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1. Introduction 

The probability density estimation concept in statistics has far-reaching effects in other fields of 
studies because most actions can be expressed in numerical form, which must be analyzed to avoid 
misleading information. Density estimation, which is the foundation of data analysis, involves 
constructing a probability density estimate from given observations. Density estimation is a fundamental 
concept in statistics primarily for data smoothing: analysis and virtualizations of observations [1][2]. 
Data smoothing techniques usually consider findings such that inferences and conclusions regarding the 
observations regarding a particular estimation method can be made [3][4]. Generally, density estimation 
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 One of the fundamental data analytics tools in statistical estimation is the 
non-parametric kernel method that involves probability estimates 
production. The method uses the observations to obtain useful statistical 
information to aid the practicing statistician in decision making and further 
statistical investigations. The kernel techniques primarily examine essential 
characteristics in a data set, and this research aims to introduce new kernel 
functions that can easily detect inherent properties in any given 
observations. However, accurate application of kernel estimator as data 
analytics apparatus requires the kernel function and smoothing parameter 
that regulates the level of smoothness applied to the estimates. A plethora 
of kernel functions of different families and smoothing parameter selectors 
exist in the literature, but no one method is universally acceptable in all 
situations. Hence, more kernel functions with smoothing parameter 
selectors have been propounded customarily in density estimation. This 
article proposes a distinct kernel family from the beta polynomial kernel 
family using the exponential progression in its derivation. The newly 
proposed kernel family was evaluated with simulated and life data. The 
outcomes clearly indicated that this kernel family could compete favorably 
well with other kernel families in density estimation. A further comparison 
of numerical results of the new family and the existing beta family revealed 
that the new family outperformed the classical beta kernel family with 
simulation and real data examples with the aid of asymptotic mean 
integrated squared error (AMISE) as criterion function.  The information 
obtained from the data analysis of this research could be used for decision 
making in an organization, especially when human and material resources 
are to be considered. In addition, Kernel functions are vital tools for data 
analysis and data visualization; hence the newly proposed functions are vital 
exploratory tools.  
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is viewed from two main perspectives; the parametric and non-parametric perspectives, but the 
semiparametric approach combines the two known approaches. Parametric density estimation assumes 
the observations to be estimated are from a known family and the only information required are the 
parameters of such distribution. The estimated parameters with the family of the distribution will 
produce a parametric estimator, and one of such estimators is the maximum likelihood estimators. The 
non-parametric estimation does not require prior knowledge of the observations' distribution, but they 
are subjected to “self-explanation” using some known statistical tools. Unlike the parametric approach 
that is with fixed structure, the non-parametric density estimation are flexible, however, their flexibility 
has resulted in high computational cost, which restricted their widespread applications. High 
computational costs are mainly encountered in analysing a large volume of data, especially with complex 
statistical models [5].   

The non-parametric data estimation techniques as analytics tools will be employed in this paper. 
Non-parametric estimation techniques are of numerous uses and are gaining popularity in data analysis, 
particularly in statistics and other related fields of studies, because accurate information about data such 
as historical data is not readily available. The statistical information obtained using non-parametric 
estimation helps provide a complete understanding of the observations' underlying properties and 
features. There are varieties of non-parametric methods in density estimation, but one of the most widely 
employed non-parametric estimators is the kernel estimator [6]. The kernel estimators are non-
parametric techniques in density estimation for data smoothing using the kernel function and a 
regulating factor known as the smoothing parameter. The kernel estimators are popular in density 
estimation than other non-parametric estimators due to the simplicity of its implementation and 
presentation of results using graphical approaches. In semiparametric estimation, the kernel estimators 
are regarded as the bedrock in their estimation process; hence, kernel estimators are known as the 
building blocks of semiparametric density estimation [7]. 

