
Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Post-Refactoring Recovery of Unit Tests:
An Automated Approach

https://doi.org/10.3991/ijim.v17i08.38785

Abdallah Qusef1, Sharefa Murad2, Najeh Alsalhi3,4(), Eman Shudayfat5
1 Princess Sumaya University for Technology, Amman, Jordan

2 Middle East University, Amman, Jordan
3 Humanities and Social Sciences Research Center, Ajman University, Ajman, UAE

4 Deanship of Research and Graduate Studies (DRG), Ajman University, Ajman, UAE
5 Department of Creative media, Luminus Technical University College, Amman, Jordan

n.alsalhi@ajman.ac.ae

Abstract—In application development lifecycle, specifically in test-driven
development, refactoring plays a crucial role in sustaining ease. However, in-
spite of bringing ease, refactoring does not ensure the desired behaviour of code
after it is applied. Because refactoring tends to worsen the alignments between
source code and its corresponding units. One significant solution to the afore-
mentioned issue is the technique called unit testing. As unit testing enable the
developers to confidently apply refactoring while avoiding undesired code be-
haviour. Unit testing provides effective preventive measures for avoiding bugs
by providing immediate feedback, thus assisting to mitigate the fear of change.
In this work, we present a tool called GreenRefPlus which efficiently enables the
developers to maintain the veracity of code after the process of refactoring is
applied. The proposed tool provides automatic recovery for the unit tests after the
code is refactored. In this work, we consider Java as our target programming lan-
guage and we focus on five various types of refactoring, which include Rename
Method, Extract Method, Move Method, Parameter Addition and Parameter Re-
moval. Our experiments indicate that the proposed tool GreenRefPlus enables us
to consistently refactor the code and apply unit tests. The results presented in our
work reveal that the proposed tool assists developers in saving approximately
43% of the total time required to manually recover from broken unit tests.

Keywords—unit tests, GreenRefPlus, code refactoring, automatic recovery,
JUnit, eclipse plug-in, Agile eXtreme Programming, test-driven development

1 Introduction

The process of refactoring has a huge impact on software development lifecycle be-
cause it provides the necessary techniques for improving the internal structure of source
code, while keeping the desirable output. There are various refactoring opportunities in
any source code governed by few factors. First, the modifications required for the im-
provement in quality; and second, modifying or reorganizing the code in such as way
that its output is preserved [1]. According to the author in [2], refactoring is defined as:

iJIM ‒ Vol. 17, No. 08, 2023 39

https://doi.org/10.3991/ijim.v17i08.38785
mailto:alsalhi@ajman.ac.ae

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

“changes made in the internal structure of the software, thus making it easier to under-
stand and cheaper to modify without changing its observable behavior.” However, it
has been observed that refactoring may leads to variety of issues and the introduction
of bugs in the source code.

Unit testing is the testing process of individual or groups of related units of any
source code. Unit testing allow the developers to ensure that a small chunk of code (or
unit) is able to meet the design requirements or behaves in accordance with the pre-
defined design [3].

When deployed in conjunction, refactoring and unit testing become powerful tools
to simplify, clarify and improve the structure of code in a safely manner. This is due to
the fact that unit testing becomes a safety net for developers against the introduction of
bugs during the process of refactoring.

In Test Driven Development (TDD), the unit test’s coding is performed before the
development of source code [4]. In TDD, refactoring not only enables the developers
to remove code duplications and code complications, instead, it also assists in the in-
cremental and step-by-step evolution of the code design [5]. For instance, in Agile eX-
treme Programming (XP), the development of the software is done in TDD environ-
ment, therefore, the refactoring and testing is accomplished frequently [6]. The code
development in XP using TDD environment is focused on three measures, First, writing
the code for failed tests; second, development of production code such that the afore-
mentioned tests pass; and lastly, refactoring the code to remove bad smells prevailing
in the code [7].

As discussed, there is a high probability that the refactoring may result in the unde-
sired behavior of the test codes [8-9]. For instance, the refactoring applied for method
renaming consequently introduces an inconsistency in the source code’s structure and
its corresponding unit tests. In order to mitigate these worsened alignments, the method
renaming has to be applied across all the corresponding unit tests. The aforementioned
issue forms the basis of this work, i.e., refactoring leading to undesired behavior of unit
tests.

In this work, we propose an efficient tool called GreenRefPlus. The proposed tool
allows the developers to automatically recover the unit test after failures are introduced
in source code due to refactoring. In addition, we also study the impact of refactoring
on unit tests which are caused due to slow and sometimes risky manual refactoring
methods. We also focus on the effect of undesired behavior of automated tools for re-
factoring. The work presented in this paper deals with two major questions,

Q1: If there is a need to develop such a tool that assists in the recovery of unit
test during the process of refactoring?

Q2: Is there a possibility of developing such a tool that has acceptable perfor-
mance?

In [10], authors propose a tool called GreenRef. This tool is developed to assist the
developers for automatic refactoring. The tool proposed in [10] enables the developers
to automatically apply 3 types of refactoring in Java programming language, i.e., re-
name method, parameter addition and parameter removal. In this work, we extend the
tool presented in [10] and two other crucial types of refactoring namely extract method

40 http://www.i-jim.org

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

and move method. The newly introduced techniques are introduced for Java program-
ming language. A rigorous analysis for the new types of refactoring is done. The results
presented in this work reveal that the proposed techniques adequately assist developers
in automatic refactoring of source codes.

