The second section 
shows a literature review that covers some of word 
presented in both of UALBP and MALBP. The third 
section presents the mathematical model of the new 
problem. The fourth section illustrates the developed 
DE for solving the problem. The fifth section shows 
a numerical example. The sixth section discusses 
the parameters of the proposed DE and optimizing 
its parameters using design of experiments (DOE). 
Eventually, the seventh section is the conclusion.

2.	 Literature Review

This paper discusses a combination between UALBP 
and MALBP. Therefore, this section covers some 
the previous works which are presented in both 
problems.

The first work in UALBP is presented by Miltenburg 
and Wijngaard (1994). They showed the advantages 
of using UALBP instead of using SALBP. UALBP 
in research can be classified into three categories 
according to objective functions: type-1, type-2, and 
type-E (Rabbani, Kazemi, and Manavizadeh, 2012). 
Type-1 is concerned with minimizing the number of 
stations for a given cycle time (Yilmaz et al., 2020). 
Type-2 objective is to minimize the cycle time with 
a given number of stations. Type-E is to maximize 
the line efficiency when the number of stations and 
the cycle time are unknown (Oksuz, Buyukozkan, 
and Satoglu, 2017). This paper considers multi-
objectives for the new problem. The first objective is 
to minimize the number of stations and the second is 

to minimize the number of operators. The reason of 
having the number of operators as an objective is due 
to having the multi-manned concept of MALBP. In 
terms of minimizing the number of stations, there are 
a lot of papers that were presented in UALBP. For 
example, Ajenblit and Wainwright (1998) developed 
an ordered-based genetic algorithm for solving 
UALBP type-1 (UALBP-1). Scholl and Klein (Scholl 
and Klein, 1999) proposed a branch and bound 
procedure for solving many types of UALBP. Gökçen 
et al. (2006) presented a shortest route formulation 
for UALBP. Sabuncuoglu et al. (2009) developed ant 
colony optimization for solving UALBP. Kara et al. 
(2011) presented a resource dependent mathematical 
model for UALBP. Hamzadayi and Yildiz (2012) 
presented a genetic algorithm for solving UALBP 
in case of having parallel stations and mixed 
models. Hamzadayi and Yildiz (2013) developed a 
simulated annealing for solving UALBP in case of 
assembling mixed models. Jayaswal and Agarwal 
(2014) proposed a simulated annealing approach the 
resource dependent UALBP. Kucukkoc and Zhang 
(2015) proposed a hybrid design for the assembly 
line balancing problem that combines UALBP 
with the parallel assembly line balancing problem. 
They developed a heuristic procedure for solving 
such hybrid design. Fathi et  al. (2016) developed 
a simulated annealing based proposed heuristic for 
solving UALBP. Li et al. (2017) presented a rules-
based heuristic for solving UALBP. Sresracoo 
et  al. (2018) developed DE algorithm for solving 
UALBP-1. Nourmohammadi et al. (2019) proposed 
a water flow inspired algorithm for solving UALBP. 
Zhang and Xu (2020) considered the energy cost 
in objective functions and solved UALBP using 
an improved flower pollination algorithm. Yılmaz 
(2020a) produced a robust optimizatoin for the 
U-shaped assembly line balancing problem with 
worker assignment in case that the processing times 
of the tasks are uncertain. Ö. F. Yılmaz (2020b) 
developed a mathematical model for an integrated 
bi-objective U-shaped assembly line balancing 
problem that considers heterogenity inhert of 
workers. He aimed to minimize the operational cost 
and workload balance. Li et al. (2021) developed an 
enhanced beam search heuristic for solving both of 
type-1 and type-2 of UALBP.

The first mathematical model of MALBP showed 
up in (Fattahi, Roshani, and Roshani, 2011a). They 
solved the problem using ant colony optimization 
algorithm. Fattahi et  al. (2011b) developed an 
improved simulated annealing for solving MALBP. 
Their objectives are to minimize the number of 
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stations and to maximize the line efficiency. Kellegöz 
and Toklu (2015) proposed a genetic algorithm for 
solving MALBP. Their objective is to minimize 
the number of stations. Kellegöz (2017) another 
mathematical model for MALBP. He proposed a 
simulated annealing that uses a Gantt-based heuristic 
for solving the problem. Michels (2018) proposed 
genetic algorithm for solving MALBP. His objective 
is to minimize the costs per production unit. Michels 
et al. (2019) presented a mixed integer programming 
model for MALBP that can be solved using Benders’ 
Decomposition Algorithm. Abidin Çil and Kizilay 
(2020) proposed a constrainted programming 
approach to solve MALBP. Their objectives are to 
minimize the cycle time as primary objective and 
to minimize the number of stations as secondary 
objective. Zhang et  al. (2020) developed an ant 
colony optimization algorithm that solves MALBP 
in case of having space constraints.

