
PME

I
J

International Journal of
Production Management	
and Engineering

https://doi.org/10.4995/ijpme.2021.16084

Received: 2021-08-10 Accepted: 2021-09-30

Solving Stochastic Multi-Manned U-shaped Assembly Line Balancing
Problem Using Differential Evolution Algorithm

Mohammad Zakaraia a1, Hegazy Zaher a2, Naglaa Ragaa a3

a Faculty of graduate studies for statistical research, Cairo University,
5 Ahmed Zewail, Ad Doqi, Dokki, Giza Governorate, Egypt.

 a1 zicooo82@gmail.com, a2 hgsabry@gmail.com, a3 naglaa777subkiii@yahoo.com

Abstract:
The U-shaped assembly lines help to have more flexibility than the straight assembly lines, where the operators can
perform tasks in both sides of the line, the entrance and the exit sides. Having more than one operator in any station
of the line can reduce the line length and thereby affects the number of produced products. This paper combines the
U-shaped assembly line balancing problem with the multi-manned assembly line balancing problem in one problem.
In addition, the processing times of the tasks are considered as stochastic, where they are represented as random
variables with known means and variances. The problem is formulated as a mixed-integer linear programming and
the cycle time constraints are formulated as chance-constraints. The proposed algorithm for solving the problem is
a differential evolution algorithm. The parameter of the algorithm is optimized using experimental design and the
computational results are done on 71 adapted problems selected from well-known benchmarks.

Key words:
Metaheuristics, Differential evolution algorithm, U-shaped assembly line balancing problem, multi-manned
assembly line balancing problem, Chance-constrained programming.

1. Introduction

The assembly lines play an important role in
industry. They reduce the learning aspects by
dividing the assembly work into a set of stations that
move in some kind of transportation system, such as
conveyer belt, and they help to produce products in
a fixed time called the cycle time. The assembly line
balancing problem is the problem that is related to
optimizing the assignment of the tasks to the stations
in order to achieve some specific objectives, such as
minimizing the number of stations and minimizing
the cycle time. The simplified assumptions of the
problem consist of three set of constraints. The first
set of constraints is the set of assignment constraints,
which ensures that each task is assigned in only one
station. The second set of constraints is the cycle time
constraints, which ensures that the total processing

time of any station doesn’t exceed the cycle time.
The third set of constraints ensures that each task has
to be assigned after its predecessors. The problem
in research is classified into two categories, which
are the simple assembly line balancing problems
(SALBP) that only cover the simplified assumptions,
and the general assembly line balancing problems
(GALBP) which contain some other constraints
related to the practical relevancies.

The U-shaped assembly line balancing problem
(UALBP) represents one of GALBP. Its additional
practical constraints are related the shape of the
line, where the modification here is done on
the precedence constraints by considering the
successors beside the predecessors in the assignment
procedure. The reason of having the successors in
the assignment procedure is the shape of the line

To cite this article: Zakaraia, M., Zaher, H., Ragaa, N. (2022). Solving Stochastic Multi-Manned U-shaped Assembly Line Balancing Problem Using Differential Evolution
Algorithm. International Journal of Production Management and Engineering, 10(1), 13-22. https://doi.org/10.4995/ijpme.2022.16084

http://polipapers.upv.es/index.php/IJPME

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Int. J. Prod. Manag. Eng. (2022) 10(1), 13-22 13

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4995/ijpme.2021.16084

allows to have the operators inside the line, where
they can perform tasks either in the entrance or the
exist sides of the line. The multi-manned assembly
line balancing problem (MALBP) is another form
of GALBP. It adds another set of constraints to
the problem by considering the sequencing of the
tasks that may restrict assign tasks to the additional
operators in the same station. The contribution of
this paper is that it combines both of UALBP and
MALBP in one problem and presents a new mixed-
integer programming model for such new problem.
In addition, the problem is solved under uncertainty
by having the stochastic processing times of the
tasks. Therefore, the mathematical model shows the
cycle time constraints as chance-constraints. Due to
the combinatorial nature of the problem that makes it
one of the NP-hard problems, the selected approach
for solving it is an efficient metaheuristic called
differential evolution algorithm (DE).

The paper is organized as follows. The second section
shows a literature review that covers some of word
presented in both of UALBP and MALBP. The third
section presents the mathematical model of the new
problem. The fourth section illustrates the developed
DE for solving the problem. The fifth section shows
a numerical example. The sixth section discusses
the parameters of the proposed DE and optimizing
its parameters using design of experiments (DOE).
Eventually, the seventh section is the conclusion.

2.	 Literature Review

This paper discusses a combination between UALBP
and MALBP. Therefore, this section covers some
the previous works which are presented in both
problems.