The rest of the manuscript is organized as follows.
In Section 2, we present the literature review focusing on the major concerns that we

used in the development of this work. In Section 3, we present the methodology for the
proposed tool GreenRefPlus. We also focus on various steps used for the development
of this tool. In, Section 4, we present the setup for the experiments we conducted for
this research work. In Section 5, we present the results for the experiments conducted
for this research work. In Section 6, we present a discussion on the finding of the study
conducted in this paper. In addition, we also present the limitations of the proposed
methods of refactoring in Section 7. Finally, in Section 8, we conclude our work.

2 Related work

The research literature presents various methods for manual code refactoring [11-
12]. In addition, literature also states that there are various occasions in which develop-
ers refactor their code manually, despite being aware of the presence of automated tools
for refactoring. This may be due the hindrances and barriers between the refactoring
tools and developers [13]. There are many factors that contribute to the formation of
these barriers. For instance, discoverability, lack of familiarity and trust, and produc-
tivity are the few factors that results in developers refactoring the code manually [14-
15]. Authors in [16] discuss that approximately 90% of the developers prefer perform-
ing manual refactoring and do so as well. The authors conducted experiments which
included almost thirteen thousand developers and four datasets. The authors report that
refactoring was frequently applied by the developers, however, the methods of appli-
cation were mostly manual and without the assistance of any tools for automatic refac-
toring [16]. Similarly, the experiments conducted in [17] shows that the developers
performed approximately 11% more manual refactoring than automated refactoring.
According to authors in [18], there is another factor that prevents the developers to
perform automated refactoring. The study conducted by the authors show that develop-
ers feel restricted and limited while using some of the automated refactoring engines.
In addition, the developers also report the presence of several bugs and undesired be-
haviour in these automatic refactoring tools [18]. These all factors keep developers at
bay from using automatic refactoring tools, thus reducing the efficiency.

Authors in [18] conducted a research regarding the advantages and hinderances of
the application of refactoring. This research was conducted at Microsoft and comprised
of 3 different techniques including a survey, detailed interviews with professional de-
velopers and an analysis of software’s version history. The authors conclude that there
is a significant gap between the theoretical techniques of refactoring and practical meth-
ods deployed for refactoring. The study shows that most of the professional developers
opined that refactoring is high-risk task and manual refactoring is costly in terms of

iJIM ‒ Vol. 17, No. 08, 2023 41

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

time resource. However, the quantitative analysis performed by authors undertook Win-
dows 7. The quantitative analysis reveals that the refactoring techniques greatly influ-
enced the Windows 7 development and resulted in a number of successes. Similarly,
authors in [19] performed an analysis on various types of refactoring. According to the
authors, refactoring may become the cause of various issues in the code as original tests
written for unit testing need to be changed. For the purpose of study, authors divided
the refactoring types into 5 categories namely A, B, C, D and E. Each class was made
by focusing on the effect of refactoring types on unit tests and the recovery procedure
for the broken unit tests. This study greatly assists in understanding the paradigm of
refactoring and unit testing. The authors also put forward the idea of “test-first refac-
toring”. In this refactoring technique, existing unit tests become the base of finding the
suitable refactoring practices. In addition, authors also present the notion of “refactor-
ing-session”, which includes the methods to make modifications to the production code
as well as the test code.

Authors in [20] performed an analysis of the effect of refactoring on API coverage
of unit tests. The authors proposed a new plug-in in Eclipse IDE that has the tendency
to track the edits made during the course of refactoring. The analysis of the authors
shows the most suitable techniques that can be used by developers for updating the test
suite. The proposed method is equally beneficial for all types of refactoring.

The research presented in [17] presents a new technique for the analysis of impact
caused by refactoring on the case of regression tests. The authors investigate the reasons
of regression test failures due to the influence of regression. The authors conduct a
study by making a relation between the type of refactoring and the broken unit tests.
The results show that proposed approach has a precision of 80%. Please note that this
study was conducted for 5 open-source applications. In a similar fashion, authors in
[21] performed an analysis of the modification made during refactoring on the regres-
sion tests. This was done using the development version history of open-source project
developed in Java programming language. The analysis performed by the authors were
refactoring reconstruction analysis and an analysis on modifications. The relationship
analysis of refactoring types and refactoring location was performed using
REFFINDER tool and the modification analysis was performed using FAULT-
TRACER tool. The experiment shows that approximately 38% of the unit tests effected
are related to refactoring; half of which include broken tests.

Authors in [12] conduct a study that how manual refactoring is an error-trap. In order
to cope with issues of manual refactoring, authors propose a tool called BeneFactor that
assists developers in performing automatic refactoring. However, the tool proposed in
this work surpasses BeneFactor in terms of saved time.

3 Research methodology

In this section, we present the proposed GreenRefPlus. We also present the steps that
have been taken for the development of this tool for automatic refactoring in detail.

42 http://www.i-jim.org

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Please note that the basic theme for the development of this tool is to efficiently facili-
tate the developers for refactoring and unit testing in a reliable manner. The proposed
tool is designed using a process that comprises four major stages discussed below.

3.1. Analysis of techniques for code refactoring

In this stage, we research and study the techniques and methods that are necessary
for making refactoring easy and reliable. The research conducted for the development
of this assistance tool focuses on Java programming language.

Source code format. The code writing style varies from developer to developer.
This is quite true for the two developers working in the same workspace or environ-
ment.

In order to read the Java files, all the custom prepared files need to be imported at
the beginning of GreenRefPlus implementation. Uniform formatting needs to be ap-
plied on source code every time modification is made for reliable analysis. Therefore,
a custom format XML file is designed in eclipse so that it can be imported at the project
configuration stage.