To the best of knowledge, the only work that con-
siders the combination of UALBP and MALBP is 
presented by Zakaraia et al. (2021), which the prob-
lem was sovled using stochastic local search (SLS). 
The proposed DE algorithm herein is more intelle-
gent than SLS, where the proposed DE contains bet-
ter priority structure for constructing feasible solu-
tions and it contains learning procedures to ignore 
the worse solutions from the search space by replac-
ing them with new random ones to increase explora-
tion.

3.	 The Optimization Model

As aforementioned, this study concerns with 
combining UALBP and MALBP under uncertainty 
by having the processing times of the tasks as 
stochastic random variables with known means 
and variances and they are normally distributed. 
Therefore, the cycle time constraints are formulated 
using probabilistic constraints that are restricted by 
predetermined chance probability. The mathematical 
model can be formulated as follows:

3.1.	 Notations

i={1,…, n} The set of tasks
j={1,…, m} The set of stations
k={1,…,l} The set of operators
ct Cycle time

kmax
The maximum number of operators in any 
station

ti
The processing time of task i (random 
variable)

E(ti) The expected processing time of task i
Var(ti) The variance of task i
IP(ti) The immediate predecessors of task i
IS(ti) The immediate successors of tasks i

3.2.	 Decision Variables

x
ijk

1
0 otherwise
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y
j

1 if
n
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ijk
0

0 otherwise
The opened station decision variable

R
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n
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The operator assignment decision variable
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m
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variable

S
i
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m
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j x

ijk

m

j 1
j x
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0 otherwise
The immediate successors assignment decision 
variables

3.3.	 The Objective function

Min
m

j 1
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j

1
l

k 1
R

k
� (1)

3.4.	 The Constraints
m

j 1
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� (2)
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P ti xijk

kmax

k 1 g iP i
tg xgjk

kmax

k 1 h iS i
th x hjk ct

α j {1 m }
� (4)

P
n

i 1
ti xijk ct α k {1 l }

� (5)

P
i

S
i

1 i {1 n } 	 (6)

The objective function (1) seeks to minimize the 
number of stations and the number of operators. 
The set of constraints (2) is the set of assignment 
constraints, which ensures that each task is assigned 
in only one station. The set of constraints (3) shows 
that the maximum total processing time of the 
assigned tasks of any station must be less than or 
equal the cycle time multiplied by the maximum 
number of operators. The set of constraints (4) is 
the sequencing constraints that ensures that if any 
of the immediate predecessors or successors of any 
task are assigned on its station, then their processing 
time added to the task processing time must not 
exceed the cycle time. This set of constraints helps 
to avoid assigning tasks to more than one operator 
without considering the processing times of the 
predecessors and successors. The set of constraints 
(5) is the cycle time constraints for operators, 
which ensures that the total processing time of any 
assigned tasks to an operator must not exceed the 
cycle time. The sets of constraints (3),  (4), and (5) 
are sets of chance-constraints, which are restricted 
by a predetermined chance probability. The set 
of constraints (6) is the set of predecessors and 
successors constraints, which ensures that each 
task has to be assigned either before its immediate 
predecessors or before immediate successors.

The mathematical model contains some chance-
constraints that can be converted into deterministic 
in order to be solved. The processing times herein 
are normally distributed random variables with 
known means and variance. Taha (2017) shows 
how to overcome the chance-constraints through 
converting them into non-linear deterministic 
constraints. Therefore, the set of constraints (3), 
(4), and (5) can be converted into the non-linear 
deterministic form as shown in (7), (9), and (8) 
respectively.

n

i 1
E(tl) xijk Kα

n

i 1
Var(ti)x

ijk
k

max
ct

j { }1 m
where Kα is the standard normal value of α �

(7)
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i 1
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i 1
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4.	 The Proposed DE Algorithm

DE is one of the population-based metaheuristics 
that consists of four phases. The first phase is the 
initialization, which concerns with generating the 
initial population of solutions. The second phase 
concerns with the mutation procedure. The third 
phase is concerned with the crossover procedure. The 
fourth phase is the selection procedure. All of these 
phases work iteratively until reaching the stopping 
criterion, which is herein the number of iterations.