The kernel estimators are elegant density estimation tools for exploring and visualizing observations, 
which are often presented graphically. As a result of kernel estimators' statistical importance in data 
analysis and visualization, the kernel estimators have been the most studied estimators amongst the 
various non-parametric estimators [6][8]. The kernel method directly explores and virtualizes data with 
indirect applications in classification and other estimation processes. Some recent kernel estimation 
applications are in progressive censoring, which is fundamental in industry-related research for 
estimation of hazard rate [9][10]. One of the major advantages of the kernel estimators over other non-
parametric estimators is their flexibility in modeling observations, and kernels are not affected by bias 
specification [11]. In machine learning, kernel estimators are also fundamental and have been studied 
extensively. The application of kernel estimators in supervised learning has improved learning 
knowledge, especially in nonlinear hypothesis testing. The knowledge of kernel density estimation has 
also be extended to deep learning and with different applications. The kernel estimator application to 
spectral distribution was recently investigated through implicit kernel learning models using deep neural 
networks in which the training and inferences were illustrated with Fourier features through random 
sampling [12].  

Non-parametric estimators, mostly the kernel estimators, are of excellent suitability for unsupervised 
learning. Kernel estimators have addressed decentralized classification and clustering analysis problems 
and also extended to the distributed estimation method, which is the bedrock for numerous distributed 
systems [13][14]. The knowledge of the underlying model in distributed data is fundamental when 
studying distributed systems. A proposed method is known as the “gossip-based distributed kernel 
density estimation technique” was introduced by Li et al. [15], and its convergence properties also 
analyzed with the results revealing accurate underlying density distribution of the distributed 
observations. 

In statistics and machine learning, kernel estimators are vital and versatile tools in the estimation of 
observations. Despite the modern methods of data estimation and numerous kernel functions in 
literature, new kernel functions are still introduced due to the great influence of kernel function when 
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evaluating its performance empirically [16]-[20]. This paper introduces a new kernel family of the beta 
polynomial kernel family, and the results of both families revealed that the modified kernel functions 
outperformed the current beta polynomial family with AMISE as a performance measure. 

2. Method 

2.1. The kernel density estimator 

Rosenblatt [21] and Parzen [22] initiated the data analysis method mainly for exploratory and 
visualization of observations. The kernel estimator is popular amongst non-parametric density functions 
due to its simplicity and computational advantages. There are two basic fundamental concepts in density 
estimation using the kernel estimator, and the abstractions are the kernel function and the smoothening 
factor, also called the smoothness coefficient. As a standardized weighting function, its one-dimensional 
form is 

𝑓(x) =
1

𝑛ℎ
∑ 𝐾𝑛
𝑖=1 (

x−𝑋𝑖

ℎ
)   (1) 

with 𝐾(∙) being kernel function, 𝑛 represent the sample size, ℎ > 0 is bandwidth (smoothing 
parameter), x is the range of the observations and 𝑋𝑖 is a set of observations. The kernel function 𝐾(∙) is 
usually symmetrical and unimodal with the axioms in Equation (2). The Equation shows three 
conditions: unity integrant in every probability density function, the kernel functions average is zero, 
and the variance of any kernel is not equal to zero [2][23]. 

{

∫𝐾(x)𝑑x = 1,                        

∫ x𝐾(x)𝑑x = 0    and             

∫ x2𝐾(x)𝑑x ≠ 0.                       

        (2) 

2.2. The beta polynomial kernel function  

The beta polynomial kernel family is amongst the popular classes of estimators in data estimation. 
This class of estimator is given as 

𝐾𝑝(𝑡) =
(2𝑝+1)!

22𝑝+1(𝑝!)2
(1 − 𝑡2)𝑝   (3) 

where 𝑝 = 0, 1, 2, … ,∞  is called the polynomial power while the variable 𝑡 assumes value in the interval 
−1 ≤ 𝑡 ≤ 1. The beta polynomial kernel functions are probability density functions since all kernel 
functions are probability density function and are usually supported within an interval [4][24]. The range 
of evaluating this class of kernel functions is [−1,   1]. Different values of 𝑝 will produce different kernel 
functions, but as 𝑝 tends to infinity, the resulting kernel is the popular Gaussian kernel function whose 
support is unbounded and is not strictly a member of this family of kernels [25][26]. The uniform kernel 
is the primordial of the class, that is when  𝑝 = 0 whereas for  𝑝 = 1 will produce the Epanechnikov 
kernel known to be the optimal kernel with regards to the AMISE. The Epanechnikov kernel, which is 
regarded as the optimal kernel, is expressed as 

