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Abstract – In this work, density functional theory plane-wave full potential method, with local 
density approximation (LDA) are used to investigate the structural, mechanical and 
thermodynamic properties of of zincblende III-X ( X= As, Sb) compends. Comparison of the 
calculated equilibrium lattice constants and experimental data shows very good agreement. The 
elastic constants were determined from a linear fit of the calculated stress-strain function 
according to Hooke’s law. From the elastic constants, the bulk modulus B, shear modulus G, 
Young’s modulus E, Poisson’s ratio σ, anisotropy factor A, the ratio B/G and the hardness 
parameter H for zincblende III-X ( X= As, Sb) compound are obtained. Our calculated elastic 
constants indicate that the ground state structure of III-X ( X= As, Sb) is mechanically stable. The 
sound velocities and Debye temperature are also predicted from elastic constants. 
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I. Introduction 

The method developed by Charpin (modified by 
Ferenc Karsai) and integrated in WIEN2k code [1] has 
been used to obtain elastic constants of considered binary 
compounds. The knowledge of elastic parameters of 
solids is very important because they provide important 
information about the stability and mechanical properties 
of solids such as sound velocities, load deflection, 
fracture toughness, thermoelastic stress and internal 
strain etc. 

 

II. Elastic and mechanical properties 

The elastic constants Cklmn (where the letter k, l, m, n 
refer to Cartesian components) are defined by the help of 
a Taylor expansion of the total energy of the system, 
E(V,ϵ), in accordance with a small strain ϵ of the lattice 
(V is the volume of the system). The energy E(V,δ) fit 
curve versus strain, δ, for the three different types of 
strains, namely the volume conserved, tetragonal and 
rhombohedral shear strains, are plotted in Figure 1 (a)-
(c), respectively, for the studied binary compounds. The  

 
 
total energy has been calculated for five to seven 

different distortions for each of the three different 
deformations of the lattice. There are 21 independent 
elastic constants Cij, but symmetry of the cubic lattice 
reduces this number to only 3 independent constants 
(C11,C12, and C44) for cubic lattices. The calculated 
values of elastic constants are summarized in Table 1. 
The calculated elastic constant values of studied binary 
compounds are in good agreement with the results of 
other calculations [2, 4] and the available experimental 
data [3, 5].The obtained values for the elastic tensor 
constants satisfy the mechanical stability restrictionsfor 
cubic unit cells C11 - C12 > 0, C11 + 2C12 > 0 and C12 < B 
< C11 [6].Resistance to shear distortions of a cubic crystal 
is best characterized by the two moduli the tetragonal 
shear constant C' = (C11-C12)/2 and C44. The elastic 
constant C44 is related to an orthorhombic deformation 
whereas C' is related to a tetragonal deformation. At any 
volume V, the bulk modulus B for a cubic crystal is 
related to elastic constants by B0 = (C11+2C12)/3 [7]. The 
C11 and C12 can be obtained from the calculated bulk 
modulus and C'. 
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The Kleinmann parameter [8], ζ, is an important 
parameter describing the piezoelectric effect of solids [9]. 
It is given by the following relation: 
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The obtained values of  ζ for the materials are between 
0.575 and 0.716 as shown Table 1. The obtained results 
for studied binary compounds fairly coincide with 
previous first-principles calculations [2, 10].We have 
also found the anisotropy factor A = 2C44/(C11 − C12). For 
an isotropic crystal, A is equal to 1, while any value 
smaller or larger than 1 indicates anisotropy. From Table 
1, it is clearly seen that the calculated anisotropy factor 
for these compounds deviate from 1. The magnitude of 
the deviation from 1 is a measure of the degree of elastic 
anisotropy possessed by the crystal. 

The isotropic bulk modulus B0, which is related to C11 
and C12, and shear modulus (G) are determined by the 
calculated elastic constants [11]. However, there is no 
distinct expression for the polycrystal-averaged shear 
modulus with respect to the Cij, but one can evaluate 
approximate averages of the lower and upper bounds 
given by various theories [12]. Voight [13] found upper 
bounds, while Reuss [14] discovered lower bounds for all 
lattice. 

The Kleinmann parameter [8], ζ, is an important 
parameter describing the piezoelectric effect of solids [9]. 
It is given by the following relation: 
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The obtained values of ζ for the materials are between 

0.575 and 0.716 as shown Table 1. 
The obtained results for studied binary compounds 

fairly coincide with previous first-principles calculations 
[2,10].We have also found the anisotropy factor A = 
2C44/(C11 − C12). For an isotropic crystal, A is equal to 1, 
while any value smaller or larger than 1 indicates 
anisotropy. From Table 1, it is clearly seen that the 
calculated anisotropy factor for these compounds deviate 
from 1. The magnitude of the deviation from 1 is a 
measure of the degree of elastic anisotropy possessed by 
the crystal. 