4.1.	 The initialization Phase
In the initialization phase, a set of random solutions 
is to be generated in order to cover diversified areas 
of the solution space. The problem here can have 
random solution by generating random sequence 
of the tasks. Such random sequence (T) represents 
the priority of the tasks. So, any opened station will 
have the top priority tasks that satisfy the problem 
constraints through using the following heuristics:

Algorithm 1: The heuristic procedure

j=1, station Sj=Ø, and solution =Ø while T≠Ø do:

find the assignable tasks (AS) that ensure the 
problem constrains if AS≠Ø then:

Assign the highest priority (P) task in T to Sj

T=T–{P}
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else:

solution = solution ∪ Sj

j = j+1 and Sj=Ø

return solution

DE algorithm uses vectors in its search methodology. 
Therefore, the random sequence of tasks can be 
generated using a vector that its length equal to 
the number of tasks and its values are randomly 
generated using the following equation:

Vi= rand (0,1)	 (10)

Such random vector represents the position of the 
solution. The next step of generating the random 
sequence using such generated vector is to use the 
bubble sort algorithm as follows:

Algorithm 2: Bubble sort for creating a random 
sequence of tasks

T=the tasks vector arranged by index number 

in ascending order

n=the number of tasks

Continue=1

i=1

while Continue=1 do:

Continue=0

i'=1

while i'≤ n–i do:

if Vi' ≤Vi' +1 then

Temporary1=Vi'

Temporary2=Ti'

Vi'=Vi'+1

Ti'=Ti'+1

Vi'+1=Temporary1

Ti'+1=Temporary2

Continue=1

i'=i'+1

return  T

By using equation (10), Algorithm 1, and Algorithm 
2, the initial population can have a set of randomly 
generated candidate solutions C(S). The next steps 
of the algorithm are to update the solutions of 

the population through mutation and crossover 
procedures and either select to keep solutions or 
replace them. All of these steps are to be done in 
iterative manner until reaching a stopping criterion, 
which is herein the number of iterations.

4.2.	 The Mutation Phase
In the mutation phase, each solution in the population 
is to be mutated using its positional vector. The 
mutation procedure uses three positions to generate 
new position Posnew. The first position is the position 
of the best solution found Posbest. The second position 
is the position of the current solution Poscurrent . 
The third position Posother is a position of randomly 
selected solution from the population that isn’t equal 
to the current solution.

Posnew=Posbest–β(Poscurrent–Posother)� (11)

Algorithm 1 now is ready to be used to obtain 
new solution using Posnew. The new solution is 
to be compared with the best solution found and 
replaces it if it is better. The parameter β is called the 
differential weight, which helps to define how far the 
new position from the three used positions.

4.3.	 The Crossover Phase
The crossover procedure uses both of Posnew and 
Posother. In such process a new position is to be 
generated by having properties from t Posnew 
and Poscurrent. The process is controlled by a new 
parameter CR, which is the crossover probability. So, 
each value of the crossover position Poscross can be 
generated using the following equation:

Poscrossi

i
if rand 0 1 CR

i
otherwise

Poscurrent

Posnew �
(12)

The solution of Poscross is to be generated and it will 
replace the best solution if it is better.

4.4.	 The Selection Phase
The selection phase determines the new position of 
the new solution in the next iteration. So, it can be 
replaced by Posnew if it produces a better solution 
than the current solution, or it will be replaced by 
another solution that is generated randomly using a 
random position Posrandom by using equation (10).
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5.	 Numerical Example
This section shows a numerical example to further 
illustrate the model and the proposed DE algorithm. 
The numerical example consists of 6 tasks. Its 
cycle time is 8 and its precedence graph is shown 
in Figure  1. The number of operators is 2 and the 
chance probability is 0.95.

Figure 1. The precedence graph of the numerical example.