𝐾1(𝑡) =
3

4
 (1 − 𝑡2)   (4) 

 The kernel functions that correspond to  𝑝 =  2, 3  and 4 from the general form in Equation (3) 
called the Biweight, Triweight, and Quadriweight kernels are given as 

𝐾2(𝑡) =
15

16
 (1 − 𝑡2)2  (5) 

𝐾3(𝑡) =
35

32
 (1 − 𝑡2)3  (6) 

𝐾4(𝑡) =
315

256
 (1 − 𝑡2)4  (7) 
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 Again, when the value of 𝑝 goes to infinity, the kernel obtained is the popular Normal kernel or 
Gaussian kernel given by 

𝐾∅(𝑡) =
1

√2𝜋
 𝑒x𝑝(− 𝑡

2

2
)  (8) 

The Epanechnikov, Biweight, Triweight, and Quadriweight kernel functions, which are the first four 
beta polynomial kernels excluding the Uniform kernel, have broad statistical applications. The efficiency 
of other kernel functions of this family is computed using the Epanechnikov kernel due to its optimality 
property regarding the AMISE. 

2.3. Evaluation of kernel performance 

In non-parametric density estimation, there is usually an error criterion function that measures its 
productivity. There is numerous performance evaluation in kernel estimation, but efforts will be targeted 
at the mean integrated squared error (MISE). Other performance evaluation measures such as the 
integrated absolute error, hellinger distance, the likelihood criterion function, and kullback-liebler 
distance exist. However, the mean integrated squared error has gained popularity over other measures 
due to its inclusion of dimensionality in the expression while other measures are dimensionless. There 
is the exact and approximate MISE obtained either by convolution or Taylors’ series approximation. The 
asymptotic MISE has the variance and the bias components which is 

𝐴𝑀𝐼𝑆𝐸 (𝑓(x))  =
𝑅(𝐾)

𝑛ℎ 
+

1

4
𝜇2(𝐾)

2
 ℎ
4𝑅(𝑓″)  (9) 

with 𝑅(𝐾) representing the roughness of the kernel, 𝜇2(𝐾)
2
 
 is the variance of kernel while 𝑅(𝑓″) =

 ∫ 𝑓″(x)2𝑑x is the roughness of unknown probability distribution. The size of the smoothing parameter 
usually regulates the contributions of the two components to the AMISE. The bias can be reduced while 
the variance increases and vice versa due to the variation in the size of the smoothing parameter [4][27]. 
The smoothing parameter with the minimum AMISE called the optimal smoothing parameter is the 
solution to the differential equation 

𝜕

𝜕ℎ
𝐴𝑀𝐼𝑆𝐸(ℎ) =

−𝑅(𝐾)

𝑛ℎ2
+ 𝜇2(𝐾)

2ℎ3𝑅(𝑓″) = 0   (10) 

The solution of Equation (10) will give the smoothing parameter with the minimum AMISE value 
known as the optimal smoothing parameter given as 

ℎAMISE = [
𝑅(𝐾)

𝜇2(𝐾)
2𝑅(𝑓″) 

]
1 5⁄

× 𝑛−1 5⁄   (11) 

The smoothing parameter with the minimum AMISE value is of order 𝑂(𝑛−1 (𝑑+4)⁄ ) while the 
AMISE is of order 𝑂(𝑛−4 (𝑑+4)⁄ ) with 𝑑 representing the dimension of the kernel. In probability 

distributions that are unimodal and slightly skewed, the unanimity in terms of the asymptotic mean 
integrated squared error is more evident [28].  

2.4. The proposed beta polynomial kernel functions 

The fundamental concepts in kernel density estimation are kernel function and the smoothness factor 
or bandwidth. Some research has been geared towards these two concepts, but there is no universally 
accepted method in all situations; hence new methods are usually initiated [29]. The proposed kernel 
functions from the polynomial beta family use an exponential progression, where there is a constant 
common ratio to all the polynomial functions. The ratio of two consecutive terms in an exponential 
progression is always a constant, and the constant is called the common ratio.  