The first work in UALBP is presented by Miltenburg
and Wijngaard (1994). They showed the advantages
of using UALBP instead of using SALBP. UALBP
in research can be classified into three categories
according to objective functions: type-1, type-2, and
type-E (Rabbani, Kazemi, and Manavizadeh, 2012).
Type-1 is concerned with minimizing the number of
stations for a given cycle time (Yilmaz et al., 2020).
Type-2 objective is to minimize the cycle time with
a given number of stations. Type-E is to maximize
the line efficiency when the number of stations and
the cycle time are unknown (Oksuz, Buyukozkan,
and Satoglu, 2017). This paper considers multi-
objectives for the new problem. The first objective is
to minimize the number of stations and the second is

to minimize the number of operators. The reason of
having the number of operators as an objective is due
to having the multi-manned concept of MALBP. In
terms of minimizing the number of stations, there are
a lot of papers that were presented in UALBP. For
example, Ajenblit and Wainwright (1998) developed
an ordered-based genetic algorithm for solving
UALBP type-1 (UALBP-1). Scholl and Klein (Scholl
and Klein, 1999) proposed a branch and bound
procedure for solving many types of UALBP. Gökçen
et al. (2006) presented a shortest route formulation
for UALBP. Sabuncuoglu et al. (2009) developed ant
colony optimization for solving UALBP. Kara et al.
(2011) presented a resource dependent mathematical
model for UALBP. Hamzadayi and Yildiz (2012)
presented a genetic algorithm for solving UALBP
in case of having parallel stations and mixed
models. Hamzadayi and Yildiz (2013) developed a
simulated annealing for solving UALBP in case of
assembling mixed models. Jayaswal and Agarwal
(2014) proposed a simulated annealing approach the
resource dependent UALBP. Kucukkoc and Zhang
(2015) proposed a hybrid design for the assembly
line balancing problem that combines UALBP
with the parallel assembly line balancing problem.
They developed a heuristic procedure for solving
such hybrid design. Fathi et al. (2016) developed
a simulated annealing based proposed heuristic for
solving UALBP. Li et al. (2017) presented a rules-
based heuristic for solving UALBP. Sresracoo
et al. (2018) developed DE algorithm for solving
UALBP-1. Nourmohammadi et al. (2019) proposed
a water flow inspired algorithm for solving UALBP.
Zhang and Xu (2020) considered the energy cost
in objective functions and solved UALBP using
an improved flower pollination algorithm. Yılmaz
(2020a) produced a robust optimizatoin for the
U-shaped assembly line balancing problem with
worker assignment in case that the processing times
of the tasks are uncertain. Ö. F. Yılmaz (2020b)
developed a mathematical model for an integrated
bi-objective U-shaped assembly line balancing
problem that considers heterogenity inhert of
workers. He aimed to minimize the operational cost
and workload balance. Li et al. (2021) developed an
enhanced beam search heuristic for solving both of
type-1 and type-2 of UALBP.

The first mathematical model of MALBP showed
up in (Fattahi, Roshani, and Roshani, 2011a). They
solved the problem using ant colony optimization
algorithm. Fattahi et al. (2011b) developed an
improved simulated annealing for solving MALBP.
Their objectives are to minimize the number of

Zakaraia et al.

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 InternationalInt. J. Prod. Manag. Eng. (2022) 10(1), 13-2214

http://creativecommons.org/licenses/by-nc-nd/4.0/

stations and to maximize the line efficiency. Kellegöz
and Toklu (2015) proposed a genetic algorithm for
solving MALBP. Their objective is to minimize
the number of stations. Kellegöz (2017) another
mathematical model for MALBP. He proposed a
simulated annealing that uses a Gantt-based heuristic
for solving the problem. Michels (2018) proposed
genetic algorithm for solving MALBP. His objective
is to minimize the costs per production unit. Michels
et al. (2019) presented a mixed integer programming
model for MALBP that can be solved using Benders’
Decomposition Algorithm. Abidin Çil and Kizilay
(2020) proposed a constrainted programming
approach to solve MALBP. Their objectives are to
minimize the cycle time as primary objective and
to minimize the number of stations as secondary
objective. Zhang et al. (2020) developed an ant
colony optimization algorithm that solves MALBP
in case of having space constraints.

To the best of knowledge, the only work that con-
siders the combination of UALBP and MALBP is
presented by Zakaraia et al. (2021), which the prob-
lem was sovled using stochastic local search (SLS).
The proposed DE algorithm herein is more intelle-
gent than SLS, where the proposed DE contains bet-
ter priority structure for constructing feasible solu-
tions and it contains learning procedures to ignore
the worse solutions from the search space by replac-
ing them with new random ones to increase explora-
tion.

3.	 The Optimization Model

As aforementioned, this study concerns with
combining UALBP and MALBP under uncertainty
by having the processing times of the tasks as
stochastic random variables with known means
and variances and they are normally distributed.
Therefore, the cycle time constraints are formulated
using probabilistic constraints that are restricted by
predetermined chance probability. The mathematical
model can be formulated as follows:

3.1.	 Notations

i={1,…, n} The set of tasks
j={1,…, m} The set of stations
k={1,…,l} The set of operators
ct Cycle time

kmax
The maximum number of operators in any
station

ti
The processing time of task i (random
variable)

E(ti) The expected processing time of task i
Var(ti) The variance of task i
IP(ti) The immediate predecessors of task i
IS(ti) The immediate successors of tasks i

3.2.	 Decision Variables

x
ijk

1
0 otherwise

if task i assigned to operator k in station j

y
j

1 if
n

i 1
x

ijk
0

0 otherwise
The opened station decision variable

R
k

1 if
n

i 1
x

ijk
0

0 otherwise
The operator assignment decision variable

P
i

1 if
m

j 1
j x

ijk

m

j 1
j x

hjk
h IP i

0 otherwise
The immediate predecessor’s assignment decision
variable

S
i

1 if
m

j 1
j x

ijk

m

j 1
j x

hjk
h IS i

0 otherwise
The immediate successors assignment decision
variables

3.3.	 The Objective function

Min
m

j 1
y

j

1
l

k 1
R

k
� (1)