In the initialization phase, the population of solutions 
is to be generated using algorithm 1 and 2. So, the 
generation of one of these solutions can be illustrated 
as follows. Firstly, the number of tasks herein is 6. 
Therefore, one of the random vectors (RV) can be 
shown as follows:

Tasks 1 2 3 4 5 6
RV 0.3 0.8 0.9 0.4 0.2 0.5

After using the proposed bubble sort, algorithm 2, 
the arrangement of the tasks that should be used with 
the heuristic algorithm is as follows:

Tasks 3 2 6 4 1 5
RV 0.9 0.8 0.5 0.4 0.3 0.2

Now algorithm 1, the heuristic procedure, is ready to 
be used. Table 1 shows the heuristic solution using 
RV vector.

Table 1. The heuristic solution using RV.

Task 3 6 1 2 4 5
Processing time 4 6 1 5 3 5
Station 1 1 1 2 2 3
Operator 1 2 2 3 3 4
Completion time 4 6 7 5 8 5

The mutation phase is about to find another solution 
in the local space of the current solution using the 
linear combination found in Equation (11), where 
it uses the position vector of the best solution 
and a position vector of a random solution. If it 
considered that the solution found in Table 1 is the 
best solution, then its position vector, which is the 

sorted RV vector (SRV), is to be used along with 
another position vector of a random solution to find a 
neighbor of the current solution. For illustration, VC 
represents the position vector of the current position, 
VCR represents the position vector of a random 
solution, and VCN represents the position vector of 
the neighbor solution. Table 2 shows the VCN after 
using β=0.3.

Table 2. Generating neighbour using mutation phase.

Tasks 1 2 3 4 5 6
VC 0.9 0.6 0.5 0.4 0.2 0.1
SRV 0.9 0.8 0.5 0.4 0.3 0.2
VCR 0.9 0.8 0.7 0.3 0.2 0.1
VCN 0.9 0.9 0.6 0.35 0.3 0.2

The crossover phase is about to generated new 
position vector using the position vector of the 
current solution and the position of the random 
solution, where this process selects characteristics 
from both solutions. Table  3 shows the crossover 
process, where the highlighted numbers show the 
selected characteristics from each solution.

Table 3. Generating new solution using crossover process.

Tasks 1 2 3 4 5 6
VC 0.9 0.6 0.5 0.4 0.2 0.1
VCR 0.9 0.8 0.7 0.3 0.2 0.1
VCN 0.9 0.6 0.5 0.3 0.2 0.1

6.	 Experimental Design
The proposed algorithm is developed using python 
programming in PC that has 2.93 GHz core2duo CPU 
and 4 GB rams. It has five parameters, which are the 
population size Popsize, the number of iterations Maxit, 
the minimum values of the differential weight βmin, the 
maximum value of the differential weight βmax, and 
the crossover probability CP. Each parameter has four 
levels shown in Table 4. The number of experiments 
required to make the full factorial design is 45=1024 
experiments. Such number of experiments can be 
radically reduced using the Taguchi method by having 
L16 orthogonal array, which only have 16 experiments. 
The corresponding L16 orthogonal array for the current 
experimental design is in shown in Table 5.

Table 4. The parameter levels of the experimental design.

Popsize Maxit βmin βmax CP

25 25 -1 0 0.1
50 50 -0.5 0.25 0.2
75 75 0 0.5 0.3
100 100 0.5 1 0.4
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Table 5. The required orthogonal array for the experimental 
design.

Trail Popsize Maxit βmin βmax CP
1 25 25 -1 0 0.1
2 25 50 -0.5 0.25 0.2
3 25 75 0 0.5 0.3
4 25 100 0.5 1 0.4
5 50 25 -0.5 0.5 0.4
6 50 50 -1 1 0.3
7 50 75 0.5 0 0.2
8 50 100 0 0.25 0.1
9 75 25 0 1 0.2
10 75 50 0.5 0.5 0.1
11 75 75 -1 0.25 0.4
12 75 100 -0.5 0 0.3
13 100 25 0.5 0.25 0.3
14 100 50 0 0 0.4
15 100 75 -0.5 1 0.1
16 100 100 -1 0.5 0.2

The selected problems for design of experiments 
are taken from well-known benchmarks can be 
found in https://assembly-line-balancing.de/salbp/. 
The problems included in such benchmarks are 
deterministic and need to be adapted to fit the 
mathematical model of this paper. Therefore, the 
processing times of tasks in the selected problems 
must have expected values and variances. In order 
to adapt the problems, the expected values of the 
processing times are considered the same as the values 
of the original processing times and the variances 
are calculated by subtracting each processing time 
from the expected value and divide the output by 
1000. Table 6 shows the selected problems for the 
experimental design.