Recall the general form of the beta polynomial kernels given in Equation (3) and the terms of the 
polynomial functions for  𝑝 = 1, 2, 3 and 4, which are Epanechnikov, Biweight, Triweight, and 
Quadriweight kernels, respectively.  Let the first term of the sequence and the common ratio be denoted 
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by 𝑎 and 𝑟, respectively. If 𝐾𝑝(𝑡) is the 𝑝𝑡ℎ term of the sequence, then the constant common ratio 

designated by 𝑟 can be written as 

𝑟 =
𝐾𝑝(𝑡)

𝐾𝑝−1(𝑡) 
   (12) 

where 𝐾𝑝−1(𝑡) is the (𝑝 − 1)𝑡ℎ term. From Equation (4), the first term of the sequence is  

𝑎 =  𝐾1(𝑡) =
3

4
 (1 − 𝑡2)  (13) 

The common ratio in Equation (12) can be obtained as 

𝑟 =  
𝐾2(𝑡)

𝐾1(𝑡)
=

15

16
 (1−𝑡2)

2

3

4
 (1−𝑡2)

=
15 (1−𝑡2)

2

16
×

4

3(1−𝑡2)
=

5

4
 (1 − 𝑡2)  (14) 

Alternatively, the common ratio can be expressed as 

𝑟 =  
𝐾3(𝑡)

𝐾2(𝑡)
=

35

32
 (1−𝑡2)

3

15

16
 (1−𝑡2)2

=
35 (1−𝑡2)

3

32
×

16

15(1−𝑡2)2
=

7

6
 (1 − 𝑡2)  (15) 

Again, the common ratio can be obtained as 

𝑟 =  
𝐾4(𝑡)

𝐾3(𝑡)
=

315

256
 (1−𝑡2)

4

35

32
 (1−𝑡2)3

=
315 (1−𝑡2)

4

256
×

32

35(1−𝑡2)3
=

9

8
 (1 − 𝑡2)  (16) 

The common ratios of Equations (14–16) can simply be presented as  

𝑟 =

{
 
 

 
 
5

4
 (1 − 𝑡2)

7

6
 (1 − 𝑡2)

9

8
 (1 − 𝑡2)

              (17) 

Hence; the generalised common ratio of two consecutive terms of Equation (17) is given as 

𝑟 =
3+2𝑝

2+2𝑝
(1 − 𝑡2)  (18) 

where 𝑝 = 1, 2, 3, …  is the power of the polynomial kernel. 

2.5. The 𝒑𝒕𝒉 term of the proposed beta polynomial kernel functions 

Let the first term of the exponential progression be 𝑎 and the common ratio be 𝑟, respectively. Given 
that 𝐾𝑝(𝑡) is the 𝑝𝑡ℎ term of the sequence then 

𝐾1(𝑡) = 𝑎 

𝐾2(𝑡)

𝐾1(𝑡)
= 𝑟,   ∴ 𝐾2(𝑡) = 𝐾1(𝑡) × 𝑟 = 𝑎𝑟 

𝐾3(𝑡)

𝐾2(𝑡)
= 𝑟,   ∴ 𝐾3(𝑡) = 𝐾2(𝑡) × 𝑟 = 𝑎𝑟 × 𝑟 = 𝑎𝑟

2 

𝐾4(𝑡)

𝐾3(𝑡)
= 𝑟,   ∴ 𝐾4(𝑡) = 𝐾3(𝑡) × 𝑟 = 𝑎𝑟

2 × 𝑟 = 𝑎𝑟3 

Therefore, the generalized 𝑝𝑡ℎ kernel of the proposed beta polynomial kernels whose first term is 
Equation (13) and constant common ratio in Equation (18) is of the form 
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𝐾𝑝(𝑡) = 𝑎𝑟
𝑝−1,        𝑝 = 1, 2, 3, …  (19) 

Hence the generalized 𝑝𝑡ℎ kernels from Equation (19) of the proposed kernels can be written as 

𝐾𝑝(𝑡) = (
3

4
 (1 − 𝑡2)) (

3+2𝑝

2+2𝑝
(1 − 𝑡2))

𝑝−1

,    𝑝 = 1, 2, 3, …   (20) 