The Kleinmann parameter [8], ζ, is an important 
parameter describing the piezoelectric effect of solids [9]. 
It is given by the following relation: 
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The obtained values of ζ for the materials are between 

0.575 and 0.716 as shown Table 1. The obtained results 
for studied binary compounds fairly coincide with 
previous first-principles calculations [2, 10].We have 
also found the anisotropy factor A = 2C44/(C11 − C12). For 
an isotropic crystal, A is equal to 1, while any value 
smaller or larger than 1 indicates anisotropy. From Table 
1, it is clearly seen that the calculated anisotropy factor 

for these compounds deviate from 1. The magnitude of 
the deviation from 1 is a measure of the degree of elastic 
anisotropy possessed by the crystal. 
The isotropic bulk modulus B0, which is related to C11 
and C12, and shear modulus (G) are determined by the 
calculated elastic constants [11]. However, there is no 
distinct expression for the polycrystal-averaged shear 
modulus with respect to the Cij, but one can evaluate 
approximate averages of the lower and upper bounds 
given by various theories [12]. Voight [13] found upper 
bounds, while Reuss [14] discovered lower bounds for all 
lattice.  
The upper bound due to Voight is calculated as 

11 12 44( 3 ) / 5  VG C C C  

and the lower bound due to Reuss reads as  

11 12 445 / 4 / ( ) 3 /  RG C C C  

According to Hill [15], the arithmetic average of the 
Voight and Reuss values can be used as an estimated of 
the average shear modulus G=1/2 (GV+GR). Another 
important mechanical parameter that is directly 
correlated to the ductility is the Poisson’s ratio and given 
by  
 

 
where Y is the Young’s modulus and is related to the 
bulk and shear moduli 

9BG
Y

3B G


  
 

Y and v are frequently measured for polycrystal materials 
when investigating their hardness. Young’s modulus is a 
measure of the stiffness of a given material, whereas 
Poisson’s ratio is the ratio (when a sample is stretched) 
of the contraction or transverse strain to the extension or 
axial strain.The calculated average shear modulus (G), 
Young’s modulus (Y) and Poisson’s ratio (v) are given in 
Table 1. The obtained results for studied binary 
compounds fairly coincide with previous first-principles 
calculations [2, 10] and experimental results [16, 17]. 
Materials with high G are likely to be hard materials. In 
studied compounds, GaAs exhibits the largest value of G 
(54.551 GPa) being the most incompressible of all. The 
Young modulus (Y) determines the stiffness of the 
material, i.e., the larger value of Y, the stiffer is the 
material [18] and the stiffer solids have covalent bonds 
[19].It can be seen from Table 1 that the largest value of 
Y (130.388 GPa) being the most stiffer of all occurs for 
GaAs implying it to be more covalent in nature as 
compared to other studied compounds. 
The proportion between bulk modulus and average shear 
modulus (B0/G) has been proposed by Pugh [20] to 
roughly determine the ductile or brittle character of a 
material. The critical value which separates ductile and 
brittle material is 1.75; i.e., if B0/G is smaller than 1.75, 
then the material behaves in a brittle manner; otherwise it 
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will be of ductile nature [21]. The B0/G ratio of studied 
materials is presented in Table 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clearly seen from this table that B0/G ratio of 
considered structures should be classified as brittle 
character. 
To obtain the stiffness of these compounds, the 
microhardness parameter (H) is also calculated using the 
following equation [22]: 

(1 2 )Y
H

6(1 )

 


  
 
The calculated H values are 9.40GPa, 11.09GPa, 
5.87GPa, 7.50GPa, 8.10GPaand 5.12forAlAs, GaAs, 
InAs, AlSb, GaSb and InSb at zero pressure, 
respectively. 

The Cauchy pressure is another interesting elastic 
parameter which describes the angular characteristic of 
atomic bonding in a material can be calculated by using 
the following relation [23]: 
 

C’= C12-C44 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The positive value of Cauchy pressure is responsible for 
a ionic bonding while a negative Cauchy pressure, 
however, requires an angular or directional character in 
the bonding (covalent bonding). The more negative the 
Cauchy pressure, the more directional and of lower 
mobility the bonding. Moreover, a material with more 
negative value of Cauchy pressure will have more brittle 
nature. The calculated values of C’ are summarized in 
Table 2, which indicate that the sign of the Cauchy 
pressure is negative for all studied materials. The kind of 
bonds can be also determined by means of the value of 
Poisson’s ratio (υ). The value of Poisson’s ratio is nearly 
0.25 or more for a typical ionic material, while it is much 
less than 0.25 (around 0.1) for a typical covalent 

Comp. 
C11 
(GPa) 

C12 
(GPa) 

C44 
(GPa) 