Table 6. The selected problems for experimental design.

Serial Problem Cycle time Number of tasks
1 JACKSON 7 11
2 JACKSON 9 11
3 MITCHELL 14 21
4 MITCHELL 15 21
5 HESKIA 138 28
6 HESKIA 205 28
7 SAWYER30 25 30
8 SAWYER30 27 30
9 ARC83 5048 83
10 ARC83 5853 83
11 ARC111 5755 111
12 ARC111 8847 111

The response value for the experimental design 
includes the value of the objective function and the 
CPU time where that leads to better solutions with 
a little time consumption. Equation (13) shows 
the required response value for each trail in the 
experimental design.

Response
m

j 1
y

j

1
l

k 1
R

k

1
CPU time

	
(13)

The selected problems are different and each has 
different solution and response value. Therefore, the 
response values are normalized as shown in Table 7.

The analysis of variance for the parameter levels is 
done in order to study main effects. Table 8 shows 
the F-value and P-value for each parameter.

Table 7. The normalized values for the responses for each selected problem.

Trail 1 2 3 4 5 6 7 8 9 10 11 12
1 0.062 0.063 0.063 0.062 0.062 0.069 0.061 0.062 0.061 0.062 0.063 0.062
2 0.062 0.063 0.063 0.063 0.060 0.061 0.062 0.059 0.061 0.058 0.063 0.064
3 0.062 0.063 0.062 0.063 0.063 0.057 0.058 0.060 0.063 0.063 0.063 0.063
4 0.062 0.062 0.062 0.062 0.061 0.063 0.062 0.067 0.064 0.063 0.063 0.064
5 0.062 0.063 0.062 0.063 0.065 0.073 0.060 0.061 0.064 0.064 0.063 0.059
6 0.062 0.063 0.062 0.062 0.061 0.056 0.063 0.061 0.067 0.058 0.063 0.064
7 0.063 0.063 0.062 0.062 0.064 0.069 0.063 0.067 0.067 0.064 0.063 0.063
8 0.063 0.062 0.062 0.062 0.064 0.061 0.058 0.067 0.061 0.063 0.063 0.061
9 0.062 0.063 0.062 0.062 0.061 0.069 0.067 0.061 0.061 0.058 0.063 0.063
10 0.062 0.062 0.063 0.063 0.062 0.057 0.061 0.059 0.061 0.064 0.063 0.062
11 0.063 0.063 0.062 0.063 0.065 0.060 0.063 0.065 0.061 0.065 0.059 0.063
12 0.062 0.063 0.062 0.063 0.066 0.055 0.063 0.066 0.061 0.065 0.063 0.062
13 0.062 0.063 0.063 0.063 0.065 0.058 0.063 0.059 0.065 0.063 0.063 0.062
14 0.063 0.063 0.062 0.062 0.060 0.060 0.063 0.059 0.060 0.065 0.059 0.061
15 0.062 0.063 0.062 0.062 0.061 0.072 0.069 0.066 0.061 0.064 0.063 0.063
16 0.062 0.063 0.063 0.063 0.061 0.062 0.061 0.060 0.061 0.059 0.061 0.065
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Table 8. The analysis of variance for each parameter.

Parameter F-value P-value
Popsize 0.59 0.62
Maxit 3.54 0.016
βmin 1.42 0.24
βmax 1.60 0.19
CP 0.45 0.71

The null hypothesis is accepted in all parameters 
except in the number of iterations. Therefore, the 
Tukey’s honest significant difference test is applied 
to show which parameter levels differ. Figure  2 
shows that the worst parameter level for the number 
of iterations is 75 iterations and there is no significant 
difference between the remaining levels.

Figure 2. Tukey’s interval plot for the number of iterations 
parameter.

7.	 Computational Results
This section shows the results of applying the proposed 
DE algorithm on 71 adapted problems for the same 
benchmarks found in the experimental design section. 
Table 9 shows the computational results.

Table 9. The computational results.