Refactoring history. The automated refactoring tool presented in this work namely
GreenRefPlus is refactoring-aware code review tool. This tool has the capability to ef-
fectively detect the two types of refactoring modifications, i.e., refactoring-type and
refactoring-location. GreenRefPlus accomplishes this by performing a comparison of
two main version of the code. Now, please note that in order to successfully accomplish
this, both versions of the program should be readily available. The main target is to
keep the files outside the Eclipse projects while being in-sync with Eclipse project files.
The availability of the both versions of the source code is ensured by designing FileSync
eclipse plugin. FileSync is a file synchronization tool that is instigated within Green-
RefPlus development environment.

Post-refactoring automatic build. As discussed in Section 1, the most basic objec-
tive of this work is the avoidance of unit test breaking while performing refactoring.
Thus, there needs to be a constant inspection of the refactoring process during the code
development phase until the end. In other words, as soon as the developer saves the
modifications made during refactoring, the effects on the source code must be continu-
ously monitored. This is done by automatically building the modified portions of Java
source code by the help of Apache Ant builder. The Apache Ant builder can be inte-
grated within eclipse with ease and builds edited Java source code. For this process, the
Ant build file is regarded as the central control unit because of its ability to efficiently
handle the following processes.

• Compiling Modified Source Code

During this stage, the modified source code files are compiled. This is done by exe-
cuting the javac task. The compiler to be used for compiling the Java files can be se-
lected by compiler attribute and by including the Ant runtime. Please note that the Ant
runtime libraries need to be included in the class-path.

iJIM ‒ Vol. 17, No. 08, 2023 43

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

• Running Program’s Unit Tests

This step runs the unit tests available in the JUnit testing framework. The resultant
output of these tests is a summary for every test class. The summary is stored in
TestReports directory.

• Running GreenRefPlus Recovery Tool

At this stage, the GreenRefPlus external jar file is executed.

3.2. Analysis of code refactoring practices

In addition to avoiding breaking of unit tests, analysis of code refactoring practices
forms another important aspect of the work done in this paper. During this analysis
stage, all the modified code files that are synced during stage 1 are analyzed one line at
a time. Each line of the modified code is compared with the code’s previous version
with the help of refactoring-type and refactoring-location before the process is com-
pleted. There are few sub-stages of this step presented below.

Reading modified files. When the developer performs the refactoring and save the
changes, all the edited Java source files are synced in a folder outside Eclipse.

Converting Modified Java files in XML format. The modified Java files are con-
verted to XML file format for making the comparison process easy and quick. The
generalized name of the modified Java file after conversion is "packageName.class-
Name.meta.xml".

XML files analysis. Please note that after conversion, the original and un-modified
code is also available in XML format. In order to identify the differences between the
original and modified versions of the source code, both files are compared, and the
differences are stored in the resultant file as described in previous detail.

Comparing original and modified XML files. The original and modified XML
files are compared line by line by focusing on the following refactoring types.

• Rename Method: For this refactoring type, the comparison requires the list of
method’s parameters and the method’s body of the original and modified XML files.

• Extract Method: In this type of refactoring, we have two or more code fragments
that can be grouped together. Extract method refactoring is applied because if there
are more lines in a method then it becomes harder to identify the method’s function.
Extract method refactoring also allow to mitigate rough edges in the source code.
This type of refactoring is done by creating a new method with such a name that
makes its function self-evident. Then the code body is moved inside the newly cre-
ated method. Please note that if the variable used by the code fragment which is
being moved are declared prior to the code fragment, then these variables need to be
passed to the newly created method in order to make it behave in a desired fashion.

• Move Method: This type of refactoring is applied when a method is used in another
class than the class in which it is created. The refactoring of moving such method
comprises of moving the method to the class that contains most of the data being
used in the method’s computation process. This type of refactoring makes the class

44 http://www.i-jim.org

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

more internally coherent. This type of refactoring is done by creating a new method
in that class which makes most of the use of this method. The code from the old
method is moved to this newly created method. Finally, the code of the original
method is transformed into a reference to the new method in other class.

• Parameter Addition: This refactoring type also requires method’s parameters and
method’s body of the original and modified XML files. Please note that this does not
check for overloaded function.

• Parameter Removal: Similar to parameter addition and rename method, this type of
refactoring also requires the method’s name and method’s body for performing com-
parison. Again, this does not include an overload function.

Result file preparation. After the analysis of the modification made during refac-
toring is complete, all the applied practices are listed in an output file. The output file
also has the XML format.

Reading test reports. Initially, all the unit test reports are loaded. The report for
each unit test in located in the following hierarchy.

Refactored project base directory\\Refactoring\\Test Reports.

3.3. Unit tests automatic recovery

The unit tests are implemented in the refactored project. When the process of refac-
toring is completed and saved, and the modified files are built, the unit test available
within the refactored project also execute. The resultant output file is generated and
saved in Test Reports directory located within the refactored project directory.

In case of broken unit tests, following array of techniques is applied for recovery.
Analysis of loaded reports. After the unit test reports are loaded, an analysis is

performed on these reports. This information in these reports state the cause of unit test
failure and the location of failure. This information is utilized to identify the cause of
break by establishing a connection between applied refactoring techniques and unit test
failure type. Figure 1 illustrates the classification of test case failure with possible rea-
sons that contributed in causing failure [17].