3.4.	 The Constraints
m

j 1
x

ijk
1 i {1 n }

� (2)

P
n

i 1
t

i
x

ijk
k

max
ct α j {1 m }

� (3)

Solving Stochastic Multi-Manned U-shaped Assembly Line Balancing Problem
Using Differential Evolution Algorithm

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Int. J. Prod. Manag. Eng. (2022) 10(1), 13-22 15

http://creativecommons.org/licenses/by-nc-nd/4.0/

P ti xijk

kmax

k 1 g iP i
tg xgjk

kmax

k 1 h iS i
th x hjk ct

α j {1 m }
� (4)

P
n

i 1
ti xijk ct α k {1 l }

� (5)

P
i

S
i

1 i {1 n } 	 (6)

The objective function (1) seeks to minimize the
number of stations and the number of operators.
The set of constraints (2) is the set of assignment
constraints, which ensures that each task is assigned
in only one station. The set of constraints (3) shows
that the maximum total processing time of the
assigned tasks of any station must be less than or
equal the cycle time multiplied by the maximum
number of operators. The set of constraints (4) is
the sequencing constraints that ensures that if any
of the immediate predecessors or successors of any
task are assigned on its station, then their processing
time added to the task processing time must not
exceed the cycle time. This set of constraints helps
to avoid assigning tasks to more than one operator
without considering the processing times of the
predecessors and successors. The set of constraints
(5) is the cycle time constraints for operators,
which ensures that the total processing time of any
assigned tasks to an operator must not exceed the
cycle time. The sets of constraints (3), (4), and (5)
are sets of chance-constraints, which are restricted
by a predetermined chance probability. The set
of constraints (6) is the set of predecessors and
successors constraints, which ensures that each
task has to be assigned either before its immediate
predecessors or before immediate successors.

The mathematical model contains some chance-
constraints that can be converted into deterministic
in order to be solved. The processing times herein
are normally distributed random variables with
known means and variance. Taha (2017) shows
how to overcome the chance-constraints through
converting them into non-linear deterministic
constraints. Therefore, the set of constraints (3),
(4), and (5) can be converted into the non-linear
deterministic form as shown in (7), (9), and (8)
respectively.

n

i 1
E(tl) xijk Kα

n

i 1
Var(ti)x

ijk
k

max
ct

j { }1 m
where Kα is the standard normal value of α �

(7)

E(ti)xijk

(ti)xijk

kmax

k 1

kmax

k 1

g IP(i)
E(tg)xgjk

kmax

k 1 h IS(i)
E(th)xhjk

Kα Var

ct j {1 m }
g IP(i)

Var(tg)xgjk Var(th)xhjk

kmax

k 1 h IS(i)

�

(8)

n

i 1
E ti x ijk Kα

n

i 1
Var ti x ijk ct

k { }1 l �

(9)

4.	 The Proposed DE Algorithm

DE is one of the population-based metaheuristics
that consists of four phases. The first phase is the
initialization, which concerns with generating the
initial population of solutions. The second phase
concerns with the mutation procedure. The third
phase is concerned with the crossover procedure. The
fourth phase is the selection procedure. All of these
phases work iteratively until reaching the stopping
criterion, which is herein the number of iterations.

4.1.	 The initialization Phase
In the initialization phase, a set of random solutions
is to be generated in order to cover diversified areas
of the solution space. The problem here can have
random solution by generating random sequence
of the tasks. Such random sequence (T) represents
the priority of the tasks. So, any opened station will
have the top priority tasks that satisfy the problem
constraints through using the following heuristics:

Algorithm 1: The heuristic procedure

j=1, station Sj=Ø, and solution =Ø while T≠Ø do:

find the assignable tasks (AS) that ensure the
problem constrains if AS≠Ø then:

Assign the highest priority (P) task in T to Sj

T=T–{P}

Zakaraia et al.

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 InternationalInt. J. Prod. Manag. Eng. (2022) 10(1), 13-2216

http://creativecommons.org/licenses/by-nc-nd/4.0/

else:

solution = solution ∪ Sj

j = j+1 and Sj=Ø

return solution

DE algorithm uses vectors in its search methodology.
Therefore, the random sequence of tasks can be
generated using a vector that its length equal to
the number of tasks and its values are randomly
generated using the following equation:

Vi= rand (0,1)	 (10)

Such random vector represents the position of the
solution. The next step of generating the random
sequence using such generated vector is to use the
bubble sort algorithm as follows:

Algorithm 2: Bubble sort for creating a random
sequence of tasks

T=the tasks vector arranged by index number

in ascending order

n=the number of tasks

Continue=1

i=1

while Continue=1 do:

Continue=0

i'=1

while i'≤ n–i do:

if Vi' ≤Vi' +1 then

Temporary1=Vi'

Temporary2=Ti'

Vi'=Vi'+1

Ti'=Ti'+1

Vi'+1=Temporary1

Ti'+1=Temporary2

Continue=1

i'=i'+1

return T

By using equation (10), Algorithm 1, and Algorithm
2, the initial population can have a set of randomly
generated candidate solutions C(S). The next steps
of the algorithm are to update the solutions of

the population through mutation and crossover
procedures and either select to keep solutions or
replace them. All of these steps are to be done in
iterative manner until reaching a stopping criterion,
which is herein the number of iterations.