C’ 
B0 
(GPa) 

ƺ A G (GPa) Y (GPa) ν B0/G 

AlAs 

110,442 56,982 78,132 26,730 74,802 0,638 2,923 50,867 124,402 0,22 1,471 

113.1 [2]   55.5 [2] 54.7 [2] 28.8 [2] 
 

0.592 [2] 1.899 [2] 77.14 [10] 175.39 [10] 30.329 [2] 1.043 [10] 

119.9 [3] 57.5 [3] 56.6 [3] 
  

0.481 [10]                                                                                          
   

0.136 [10]  

GaAs 
           113,589 50,115 78,401 31,737 71,273 

 
2,470 54,551 130,388 0,195 1,307 

115,1 [4] 51.5 [4] 56.8 [4] 36.4 [2] 72.7[4] 0,575 1.742 [2] 32.6 [16] 85.5 [16] 0.293 [2] 
 

118.1 [5] 53.2 [5] 62.0 [5] 
  

0.506 [2] 
   

0.31 [17] 
 

            

InAs 

81,547 49,809 60,838 15,869 60,388 0,716 3,834 35,683 89,433 0,253 1,692 

92.2 [2] 46.5 [2] 44.4 [2] 22.9 [2] 
 

0.598 [2] 1.943 [2] 
  

0.335 [2] 
 

83.3 [5]  45.3 [5] 39.6 [5] 
  

 
     

      
 

     

 

84,615 42,727 60,737 20,944 56,690 0,629 2,900 39,665 96,490 0,216 1,429 

AlSb 85.5 [2] 41.4 [2] 39.9 [2] 22.1 [2] 
 

0.601 [2] 1.81 [2] 
  

0.326 [2] 
 

 
89.4 [5] 44.3 [5] 41.6 [5] 

  
 

     

      
 

     

GaSb 

84,169 38,939 59,841 22,615 54,016 0,593 2,646 40,517 97,238 0,200 1,333 

92.7 [2] 38.7 [2] 46.2 [2] 27 [2]  
 

0.530 [2] 1.711 [2] 
  

0.295 [2] 
 

88.4 [5] 40.3 [5] 43.2 [5] 
  

 
     

      
 

     

InSb 

65,062 38,348 50,121 13,357 47,253 0,699 3,752 29,636 73,535 0,241 1,594 

72.0 [2] 35.4 [2] 34.1 [2] 18.3 [2] 
 

0.603 [2] 1.863 [2] 
  

0.487 [2] 
 

66.7 [5] 36.5 [5] 30.2 [5]                 

 

Table 1 Calculated elastic constants (C11, C12 and C44) and tetragonal shear constant (C'), Kleinman’s internal-strain parameter (ƺ), shear 
modulus anisotropy (A), the average shear modulus (G), Young’s modulus (Y) and Poisson’s ratio (v),  and B0/G ratio of studied 

materials and the comparison of these quantities with available theoretical and experimental data. 
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compound [24]. As indicated Table 1, our calculation 
shows that υ < 0.25 for all studied materials. 
Consequently, our Cauchy pressure calculations are 
consistent with our Poisson’s ratio values. 
 
 
 
 
 
 

 
The other interesting elastic parameters are Lame 
constants ( λ, μ) which depend on a material and its 
temperature. These parameters are related to the Young 
modulus and Poisson’s ratio by using the following 
equations: 

Y

(1 )(1 2 )


 

   
and   Y

2(1 )
 

 
 

where Y is the Young’s modulus and υ Poisson’s ratio. 
Our calculated values of λ and μ are summarized in 
Table 2. The two parameters together constitute a 
parametrization of the elastic moduli for homogeneous 
isotropic media, λ is known as Lame’s first constant and 
μ is Lame’s second constant. The Lame’s first modulus, 
λ, is related to a fraction of Young’s modulus. For an 

isotropic system one can show that λ=C12 and μ= C  
[25]. As shown from Table 1 (from anisotropy factor, A) 
the studied materials are strongly anisotropic character; 
therefore our obtained results do not satisfy the later 
relations, which are valid only for the isotropic systems, 
which is in agreement with the obtained results. 