In this work, we focus on the breaks caused by errors, for instance, we specifically
focus on the error type “No Such Method”. An instance of report for failed unit tests is
presented in Figure 2 and Figure 3. The information presented in the report generated
by GreenRefPlus is crucial for the recovery of broken unit tests.

Moreover, the analysis of data type of method’s parameter is also significant. This
is due to the fact that the tool does not rely on the conventional naming techniques of
Java. For instance, the symbol “I” in the generated report refers to the “int” type. Table
2 presents the data types in the report generated by GreenRefPlus and the corresponding
data types in Java programming language.

iJIM ‒ Vol. 17, No. 08, 2023 45

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Fig. 1. Classification of unit test failures and their corresponding reasons

Fig. 2. A sample report for broken unit test (test case tag)

Fig. 3. A sample report for broken unit test (basedir property)

Therefore, the analysis of the report generated by the tool presents useful infor-
mation, such as the information regarding the failed unit tests, the type of error and
some other additional information regarding the code that is subject to unit testing. We
present this information is Table 1.

Table 1. Analysis of the unit test breaking report generated by the proposed tool GreenRefPlus

Test Case Tag’s Property Analyzed Data Value
Classname Name of testing class TestDemoClass
Name Name of the testing method testConctenate

Error Tag’s Property Analyzed Data Value
Message Name of the class under test DemoClass
Message Name of the method under test Concatenate
message Parameters data types list for

the method under test
String, String

type Test error type “No Such Method Error”
basedir Property Analysed Data Value

value The path for unit test java file C:\Users\Alaa\New folder\DemoProject

46 http://www.i-jim.org

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Table 2. Various data types in report generated using GreenRefPlus

Datatype in generated report Corresponding datatype in Java programming language
I Int
Z Bool
C Char
B Byte
S Short
J Long
F Float
D Double
[I or any data type Array of int
Ljava/lang/…. object data type like string, dictionary

Testing report analysis. The proposed tool GreenRefPlus is environment aware and

understands that refactoring has been applied to the source code using one of more than
one of the refactoring types. In this step, the analysis of the file result.xml is performed.
Please note that this file is generated during the execution presented in step 2. The con-
tent of this report comprises of the modification performed during refactoring, the name
of the package, the class name, the name of the method and location of the refactoring
in the source code. Finally, the analysis concludes with matching the unit test breaking
error. Please note that that the identification of this failure was performed in the previ-
ous stage. After the analysis is complete, the GreenRefPlus starts the execution for au-
tomatic recovery.

Automatic recovery for unit test. In the previous stages, the proposed tool Green-
RefPlus successfully identified the issues. First, the GreenRefPlus determined the unit
test which broke during the execution. Second, the tool automatically identifies the re-
factoring practice that resulted in the breaking of the unit test. In addition, the tool is
aware of the error type and the location of modification made during the process of
refactoring. GreenRefPlus makes use of all this information to execute recovery tests.
Figure 4, Figure 5, Figure 6 and Figure 7 present the scheme that is deployed by the
proposed tool GreenRefPlus for the automatic recovery for the broken unit tests.

Fig. 4. The automated process of unit test recovery

iJIM ‒ Vol. 17, No. 08, 2023 47

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Fig. 5. Unit test recovery – Rename Method refactoring

Fig. 6. Unit test recovery – Move Method refactoring

Fig. 7. Unit test recovery – Extract Method refactoring

Fig. 8. Unit test recovery – Parameter Addition refactoring

Fig. 9. Unit test recovery – Parameter Removal refactoring

4 Experiment design

In order to perform the analysis of the proposed GreenRefPlus, a pretest-posttest
experiment was conducted on one group of developers. Please note that in one-group
pretest-posttest environment, only one group is tested for the validity of performed re-
search [22-27]. Contrary to the controlled group experimental environment, the same
group is subject to an additional test (pretest) before the actual tests (posttest) are com-
menced. This was done to analyse various factors of GreenRefPlus, such as the ability
to maintain unit tests validity during the application of code refactoring practices,
amount of time saved in comparison with manual refactoring and the usability of refac-
toring. This test is considered as a baseline for the experimental evaluations. In pretest
and posttest stages, the subjects are measured in terms of dependent variables. This type
of experiments allows researchers to report on facts of real user-behavior.

In addition, a series of questions was also made available for each individual for
investigating the level of selected subjects. The pre-test list of question is presented in

48 http://www.i-jim.org

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Table 3. As discussed, the major target of these experiments is to evaluate the perfor-
mance in terms of time saved during the process and the usability of the proposed tool.
The evaluation of the proposed tool GreenRefPlus is done in terms of five refactoring
techniques namely, rename method, extract method, move method, parameter addition
and parameter removal. The evaluation process revolves around the time consumed for
code refactoring using aforementioned refactoring types and time consumed for the
recovery from broken unit tests. The time for manual refactoring and time consumed
by refactoring using the proposed tool is detailed.

Pretest Design: For the purpose of pretest, each individual in the experimental group
was presented with 5 question. The questions of pretest are presented in Table 3.

Table 3. Pretest list of questions for developer’s group

ID Question Answer Format
Q1 What is your professional level? Check the appropriate box.

Q2 What is refactoring according to you? The subject had to write text for the
definition he knows.

Q3 Have you ever applied refactoring on your code? Yes or no.

Q4 What is your preference; manual refactoring or automated
refactoring? Choose manual or automated.

Q5 Among the five types, please select the refactoring you
want to apply.

This question to analyze the popu-
larity of refactoring types used by
subjects. In this work we focus on
Rename Method, Extract Method,

Move Method, Parameter Addition,
Parameter Removal.