4.2.	 The Mutation Phase
In the mutation phase, each solution in the population
is to be mutated using its positional vector. The
mutation procedure uses three positions to generate
new position Posnew. The first position is the position
of the best solution found Posbest. The second position
is the position of the current solution Poscurrent .
The third position Posother is a position of randomly
selected solution from the population that isn’t equal
to the current solution.

Posnew=Posbest–β(Poscurrent–Posother)� (11)

Algorithm 1 now is ready to be used to obtain
new solution using Posnew. The new solution is
to be compared with the best solution found and
replaces it if it is better. The parameter β is called the
differential weight, which helps to define how far the
new position from the three used positions.

4.3.	 The Crossover Phase
The crossover procedure uses both of Posnew and
Posother. In such process a new position is to be
generated by having properties from t Posnew
and Poscurrent. The process is controlled by a new
parameter CR, which is the crossover probability. So,
each value of the crossover position Poscross can be
generated using the following equation:

Poscrossi

i
if rand 0 1 CR

i
otherwise

Poscurrent

Posnew �
(12)

The solution of Poscross is to be generated and it will
replace the best solution if it is better.

4.4.	 The Selection Phase
The selection phase determines the new position of
the new solution in the next iteration. So, it can be
replaced by Posnew if it produces a better solution
than the current solution, or it will be replaced by
another solution that is generated randomly using a
random position Posrandom by using equation (10).

Solving Stochastic Multi-Manned U-shaped Assembly Line Balancing Problem
Using Differential Evolution Algorithm

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Int. J. Prod. Manag. Eng. (2022) 10(1), 13-22 17

http://creativecommons.org/licenses/by-nc-nd/4.0/

5.	 Numerical Example
This section shows a numerical example to further
illustrate the model and the proposed DE algorithm.
The numerical example consists of 6 tasks. Its
cycle time is 8 and its precedence graph is shown
in Figure 1. The number of operators is 2 and the
chance probability is 0.95.

Figure 1. The precedence graph of the numerical example.

In the initialization phase, the population of solutions
is to be generated using algorithm 1 and 2. So, the
generation of one of these solutions can be illustrated
as follows. Firstly, the number of tasks herein is 6.
Therefore, one of the random vectors (RV) can be
shown as follows:

Tasks 1 2 3 4 5 6
RV 0.3 0.8 0.9 0.4 0.2 0.5

After using the proposed bubble sort, algorithm 2,
the arrangement of the tasks that should be used with
the heuristic algorithm is as follows:

Tasks 3 2 6 4 1 5
RV 0.9 0.8 0.5 0.4 0.3 0.2

Now algorithm 1, the heuristic procedure, is ready to
be used. Table 1 shows the heuristic solution using
RV vector.

Table 1. The heuristic solution using RV.

Task 3 6 1 2 4 5
Processing time 4 6 1 5 3 5
Station 1 1 1 2 2 3
Operator 1 2 2 3 3 4
Completion time 4 6 7 5 8 5

The mutation phase is about to find another solution
in the local space of the current solution using the
linear combination found in Equation (11), where
it uses the position vector of the best solution
and a position vector of a random solution. If it
considered that the solution found in Table 1 is the
best solution, then its position vector, which is the

sorted RV vector (SRV), is to be used along with
another position vector of a random solution to find a
neighbor of the current solution. For illustration, VC
represents the position vector of the current position,
VCR represents the position vector of a random
solution, and VCN represents the position vector of
the neighbor solution. Table 2 shows the VCN after
using β=0.3.

Table 2. Generating neighbour using mutation phase.

Tasks 1 2 3 4 5 6
VC 0.9 0.6 0.5 0.4 0.2 0.1
SRV 0.9 0.8 0.5 0.4 0.3 0.2
VCR 0.9 0.8 0.7 0.3 0.2 0.1
VCN 0.9 0.9 0.6 0.35 0.3 0.2

The crossover phase is about to generated new
position vector using the position vector of the
current solution and the position of the random
solution, where this process selects characteristics
from both solutions. Table 3 shows the crossover
process, where the highlighted numbers show the
selected characteristics from each solution.

Table 3. Generating new solution using crossover process.

Tasks 1 2 3 4 5 6
VC 0.9 0.6 0.5 0.4 0.2 0.1
VCR 0.9 0.8 0.7 0.3 0.2 0.1
VCN 0.9 0.6 0.5 0.3 0.2 0.1

6.	 Experimental Design
The proposed algorithm is developed using python
programming in PC that has 2.93 GHz core2duo CPU
and 4 GB rams. It has five parameters, which are the
population size Popsize, the number of iterations Maxit,
the minimum values of the differential weight βmin, the
maximum value of the differential weight βmax, and
the crossover probability CP. Each parameter has four
levels shown in Table 4. The number of experiments
required to make the full factorial design is 45=1024
experiments. Such number of experiments can be
radically reduced using the Taguchi method by having
L16 orthogonal array, which only have 16 experiments.
The corresponding L16 orthogonal array for the current
experimental design is in shown in Table 5.

Table 4. The parameter levels of the experimental design.

Popsize Maxit βmin βmax CP

25 25 -1 0 0.1
50 50 -0.5 0.25 0.2
75 75 0 0.5 0.3
100 100 0.5 1 0.4

Zakaraia et al.

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 InternationalInt. J. Prod. Manag. Eng. (2022) 10(1), 13-2218

http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 5. The required orthogonal array for the experimental
design.