Problem Problem size Cycle time Result CPU time
MERTENS 7 6 3.83 0.001
MERTENS 7 7 2.83 0.001
MERTENS 7 8 2.83 0.001
MERTENS 7 10 2.75 0.001
MERTENS 7 15 1.5 0.001
MERTENS 7 18 0.5 0.005
BOWMAN8 8 17 4.83 0.001
BOWMAN8 8 20 3.8 0.003
BOWMAN8 8 21 3.8 0.005
BOWMAN8 8 24 3.8 0.001
BOWMAN8 8 28 2.8 0.003
BOWMAN8 8 31 1.67 0.001
JAESCHKE 9 6 5.88 0.001
JAESCHKE 9 7 5.86 0.001
JAESCHKE 9 8 5.86 0.002

Problem Problem size Cycle time Result CPU time
JAESCHKE 9 10 3.8 0
JAESCHKE 9 18 2.67 0
JACKSON 11 7 5.88 0.029
JACKSON 11 9 4.86 0.001
JACKSON 11 10 3.83 0.003
JACKSON 11 13 2.75 0.005
JACKSON 11 14 2.75 0.001
JACKSON 11 21 1.67 0.001
MANSOOR 11 45 2.8 0.019
MANSOOR 11 54 2.75 0.001
MANSOOR 11 63 1.67 0.026
MANSOOR 11 72 1.67 0.001
MANSOOR 11 81 1.67 0.001
MITCHELL 21 14 7.9 0.002
MITCHELL 21 15 6.9 0.004
MITCHELL 21 21 3.86 0.023
MITCHELL 21 26 2.8 2.247
MITCHELL 21 35 2.75 0.003
MITCHELL 21 39 1.67 2.439
HESKIA 28 138 4.88 0.192
HESKIA 28 205 2.83 0.833
HESKIA 28 216 2.8 0.086
HESKIA 28 256 2.8 0.009
HESKIA 28 324 1.75 0.013
HESKIA 28 342 1.75 0.014
SAWYER30 30 25 7.94 6.457
SAWYER30 30 27 7.93 0.51
SAWYER30 30 30 7.92 0.132
SAWYER30 30 36 5.9 0.016
SAWYER30 30 41 4.89 8.426
SAWYER30 30 54 3.86 0.027
SAWYER30 30 75 2.8 0.008
KILBRID 45 57 5.9 1.401
KILBRID 45 79 3.88 0.016
KILBRID 45 92 3.86 0.01
KILBRID 45 110 2.83 0.277
KILBRID 45 138 2.8 0.009
KILBRID 45 184 1.67 15.791
TONGE70 70 176 11.96 0.447
TONGE70 70 364 5.91 0.092
TONGE70 70 410 4.89 1.524
TONGE70 70 468 3.88 4.191
TONGE70 70 527 3.86 0.018
ARC83 83 5048 8.94 18.726
ARC83 83 5853 7.93 3.26
ARC83 83 6842 6.92 32.885
ARC83 83 7571 5.91 9.666
ARC83 83 8412 5.9 1.057
ARC83 83 8998 4.89 7.431
ARC83 83 10816 3.88 1.209
ARC111 111 5755 15.97 31.141
ARC111 111 8847 9.95 0.43
ARC111 111 10027 8.94 13.533
ARC111 111 10743 7.93 88.503
ARC111 111 11378 7.93 3.89
ARC111 111 17067 4.89 8.653
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8.	 Conclusion

The problem handled in this paper considers a 
combination between UALBP and MALBP under 
uncertainty. Such combination leads to minimize 
the line length through having more than one 
operator in any station and utilizing the flexibility 
of the task’s assignment in U-shaped lines. The 
processing times of the tasks differ from operator 
to another, where that leads to uncertain values of 
them. Thus, the processing times of the tasks are 
represented as random variables with known means 
and variances. Therefore, the cycle time constraints 
of the mathematical model for such combined 

problem are represented as chance-constraints. The 
proposed approach for solving the problem is DE 
algorithm. The algorithm parameters are optimized 
and 71 adapted problems have been solved as a 
computational result. The future points of research 
may include the following:

	- Formulating the same problem with another 
type of uncertainty such as fuzzy and rough 
programming.

	- Including space constraints.

	- Including worker assignment.

	- Proposing other approaches for solving the same 
problem.
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