Posttest Design: After the experiment is conducted and each subject is finished with

their work, they are presented with 2 questions. The questions are related to the satis-
faction level of the subject for the proposed GreenRefPlus and the level of ease for
using the proposed tool.

a) Projects:

In order to conduct the experiment, 2 applications were chosen while keeping fol-
lowing characteristics in mind.

• The language for project development should be Java.
• The unit tests should be implemented for the selected applications.
• None of the application should be complex.
• Each selected application should have a small size.

b) Assignments:

The experiment took place at the Princess Sumaya University for technology. The
subjects comprised of 21 senior bachelor students of fourth year. Each subject was a
student of Software engineering major, with each having a different skill level in pro-
gramming. Please note the all the students ensured the knowledge of software develop-
ment and testing. According to the designed experiment, each developer was presented

iJIM ‒ Vol. 17, No. 08, 2023 49

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

with 2 assignments. First, the development task should be completed using the manual
refactoring process. In manual recovery, each developer had to refactor and recover the
broken unit tests manually. Second, the same assignment should be developed using
the proposed GreenRefPlus. In the later assignment, subject had to apply the refactoring
and then broken unit tests were automatically recovered.

Each subject was asked to apply the specific refactoring modification chosen from
aforementioned refactoring types. In addition, each subject was also asked to perform
recovery on broken unit tests, as required. In both the manual and automated refactor-
ing, the time of completion was recorded with care.

Pretests Results
Refactoring Knowledge: Among 21, there were 4 developers that were unable to

correctly define the process of refactoring.
Refactoring Skills: 2 subjects declared that they don’t have the experience of code

refactoring and have never applied refactoring on their codes.
Choosing Manual vs. Automated Refactoring: Among the experimental group, 8

subjects preferred the application of manual refactoring. Contrary, six subjects chose
automatic refactoring as the preferred method.

Selection of Refactoring Type: Among all the participants, 8 developers selected
rename method, 4 selected parameter addition, 6 selected parameter removal and the
remaining 5 selected either extract method or move method.

Posttest Results
After the completion of experiment, each developer was asked about their opinion

regarding the proposed tool and if the proposed tool was helpful in refactoring. All the
participants agreed that the tool not only made the process easy, but it also helped them
to achieve time efficiency. In addition, we also asked the participants if they would feel
comfortable and confident while refactoring the unknown code. Almost all the partici-
pants opined that they would feel comfortable while refactoring with GreenRefPlus.

5 Results and analysis

In this section, we present the results for the experiments performed for measuring
the efficiency of the proposed GreenRefPlus. The evaluation process is done in terms
of performing refactoring manually and with the assistance of the proposed tool.

The time consumed for each task by manual refactoring and automatic refactoring
using proposed GreenRefPlus is presented in Table 4, 5, 6, 7 and 8. Each table presents
the time consumed by the developer for the completion of one task by manual recover
method and automatic recovery method. Please note that we have performed experi-
ments for 5 types of refactoring, namely, rename method, extract method, move
method, parameter addition and parameter deletion.

50 http://www.i-jim.org

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Table 4. Experiment results for Rename Method Refactoring (Task 1)

Subject ID Assignment # 1 (Manual
refactoring)

Assignment # 2 (Auto-
matic refactoring using

GreenRefPlus)
Time Saved (s) Time Saved

(%)

1 34 16 18 52.9%
2 38 10 28 73.7%
3 36 25 11 30.6%
4 22 11 11 50.0%
5 26 13 13 50.0%
6 54 13.5 40.5 75.0%
7 27 9 18 66.7%
8 41 10.4 30.6 74.6%
9 57 11 46 80.7%
10 36 15 21 58.3%
11 16 11 5 31.3%
12 17 14 3 17.6%
13 43 17 26 60.5%
14 36 13.4 22.6 62.8%
15 21 12.5 8.5 40.5%
16 30 23 7 23.3%
17 21 14 7 33.3%
18 19 9 10 52.6%
19 38 12 26 68.4%
20 25 12.5 12.5 50.0%
21 46 10 36 78.3%
Average 32.5 13.4 19.1 53.9%

Table 5. Experiment results for Extract Method refactoring (Task 2)

Subject ID Assignment # 1 (Man-
ual refactoring)

Assignment # 2 (Automatic
refactoring using Green-

RefPlus)
Time Saved (s) Time Saved

(%)

1 65 59 6 9%
2 71 63 8 11%
3 58 52 6 10%
4 80 78 2 2%
5 45 44 1 2%
6 54 49 5 9%
7 56 55 1 1%
8 49 41 5 10%
9 79 61 18 23%
10 90 79 11 12%
11 82 67 15 18%
12 72 55 17 24%
13 66 53 13 20%

iJIM ‒ Vol. 17, No. 08, 2023 51

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Subject ID Assignment # 1 (Man-
ual refactoring)

Assignment # 2 (Automatic
refactoring using Green-

RefPlus)
Time Saved (s) Time Saved

(%)

14 58 48 10 17%
15 57 55 2 4%
16 50 44 6 12%
17 91 78 13 14%
18 77 64 13 17%
19 62 51 11 18%
20 81 77 4 5%
21 69 52 17 25%
Average 67 60 8 13%

Table 6. Experiment results for Move Method refactoring (Task 3)

Subject ID Assignment # 1 (Manual
refactoring)

Assignment # 2 (Automatic re-
factoring using GreenRefPlus)

Time
Saved (s)

Time Saved
(%)