Trail Popsize Maxit βmin βmax CP
1 25 25 -1 0 0.1
2 25 50 -0.5 0.25 0.2
3 25 75 0 0.5 0.3
4 25 100 0.5 1 0.4
5 50 25 -0.5 0.5 0.4
6 50 50 -1 1 0.3
7 50 75 0.5 0 0.2
8 50 100 0 0.25 0.1
9 75 25 0 1 0.2
10 75 50 0.5 0.5 0.1
11 75 75 -1 0.25 0.4
12 75 100 -0.5 0 0.3
13 100 25 0.5 0.25 0.3
14 100 50 0 0 0.4
15 100 75 -0.5 1 0.1
16 100 100 -1 0.5 0.2

The selected problems for design of experiments
are taken from well-known benchmarks can be
found in https://assembly-line-balancing.de/salbp/.
The problems included in such benchmarks are
deterministic and need to be adapted to fit the
mathematical model of this paper. Therefore, the
processing times of tasks in the selected problems
must have expected values and variances. In order
to adapt the problems, the expected values of the
processing times are considered the same as the values
of the original processing times and the variances
are calculated by subtracting each processing time
from the expected value and divide the output by
1000. Table 6 shows the selected problems for the
experimental design.

Table 6. The selected problems for experimental design.

Serial Problem Cycle time Number of tasks
1 JACKSON 7 11
2 JACKSON 9 11
3 MITCHELL 14 21
4 MITCHELL 15 21
5 HESKIA 138 28
6 HESKIA 205 28
7 SAWYER30 25 30
8 SAWYER30 27 30
9 ARC83 5048 83
10 ARC83 5853 83
11 ARC111 5755 111
12 ARC111 8847 111

The response value for the experimental design
includes the value of the objective function and the
CPU time where that leads to better solutions with
a little time consumption. Equation (13) shows
the required response value for each trail in the
experimental design.

Response
m

j 1
y

j

1
l

k 1
R

k

1
CPU time

	
(13)

The selected problems are different and each has
different solution and response value. Therefore, the
response values are normalized as shown in Table 7.

The analysis of variance for the parameter levels is
done in order to study main effects. Table 8 shows
the F-value and P-value for each parameter.

Table 7. The normalized values for the responses for each selected problem.

Trail 1 2 3 4 5 6 7 8 9 10 11 12
1 0.062 0.063 0.063 0.062 0.062 0.069 0.061 0.062 0.061 0.062 0.063 0.062
2 0.062 0.063 0.063 0.063 0.060 0.061 0.062 0.059 0.061 0.058 0.063 0.064
3 0.062 0.063 0.062 0.063 0.063 0.057 0.058 0.060 0.063 0.063 0.063 0.063
4 0.062 0.062 0.062 0.062 0.061 0.063 0.062 0.067 0.064 0.063 0.063 0.064
5 0.062 0.063 0.062 0.063 0.065 0.073 0.060 0.061 0.064 0.064 0.063 0.059
6 0.062 0.063 0.062 0.062 0.061 0.056 0.063 0.061 0.067 0.058 0.063 0.064
7 0.063 0.063 0.062 0.062 0.064 0.069 0.063 0.067 0.067 0.064 0.063 0.063
8 0.063 0.062 0.062 0.062 0.064 0.061 0.058 0.067 0.061 0.063 0.063 0.061
9 0.062 0.063 0.062 0.062 0.061 0.069 0.067 0.061 0.061 0.058 0.063 0.063
10 0.062 0.062 0.063 0.063 0.062 0.057 0.061 0.059 0.061 0.064 0.063 0.062
11 0.063 0.063 0.062 0.063 0.065 0.060 0.063 0.065 0.061 0.065 0.059 0.063
12 0.062 0.063 0.062 0.063 0.066 0.055 0.063 0.066 0.061 0.065 0.063 0.062
13 0.062 0.063 0.063 0.063 0.065 0.058 0.063 0.059 0.065 0.063 0.063 0.062
14 0.063 0.063 0.062 0.062 0.060 0.060 0.063 0.059 0.060 0.065 0.059 0.061
15 0.062 0.063 0.062 0.062 0.061 0.072 0.069 0.066 0.061 0.064 0.063 0.063
16 0.062 0.063 0.063 0.063 0.061 0.062 0.061 0.060 0.061 0.059 0.061 0.065

Solving Stochastic Multi-Manned U-shaped Assembly Line Balancing Problem
Using Differential Evolution Algorithm

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Int. J. Prod. Manag. Eng. (2022) 10(1), 13-22 19

https://assembly-line-balancing.de/salbp/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 8. The analysis of variance for each parameter.

Parameter F-value P-value
Popsize 0.59 0.62
Maxit 3.54 0.016
βmin 1.42 0.24
βmax 1.60 0.19
CP 0.45 0.71

The null hypothesis is accepted in all parameters
except in the number of iterations. Therefore, the
Tukey’s honest significant difference test is applied
to show which parameter levels differ. Figure 2
shows that the worst parameter level for the number
of iterations is 75 iterations and there is no significant
difference between the remaining levels.

Figure 2. Tukey’s interval plot for the number of iterations
parameter.

7.	 Computational Results
This section shows the results of applying the proposed
DE algorithm on 71 adapted problems for the same
benchmarks found in the experimental design section.
Table 9 shows the computational results.