 

III. Thermodynamic properties 

The Debye temperature (θD) which is a significant 
fundamental parameter closely related to many physical 
properties such as elastic constants, specific heat and 
melting point can be obtained from the average sound 
velocity (vm) by the following classical relation [26]: 

1/3
2

0

6
D m

B

n

k V


 

 
  

 


 

where V0 is atomic volume and vm the average wave 
velocity in the polycrystalline material is approximately 
calculated from the following equation [26]: 

1/3

3 3

1 2 1

3
m

t l


 


  

   
  

 

 

 
 
 
 
 
 
 
 
 
linear relationship between Tm and the C11 elastic  

 
constant. The scatter of all the different points falls 
within plus or minus 300 K of the following equation for 
Tm in units of K [28]: 
 

Tm = 553 K + (591/Mbar) C11 ± 300 K 
 
The calculated wave velocities (vt, vl, vm), Debye 
temperature (ΘD) and melting point (Tm) of studied 
binary compounds and ternary alloys estimated from 
elastic constants are listed in Table 2. It is clearly seen 
from Table 2, the Debye temperature of the considered 
compounds decrease with increasing atomic number.The 
high value of the Debye temperature for AlAs implies 
that its thermal conductivity is to be higher than other 
studied compounds. The sound velocities are related to 
the elastic moduli. Therefore, for a material having larger 
elastic moduli means higher sound velocity. Thermal 
conductivity, κ, is the property of a material that 
indicates its ability to conduct heat. So, in order to know 
if material is a potential candidate for thermal barrier 
coating application, its thermal conductivity need to be 
investigated. 

Based on the Debye model, Clarke [29] suggested that 
the theoretical minimum thermal conductivity can be 
calculated after replacing different atoms by an 
equivalent atom with a mean atomic mass M/n: 

 
2/3 1/6 1/2

2/3
min B A 2/3

n Y
0.87k N

M


 

 
where kB is the Boltzmann’s constant, M is the molecular 
mass and n is the number of atoms per molecule, NA the 
Avogadro’s number, ρ the density. The calculated 
minimum thermal conductivity of studied materials is 
summarized in Table 2. Table 2 Indicates that the value 
of minimum thermal conductivity decreases when one 
moves from Al to In in the compound XAs (Sb) (X=Al, 
Ga and In). The reduction can be attributed mainly to the 
difference in Young’s modulus, which is a measure of 
the second derivative of the bonding energy at the 

Comp. 
H 

(GPa) 
C” 

(GPa) 
λ 

(GPa) 
μ 

(GPa)  
vt (m/s) vl(m/s) vm (m/s) ΘD (K) Tm 

(K)±300 
�min 

(WmK-1) 
AlAs 
GaAs 
InAs 
AlSb 
GaSb 
InSb 

9,40 
11,09 
5,87 
7,50 
8,10 
5,12 

-21,150 
-28,286 
-11,029 
-18,009 
-20,901 
-11,773 

40,891 
34,905 
36,599 
30,247 
27,005 
27,496 

50,867 
54,551 
35,683 
39,665 
40,517 
29,636 

3680,935 
3193,605 
2501,806 
3036,484 
2678,678 
2258,360 

6163,647 
5188,860 
4351,768 
5046,935 
4374,136 
3864,231 

4073,853 
3523,838 
2778,513 
3358,187 
2957,205 
2504,483 

428,576 
371,173 
273,101 
325,907 
288,857 
230,170 

1205,712 
1224,314 
1034,942 
1053,074 
1050,442 
937,519 

1,769 
1,534 
1,053 
1,241 
1,107 
0,830 

Table 2.Calculated microhardness parameter (H), Cauchy pressure (C’’), and 1st and 2nd Lame constants (λ, μ), wave velocities (vt, vl and vm), Debye 

temperature (θD), melting point (Tm) and the minimum thermal conductivity (κmin) of studied materials. 
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equilibrium interatomic distance x0, between the studied 
binary compounds. 
 
Where vt and vl are the transverse and longitudinal elastic 
wave velocities, respectively, obtained using the shear 
modulus G and the bulk modulus B from Navier’s 
equations [27]: 

t

G



  

3 4

3
l

B G





  

 
where ρ is the density. 
 
Fine et al. [28] have studied many cubic metals and 
compounds and have obtained an approximate empirical. 
 

IV. Conclusion 

In this study, the structural, mechanical and 
thermodynamic properties of III-X ( X= As, Sb) 
compounds have been investigated by means of the DFT 
within Wien2k code. Our results for the optimized lattice 
parameters (a) and (c) are in good. Agreement with the 
available experimental data. The elastic constants Cij, 
and related polycrystalline mechanical parameters such 
as bulk modulus B, shear modulus G, Young’s modulus 
E and Poisson coefficient σ are calculated using Voigt–
Reuss–Hill approximations. 

 
The III-X (X= As, Sb) compound is mechanically 

stable according to the elastic stability criteria, while no 
experimental results of elastic moduli for comparison. 
The calculated Zener factor indicates that III-X (X= As, 
Sb) compound is elastically anisotropic. The values of 
the ratio B/G and Cauchy pressure (C12–C44) show a 
ductile manner for the III-X ( X= As, Sb) compound. The 
polycrystalline III-X ( X= As, Sb) turns out to be a low 
stiff material according to the calculated hardness 
parameter (H). Finally, from the knowledge of the elastic 
constants and the average sound velocities, the Debye 
temperature has been predicted successfully. 
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