1 27 15 12 44%
2 35 17 18 51%
3 24 12 12 50%
4 43 23 20 46%
5 39 18 21 53%
6 44 26 18 40%
7 23 11 12 52%
8 30 14 16 53%
9 49 27 22 45%
10 27 13 14 52%
11 28 12 16 57%
12 35 17 18 51%
13 29 21 8 28%
14 41 17 24 59%
15 38 30 8 21%
16 25 15 10 40%
17 37 12 25 67%
18 42 21 21 50%
19 34 20 14 41%
20 21 10 11 52%
21 23 12 11 48%
Average 33 17 15 47%

52 http://www.i-jim.org

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Table 7. Experiment results for Parameter Addition refactoring (Task 4)

Subject ID Assignment # 1 (Manual
refactoring)

Assignment # 2 (Automatic re-
factoring using GreenRefPlus)

Time
Saved (s)

Time Saved
(%)

1 22 13 9 40.9%
2 13 12 1 7.7%
3 24 15 9 37.5%
4 15.5 10.5 5 32.3%
5 22 12 10 45.5%
6 25.5 15 10.5 41.2%
7 15 10 5 33.3%
8 20 10 10 50.0%
9 16 13 3 18.8%
10 38.5 13.5 25 64.9%
11 11.5 9 2.5 21.7%
12 13 10.7 2.3 17.7%
13 20 11.8 8.2 41.0%
14 17 12.8 4.2 24.7%
15 18.5 14 4.5 24.3%
16 19 16 3 15.8%
17 15 12 3 20.0%
18 24 11 13 54.2%
19 16.5 11 5.5 33.3%
20 17 10 7 41.2%
21 23 12 11 47.8%
Average 19.3 12.1 7.2 34.0%

Table 8. Experiment results for Parameter Removal refactoring (Task 5)

Subject ID Assignment # 1 (Manual
refactoring)

Assignment # 2 (Automatic refac-
toring using GreenRefPlus)

Time
Saved (s)

Time Saved
(%)

1 21 13.5 7.5 35.7%
2 23 14 9 39.1%
3 35 13 22 62.9%
4 15 13 2 13.3%
5 26 13.5 12.5 48.1%
6 35.3 14.5 20.8 58.9%
7 19 12 7 36.8%
8 29.5 12 17.5 59.3%
9 23 12.5 10.5 45.7%
10 37 13.5 23.5 63.5%
11 19.5 14 5.5 28.2%
12 17.6 13 4.6 26.1%
13 15 11 4 26.7%
14 23 15 8 34.8%

iJIM ‒ Vol. 17, No. 08, 2023 53

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Subject ID Assignment # 1 (Manual
refactoring)

Assignment # 2 (Automatic refac-
toring using GreenRefPlus)

Time
Saved (s)

Time Saved
(%)

15 18 11 7 38.9%
16 22 8 14 63.6%
17 21 13 8 38.1%
18 16 8 8 50.0%
19 25.5 14 11.5 45.1%
20 29 12 17 58.6%
21 34 14 20 58.8%
Average 24 12.6 11.4 44.4%

It is evident from the experimental results that each developer took less time for

refactoring using GreenRefPlus as compared to manual recovery methods. Based on
the above presented experimental results, we arrive at following results.

1. The rename method refactoring consumed about 19 seconds on average using
GreenRefPlus and saved about 54% of time.

2. The extract method refactoring performed using the proposed tool GreenRefPlus ac-
counted for 60 seconds and save approximately 13% of the total time.

3. The automatic refactoring for move method applied using GreenRefPlus saved ap-
proximately 47% of the total time. The average time for this task is about 17 seconds.

4. The parameter addition refactoring consumed about 7.2 second using GreenRefPlus
and saved about 34% of the time as compared to manual refactoring

5. The automatic refactoring using GreenRefPlus saved 45% of the total time when
applying parameter removal. The average time for this task is 11.4 seconds.

6 Discussion

In this section, we build a correspondence between the aforementioned results and
the research questions of this work.

Q1: If there is a need to develop such a tool that assists in the recovery of unit
test during the process of refactoring?

 Authors in [8, 23] discuss that the process of refactoring is governed by behavior.
Thus, small changes in the source code have a significant effect on the unit tests. Au-
thors discuss that the recovery of unit tests after refactoring is applied cannot be miti-
gated completely due to 3 factors. First, a variety of tools for automatic recovery of unit
test is unavailable. Second, there is a lack of techniques that can assist in forming a
relation between source code and unit tests. Lastly, there is usually little time reserved
for code maintenance, both in academia and industry.

As these issues cannot be coped with completely, there is a grave necessity for such
tools that can efficiently assist the developers in performing automatic refactoring.
Therefore, the proposed tool GreenRefPlus is essential and crucial for making the re-
covery process of broken unit tests automatic. The proposed tool has the capability to
maintain the test validity while the process of refactoring is applied on the source code.

54 http://www.i-jim.org

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Thus, the answer to our question is yes, there is a need for such tool that can effectively
assist in automatic recovery after refactoring.

Q2: Is there a possibility of developing such a tool that has acceptable perfor-
mance?

The proposed tool GreenRefPlus is designed as a plug-in in Eclipse IDE. The tools
used for the development of GreenRefPlus are standard and well-know, such as Apache
Ant, unit test execution, FileSync and other Java Plugins. During the development
phase, GreenRefPlus runs as a background service and does not account for too much
processing. Due to this, many subject developers are inclined to use the proposed tool.
Therefore, the answer to this question is yes. This is reflected by the time saved during
the experiments.