Table 9. The computational results.

Problem Problem size Cycle time Result CPU time
MERTENS 7 6 3.83 0.001
MERTENS 7 7 2.83 0.001
MERTENS 7 8 2.83 0.001
MERTENS 7 10 2.75 0.001
MERTENS 7 15 1.5 0.001
MERTENS 7 18 0.5 0.005
BOWMAN8 8 17 4.83 0.001
BOWMAN8 8 20 3.8 0.003
BOWMAN8 8 21 3.8 0.005
BOWMAN8 8 24 3.8 0.001
BOWMAN8 8 28 2.8 0.003
BOWMAN8 8 31 1.67 0.001
JAESCHKE 9 6 5.88 0.001
JAESCHKE 9 7 5.86 0.001
JAESCHKE 9 8 5.86 0.002

Problem Problem size Cycle time Result CPU time
JAESCHKE 9 10 3.8 0
JAESCHKE 9 18 2.67 0
JACKSON 11 7 5.88 0.029
JACKSON 11 9 4.86 0.001
JACKSON 11 10 3.83 0.003
JACKSON 11 13 2.75 0.005
JACKSON 11 14 2.75 0.001
JACKSON 11 21 1.67 0.001
MANSOOR 11 45 2.8 0.019
MANSOOR 11 54 2.75 0.001
MANSOOR 11 63 1.67 0.026
MANSOOR 11 72 1.67 0.001
MANSOOR 11 81 1.67 0.001
MITCHELL 21 14 7.9 0.002
MITCHELL 21 15 6.9 0.004
MITCHELL 21 21 3.86 0.023
MITCHELL 21 26 2.8 2.247
MITCHELL 21 35 2.75 0.003
MITCHELL 21 39 1.67 2.439
HESKIA 28 138 4.88 0.192
HESKIA 28 205 2.83 0.833
HESKIA 28 216 2.8 0.086
HESKIA 28 256 2.8 0.009
HESKIA 28 324 1.75 0.013
HESKIA 28 342 1.75 0.014
SAWYER30 30 25 7.94 6.457
SAWYER30 30 27 7.93 0.51
SAWYER30 30 30 7.92 0.132
SAWYER30 30 36 5.9 0.016
SAWYER30 30 41 4.89 8.426
SAWYER30 30 54 3.86 0.027
SAWYER30 30 75 2.8 0.008
KILBRID 45 57 5.9 1.401
KILBRID 45 79 3.88 0.016
KILBRID 45 92 3.86 0.01
KILBRID 45 110 2.83 0.277
KILBRID 45 138 2.8 0.009
KILBRID 45 184 1.67 15.791
TONGE70 70 176 11.96 0.447
TONGE70 70 364 5.91 0.092
TONGE70 70 410 4.89 1.524
TONGE70 70 468 3.88 4.191
TONGE70 70 527 3.86 0.018
ARC83 83 5048 8.94 18.726
ARC83 83 5853 7.93 3.26
ARC83 83 6842 6.92 32.885
ARC83 83 7571 5.91 9.666
ARC83 83 8412 5.9 1.057
ARC83 83 8998 4.89 7.431
ARC83 83 10816 3.88 1.209
ARC111 111 5755 15.97 31.141
ARC111 111 8847 9.95 0.43
ARC111 111 10027 8.94 13.533
ARC111 111 10743 7.93 88.503
ARC111 111 11378 7.93 3.89
ARC111 111 17067 4.89 8.653

Zakaraia et al.

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 InternationalInt. J. Prod. Manag. Eng. (2022) 10(1), 13-2220

http://creativecommons.org/licenses/by-nc-nd/4.0/

8.	 Conclusion

The problem handled in this paper considers a
combination between UALBP and MALBP under
uncertainty. Such combination leads to minimize
the line length through having more than one
operator in any station and utilizing the flexibility
of the task’s assignment in U-shaped lines. The
processing times of the tasks differ from operator
to another, where that leads to uncertain values of
them. Thus, the processing times of the tasks are
represented as random variables with known means
and variances. Therefore, the cycle time constraints
of the mathematical model for such combined

problem are represented as chance-constraints. The
proposed approach for solving the problem is DE
algorithm. The algorithm parameters are optimized
and 71 adapted problems have been solved as a
computational result. The future points of research
may include the following:

	- Formulating the same problem with another
type of uncertainty such as fuzzy and rough
programming.

	- Including space constraints.

	- Including worker assignment.

	- Proposing other approaches for solving the same
problem.

References
Abidin Çil, Zeynel, & Damla Kizilay. 2020. Constraint Programming Model for Multi-Manned Assembly Line Balancing

Problem. Computers and Operations Research, 124, 105069. https://doi.org/10.1016/j.cor.2020.105069
Ajenblit, Debora A., & Roger L. Wainwright. 1998. Applying Genetic Algorithms to the U-Shaped Assembly Line

Balancing Problem. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 96–101. https://doi.
org/10.1109/icec.1998.699329

Fathi, Masood, María Jesús Álvarez, & Victoria Rodríguez. 2016. A New Heuristic-Based Bi-Objective Simulated
Annealing Method for U-Shaped Assembly Line Balancing. European Journal of Industrial Engineering, 10(2), 145–
169. https://doi.org/10.1504/EJIE.2016.075849.

Fattahi, Parviz, Abdolreza Roshani, & Abdolhassan Roshani. 2011a. A Mathematical Model and Ant Colony Algorithm
for Multi-Manned Assembly Line Balancing Problem. International Journal of Advanced Manufacturing Technology,
53(1–4), 363–378. https://doi.org/10.1007/s00170-010-2832-y

Gökçen, Hadi, Kürşad Ağpak, & Recep Benzer. 2006. Balancing of Parallel Assembly Lines. International Journal of
Production Economics, 103(2), 600–609. https://doi.org/10.1016/j.ijpe.2005.12.001

Hamzadayi, Alper, & Gokalp Yildiz. 2012. A Genetic Algorithm Based Approach for Simultaneously Balancing and
Sequencing of Mixed-Model U-Lines with Parallel Workstations and Zoning Constraints. Computers and Industrial
Engineering, 62(1), 206–215. https://doi.org/10.1016/j.cie.2011.09.008

Hamzadayi, Alper, & Gokalp Yildiz. 2013. A Simulated Annealing Algorithm Based Approach for Balancing and
Sequencing of Mixed-Model U-Lines. Computers and Industrial Engineering, 66(4), 1070–1084. https://doi.
org/10.1016/j.cie.2013.08.008

Jayaswal, Sachin, & Prashant Agarwal. 2014. Balancing U-Shaped Assembly Lines with Resource Dependent Task Times:
A Simulated Annealing Approach. Journal of Manufacturing Systems, 33(4), 522–534. https://doi.org/10.1016/j.
jmsy.2014.05.002

Kara, Yakup, Cemal Özgüven, Neşe Yalçin, & Yakup Atasagun. 2011. Balancing Straight and U-Shaped Assembly Lines
with Resource Dependent Task Times. International Journal of Production Research, 49(21), 6387–6405. https://doi.
org/10.1080/00207543.2010.535039

Kellegöz, Talip. 2017. Assembly Line Balancing Problems with Multi-Manned Stations: A New Mathematical Formulation
and Gantt Based Heuristic Method. Annals of Operations Research, 253(1), 377–404. https://doi.org/10.1007/s10479-
016-2156-x

Kellegöz, Talip, & Bilal Toklu. 2015. A Priority Rule-Based Constructive Heuristic and an Improvement Method for
Balancing Assembly Lines with Parallel Multi-Manned Workstations. International Journal of Production Research,
53(3), 736–756. https://doi.org/10.1080/00207543.2014.920548

Kucukkoc, Ibrahim, & David Z. Zhang. 2015. Balancing of Parallel U-Shaped Assembly Lines. Vol. 64. Virginia Tech.
Li, Ming, Qiuhua Tang, Qiaoxian Zheng, Xuhui Xia, & C. A. Floudas. 2017. Rules-Based Heuristic Approach for the

U-Shaped Assembly Line Balancing Problem. Applied Mathematical Modelling, 48(2017), 423–439. https://doi.
org/10.1016/j.apm.2016.12.031

Solving Stochastic Multi-Manned U-shaped Assembly Line Balancing Problem
Using Differential Evolution Algorithm

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Int. J. Prod. Manag. Eng. (2022) 10(1), 13-22 21

https://doi.org/10.1016/j.cor.2020.105069
https://doi.org/10.1109/icec.1998.699329
https://doi.org/10.1109/icec.1998.699329
https://doi.org/10.1504/EJIE.2016.075849
https://doi.org/10.1007/s00170-010-2832-y
https://doi.org/10.1016/j.ijpe.2005.12.001
https://doi.org/10.1016/j.cie.2011.09.008
https://doi.org/10.1016/j.cie.2013.08.008
https://doi.org/10.1016/j.cie.2013.08.008
https://doi.org/10.1016/j.jmsy.2014.05.002
https://doi.org/10.1016/j.jmsy.2014.05.002
https://doi.org/10.1080/00207543.2010.535039
https://doi.org/10.1080/00207543.2010.535039
https://doi.org/10.1007/s10479-016-2156-x
https://doi.org/10.1007/s10479-016-2156-x
https://doi.org/10.1080/00207543.2014.920548
https://doi.org/10.1016/j.apm.2016.12.031
https://doi.org/10.1016/j.apm.2016.12.031
http://creativecommons.org/licenses/by-nc-nd/4.0/

Li, Zixiang, Mukund Nilakantan Janardhanan, & Humyun Fuad Rahman. 2021. Enhanced Beam Search Heuristic for
U-Shaped Assembly Line Balancing Problems. Engineering Optimization, 53(4), 594–608. https://doi.org/10.1080/03
05215X.2020.1741569

Michels, Adalberto Sato, Tiago Cantos Lopes, Celso Gustavo Stall Sikora, & Leandro Magatão. 2018. With Practical
Extensions The Robotic Assembly Line Design (RALD) Problem: Model and Case Studies with Practical Extensions.
Computers & Industrial Engineering, 120, 320–333. https://doi.org/10.1016/j.cie.2018.04.010

Michels, Adalberto Sato, Thiago Cantos Lopes, Celso Gustavo Stall Sikora, & Leandro Magatão. 2019. A Benders’
Decomposition Algorithm with Combinatorial Cuts for the Multi-Manned Assembly Line Balancing Problem.
European Journal of Operational Research, 278(3), 796–808. https://doi.org/10.1016/j.ejor.2019.05.001