7 Research limitations

This work has following limitations.

• Keeping in view the internal validity, the tasks chosen for the experiments performed
for this work are simple, straightforward and an established and clear functionality.
Therefore, it is necessary to test this tool in such development environment where
the application is scaled to a huge size with a large number of unit tests and LOCs.
This will allow to perform better analysis of the proposed tool.

• Keeping in view the external validity, the skill level of the subject developers was
known prior to the experiments. The subjects had different level of Java program-
ming skills and there was a great variation in knowledge of refactoring. Moreover,
there were few developers who had no familiarity with the process of refactoring.
This issue can be mitigated by conducting a session on refactoring to ensure the
related knowledge before experiments are conducted.

8 Conclusion

Refactoring plays a crucial role for the removal of bad smells in the application de-
veloping environment. However, refactoring sometimes results in the undesired behav-
ior of the code. Similarly, unit testing is a powerful technique for ensuring that each
unit of the code is working in a desired fashion. When used in conjunction, refactoring
and unit testing are valuable techniques for maintain the code quality in a reliable man-
ner, as unit tests acts as a safety net for developers. In this work, we propose an auto-
mated tool for recovery of the unit tests after refactoring is applied. The proposed tool
GreenRefPlus provides five different types of refactoring, which include rename
method, extract method, move method, parameter addition and parameter removal. For
ensuring the validity of the proposed tool, we conduct pretest-posttest experiment on 1
group comprising of 21 subject developers. Each developer has to accomplish 5 tasks
namely rename method, extract method, move method, parameter addition and param-
eter removal. The subject developers have to accomplish 5 tasks by manual refactoring
and automatic refactoring using the proposed tool GreenRefPlus. The results presented

iJIM ‒ Vol. 17, No. 08, 2023 55

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

in this work make it evident that the proposed tool assists developers in saving signifi-
cant time. In addition, the proposed tool GreenRefPlus makes the process significantly
less cumbersome and also ensures that the final behavior of the code is according to the
pre-defined plan.

9 References

[1] Du Bois B., Demeyer S., & Verelst J., “Refactoring-improving coupling and cohesion of
existing code,” Proc. 11th working conference on reverse engineering, Delft, Netherlands,
pp. 144-151, 2004.

[2] Fowler M., Beck K., Brant J., Opdyke W., & Roberts D., Refactoring: improving the design
of existing code, Addison-Wesley Professional, Massachusetts, 1999.

[3] Koomen T., & Pol M., Test process improvement: a practical step-by-step guide to struc-
tured testing, Addison-Wesley, Massachusetts, 1999.

[4] Beck K., Test-driven development: by example, Addison-Wesley Professional, Massachu-
setts, 2003.

[5] Guerra E. M., & Fernandes C. T., “Refactoring test code safely,” Proc. International Con-
ference on Software Engineering Advances (ICSEA 2007), Cap Esterel, France, pp. 44-44,
2007. https://doi.org/10.1109/ICSEA.2007.57

[6] Wake W. C., Extreme Programming Explored, Addison-Wesley Professional, Massachu-
setts, 2000.

[7] Janzen D., & Saiedian H., “Test-driven development concepts, taxonomy, and future direc-
tion,” Computer, vol. 38, no. 9, pp. 43-50, 2005. https://doi.org/10.1109/MC.2005.314

[8] Mens T., & Tourwé T., “A survey of software refactoring,” IEEE Transactions on software
engineering, vol. 30 no. 2, pp. 126-139, 2004. https://doi.org/10.1109/TSE.2004.1265817

[9] Moonen L., van Deursen A., Zaidman A., & Bruntink M. On the Interplay Between Software
Testing and Evolution and its Effect on Program Comprehension, In: Software Evolution,
Springer, Berlin, Heidelberg, 2008. https://doi.org/10.1007/978-3-540-76440-3_8

[10] Jaradat A., & Qusef A., “Automatic Recovery of Unit Tests after Code Refactoring,” Proc.
2019 International Arab Conference on Information Technology (ACIT), Al Ain, UAE, pp.
202-208, 2019. https://doi.org/10.1109/ACIT47987.2019.8990974

[11] Ge X., & Murphy-Hill E., “Manual refactoring changes with automated refactoring valida-
tion,” Proc. 36th International Conference on Software Engineering, Hyderabad, India, pp.
1095-1105, 2014. https://doi.org/10.1145/2568225.2568280

[12] Ge X., DuBose Q. L., & Murphy-Hill E., “Reconciling manual and automatic refactoring,”
Proc. 2012 34th International Conference on Software Engineering (ICSE), Zurich, Swit-
zerland, pp. 211-221, 2012. https://doi.org/10.1109/ICSE.2012.6227192

[13] Murphy-Hill E., & Black A. P., “Why don't people use refactoring tools?,” Proc. Fifth Work-
shop on Refactoring Tools, Rapperswil, Switzerlande, pp. 60-61, 2007.

[14] Weißgerber P., Biegel B., & Diehl S., Making “Programmers Aware Of Refactorings,” Proc.
1st Workshop on Refactoring Tools, Berlin, Germany, pp. 58-59, 2007.