Miltenburg, G.J., & J. Wijngaard. 1994. U-Line Line Balancing Problem. Management Science, 40(10), 1378–1388.
https://doi.org/10.1287/mnsc.40.10.1378

Nourmohammadi, Amir, Masood Fathi, Mostafa Zandieh, & Morteza Ghobakhloo. 2019. A Water-Flow like Algorithm
for Solving U-Shaped Assembly Line Balancing Problems. IEEE Access, 7, 129824–129833. https://doi.org/10.1109/
ACCESS.2019.2939724

Oksuz, Mehmet Kursat, Kadir Buyukozkan, & Sule Itir Satoglu. 2017. U-Shaped Assembly Line Worker Assignment and
Balancing Problem: A Mathematical Model and Two Meta-Heuristics. Computers and Industrial Engineering, 112,
246–263. https://doi.org/10.1016/j.cie.2017.08.030

Rabbani, Masoud, Seyed Mahmood Kazemi, & Neda Manavizadeh. 2012. Mixed Model U-Line Balancing Type-1 Problem:
A New Approach. Journal of Manufacturing Systems, 31(2), 131–138. https://doi.org/10.1016/j.jmsy.2012.02.002

Sabuncuoglu, Ihsan, Erdal Erel, & Arda Alp. 2009. Ant Colony Optimization for the Single Model U-Type
Assembly Line Balancing Problem. International Journal of Production Economics, 120(2), 287–300.
https://doi.org/10.1016/j.ijpe.2008.11.017

Scholl, A., & R. Klein. 1999. ULINO: Optimally Balancing U-Shaped JIT Assembly Lines. International Journal of
Production Research, 37(4), 721–736. https://doi.org/10.1080/002075499191481

Sresracoo, Poontana, Nuchsara Kriengkorakot, Preecha Kriengkorakot, & Krit Chantarasamai. 2018. U-Shaped Assembly
Line Balancing by Using Differential Evolution Algorithm. Mathematical and Computational Applications, 23(4), 79.
https://doi.org/10.3390/mca23040079

Taha, Hamdy. 2017. Operations Research an Introduction. 10th ed. edited by R. Horton, Marcia; Partridge, Julian; Stark,
Holly; Brands, Amanda; Agarwal, Aditee; Raheja. Harlow: Pearson Education Limited.

Yilmaz, Ö.F., Ö.F. Demirel, S. Zaim, & S. Sevim. 2020. Assembly Line Balancing by Using Axiomatic Design Principles: An
Application from Cooler Manufacturing Industry. International Journal of Production Management and Engineering,
8(1), 31–43. https://doi.org/10.4995/IJPME.2020.11953

Yılmaz, Faruk. 2020a. Robust Optimization for U-Shaped Assembly Line Worker Assignment and Balancing Problem with
Uncertain Task Times¨Omer Times¨ Times¨Omer. CRORR, 11(2), 229–239. https://doi.org/10.17535/crorr.2020.0018

Yılmaz, Ömer Faruk. 2020b. An Integrated Bi-Objective U-Shaped Assembly Line Balancing and Parts Feeding
Problem: Optimization Model and Exact Solution Method. Annals of Mathematics and Artificial Intelligence, 1–18.
https://doi.org/10.1007/s10472-020-09718-y

Zakaraia, Mohammad, Hegazy Zaher, & Naglaa Ragaa. 2021. Stochastic Local Search for Solving Chance-Constrained
Multi-Manned U-Shaped Assembly Line Balancing Problem with Time and Space Constraints. Journal of University
of Shanghai for Science and Technology, 23(04), 278–295. https://doi.org/10.51201/JUSST/21/04242

Zhang, Beikun, & Liyun Xu. 2020. An Improved Flower Pollination Algorithm for Solving a Type-II U-Shaped
Assembly Line Balancing Problem with Energy Consideration. Assembly Automation, 40(6), 847–856.
https://doi.org/10.1108/AA-07-2019-0144

Zhang, Zikai, Qiuhua Tang, & Manuel Chica. 2020. Multi-Manned Assembly Line Balancing with Time and Space
Constraints: A MILP Model and Memetic Ant Colony System. Computers and Industrial Engineering, 150, 106862.
https://doi.org/10.1016/j.cie.2020.106862

Zakaraia et al.

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 InternationalInt. J. Prod. Manag. Eng. (2022) 10(1), 13-2222

https://doi.org/10.1080/0305215X.2020.1741569
https://doi.org/10.1080/0305215X.2020.1741569
https://doi.org/10.1016/j.cie.2018.04.010
https://doi.org/10.1016/j.ejor.2019.05.001
https://doi.org/10.1287/mnsc.40.10.1378
https://doi.org/10.1109/ACCESS.2019.2939724
https://doi.org/10.1109/ACCESS.2019.2939724
https://doi.org/10.1016/j.cie.2017.08.030
https://doi.org/10.1016/j.jmsy.2012.02.002
https://doi.org/10.1016/j.ijpe.2008.11.017
https://doi.org/10.1080/002075499191481
https://doi.org/10.3390/mca23040079
https://doi.org/10.4995/IJPME.2020.11953
https://doi.org/10.17535/crorr.2020.0018
https://doi.org/10.1007/s10472-020-09718-y
https://doi.org/10.51201/JUSST/21/04242
https://doi.org/10.1108/AA-07-2019-0144
https://doi.org/10.1016/j.cie.2020.106862
http://creativecommons.org/licenses/by-nc-nd/4.0/