[15] Campbell D., & Miller M., “Designing refactoring tools for developers,” Proc. 2nd Work-
shop on Refactoring Tools, Nashville, Tennessee, pp. 1-2, 2008. https://doi.org/10.1145/
1636642.1636651

[16] Gao Y., Liu H., Fan X., Niu Z., & Nyirongo B., “Analyzing Refactorings' Impact on Re-
gression Test Cases,” Proc. 2015 IEEE 39th Computer Software and Applications Confer-
ence (COMPSAC), Taichung, Taiwan, pp. 222-231, 2015. https://doi.org/10.1109/COMP-
SAC.2015.16

56 http://www.i-jim.org

https://doi.org/10.1109/ICSEA.2007.57
https://doi.org/10.1109/MC.2005.314
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1007/978-3-540-76440-3_8
https://doi.org/10.1109/ACIT47987.2019.8990974
https://doi.org/10.1145/2568225.2568280
https://doi.org/10.1109/ICSE.2012.6227192
https://doi.org/10.1145/1636642.1636651
https://doi.org/10.1145/1636642.1636651
https://doi.org/10.1109/COMPSAC.2015.16
https://doi.org/10.1109/COMPSAC.2015.16

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

[17] Negara S., Chen N., Vakilian M., Johnson R. E., & Dig D., “A comparative study of manual
and automated refactorings,” Proc. European Conference on Object-Oriented Programming,
Berlin, Heidelberg, pp. 552-576, 2013. https://doi.org/10.1007/978-3-642-39038-8_23

[18] Kim M., Zimmermann T., & Nagappan N., “A field study of refactoring challenges and
benefits,” Proc. the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, Cary, North Carolina, p. 50, 2012. https://doi.org/10.1145/2393596.
2393655

[19] Van Deursen A., & Moonen L., “The video store revisited - Thoughts on refactoring and
testing,” Proc. 3rd Int’l Conf. eXtreme Programming and Agile Processes in Software En-
gineering, Sardinia, Italy, pp. 71-76, 2002.

[20] Passier H., Bijlsma L., & Bockisch C., “Maintaining Unit Tests During Refactoring,” Proc.
13th International Conference on Principles and Practices of Programming on the Java Plat-
form: Virtual Machines, Languages, and Tools, Lugano, Switzerland, p. 18, 2016.
https://doi.org/10.1145/2972206.2972223

[21] Rachatasumrit N., & Kim M., “An empirical investigation into the impact of refactoring on
regression testing,” Proc. 2012 28th IEEE International Conference on software mainte-
nance (ICSM), pp. 357-366, 2012. https://doi.org/10.1109/ICSM.2012.6405293

[22] Campbell D. T., & Stanley J. C., Experimental and quasi-experimental designs for research,
Houghton Mifflin Company, Boston, USA, 2015.

[23] I. A. Aljazaery, and A. H. M. Alaidi, "Encryption of Color Image Based on DNA Strand and
Exponential Factor," International Journal of Online & Biomedical Engineering, vol. 18, no.
3, 2022. https://doi.org/10.3991/ijoe.v18i03.28021

[24] J. Kh-Madhloom, "Dynamic Cryptography Integrated Secured Decentralized Applications
with Blockchain Programming," Wasit Journal of Computer and Mathematics Sciences, vol.
1, no. 2, pp. 21-33, 2022.

[25] H. T. H. Hazim, "Enhanced Data Security of Communication System using Combined En-
cryption and Steganography," International Journal of Interactive Mobile Technologies, vol.
15, no. 16, pp. 144-157, 2021. https://doi.org/10.3991/ijim.v15i16.24557

[26] H. A. Hassan, "Review Vehicular Ad hoc Networks Security Challenges and Future Tech-
nology," Wasit Journal of Computer and Mathematics Science, vol. 1, no. 3, 2022.

[27] Elbaum S., Gable D., & Rothermel G., “The impact of software evolution on code coverage
information,” Proc. IEEE International Conference on Software Maintenance (ICSM'01),
Florence, Italy, p. 170, 2001.

10 Authors

Abdallah Qusef received the Ph.D. degree in computer science/software engineer-
ing from the University of Salerno, Italy in 2012. Currently, he is an associate professor
in Software Engineering at Princess Sumaya University for Technology in Jordan. His
research interests include software maintenance and evolution, empirical software en-
gineering, agile software development, software testing, and e-Business topics.

Sharefa Murad received the Ph.D. degree in computer science/Software Systems
and Technologies from the University of Salerno, Italy in 2013. Currently, she is an
assistant professor in Computer Science department at Middle East University in Jor-
dan. Her research interests include Software Engineering, Software Visualization, and
human-machines interfaces.

iJIM ‒ Vol. 17, No. 08, 2023 57

https://doi.org/10.1007/978-3-642-39038-8_23
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1145/2972206.2972223
https://doi.org/10.1109/ICSM.2012.6405293
https://doi.org/10.3991/ijoe.v18i03.28021
https://doi.org/10.3991/ijim.v15i16.24557

Paper—Post-Refactoring Recovery of Unit Tests: An Automated Approach

Najah Al-Salihi is an associate researcher at the Deanship of Research and Graduate
Studies (DRG) and the Department of Education at the College of Humanities at Ajman
University. Also, at the Humanities and Social Sciences Research Center (HSSRC),
Ajman University, Ajman, UAE. Al Salhi Published Most of his Papers at Professional
International Conferences and Scientific Journals.

Eman Shudayfat received the Ph.D. degree in virtual reality and augmented reality
from Politehnica University of Bucharest. Currently, she is an assistant professor in
department of creative media at Luminus Technical University College (LTUC). Her
research interests include the applications of virtual reality in various fields.

Article submitted 2023-02-01. Resubmitted 2023-03-07. Final acceptance 2023-03-09. Final version pub-
lished as submitted by the authors.

58 http://www.i-jim.org