As in the classical beta polynomial kernels, when 𝑝 = 1 the resulting kernel from Equation (20) is 
the Epanechnikov kernel in Equation (4), which is the optimum kernel of this family. However, 
when  𝑝 = 2, 3, 4, … , the resulting new kernels of Biweight, Triweight, and Quadriweight kernel 
functions of the proposed kernels are as follows  

𝐾2(𝑡) =
7

8
 (1 − 𝑡2)2  (21) 

𝐾3(𝑡) =
243

256
 (1 − 𝑡2)3  (22) 

𝐾4(𝑡) =
3993

4000
 (1 − 𝑡2)4  (23) 

The difference between the new kernel family and the classical polynomial functions is the value of 
the normalization constant while the two families' powers are the same. A change in the normalization 
constant produced corresponding changes in the value of the AMISE as the performance measure. 
Choices of kernel functions are based on their achievements, and a method or kernel function is better 
than the other when it produces a smaller value of the AMISE [30]. 

3. Results and Discussion 

Investigation of the new polynomial kernels' statistical properties will be considered for the first four 
members of the family. All graphical and data analysis were implemented with Mathematica version 12 
software platforms. The AMISE is the performance measure of the proposed kernel family and the 
classical polynomial kernels. The results on comparison reveal that the new family outperformed the 
classical beta kernel functions. The investigation was done for the first three family members since the 
Epanechnikov kernel maintained its optimality regarding the AMISE in both kernel families. Sample 
sizes of 2500 and 5000 were employed to illustrate the new beta polynomial kernels’ performance since 
large sample sizes are most beneficial in non-parametric density estimation. The simulated results from 
the different sample sizes are presented in Table 1. The results revealed that the proposed beta kernel 
functions have smaller AMISE values than the classical kernel functions that show their superiority over 
existing kernel functions [31]. Fig. 1 and Fig. 2 are the graphs of the classical beta polynomial kernels 
and the proposed beta kernel functions.  

Table 1.  AMISE of Classical Kernels and Proposed Kernels of Sample sizes 2500 and 5000 

Kernel Functions Classical Kernels AMISE Proposed Kernels AMISE 
Types of Kernels N=2500 N=5000 N=2500 N=5000 

Epanechnikov 0.00155571 0.00089352 0.00155571 0.00089352 

Biweight 0.00230713 0.00132510 0.00198223 0.00113849 
Triweight 0.00266570 0.00153104 0.00195163 0.00112092 

Quadriweight 0.00309917 0.00178001 0.00195622 0.00112355 
 

The real data set examined comprises 272 observations of the old faithful data [32]. The observations 
revealed bimodal features with the kernel estimates of the classical beta kernels and proposed kernel 
functions, and it supports the assertion that the duration of eruption often exhibits a bimodal 
distribution. Fig. 3 and Fig. 4 are the kernel estimates of the classical beta polynomial kernels, and the 
proposed beta kernels with the bimodality have been evident in both kernel functions. Table 2 shows 
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the performance of the various kernel functions using real data. The results also vividly show that the 
proposed kernel functions outperformed the classical beta kernel functions. 

Table 2.  Bandwidths and AMISE of classical and proposed kernels of old faithful data 

Kernel Functions Classical Kernel Functions Proposed Kernel Functions 

Types of Kernels Bandwidths AMISE Bandwidths AMISE 

Epanechnikov 0.300516 0.00917539 0.300516 0.00917539 

Biweight 0.241237 0.01360722 0.244589 0.01169112 

Triweight 0.238475 0.01572241 0.245332 0.01151051 

Quadriweight 0.228046 0.01827862 0.237787 0.01153760 

 

  

  

Fig. 1.  Graphs of classical beta polynomial kernel functions 

  

  

Fig. 2.  Graphs of proposed beta polynomial kernel functions 
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Figure 2: Graphs of Proposed Beta Polynomial Kernel Functions 
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The graphs of the classical beta polynomial and the proposed beta polynomial kernels are similar 
because they have the same powers but different normalization constants. Again, as earlier stated, the 
Epanechnikov kernel is the same for both kernels, which implies that its optimality position in the 
second-order kernel is maintained. However, in performance, as seen in Table 1, the proposed kernels 
did better than the classical implying that their kernel estimates will compete favorably well with the 
estimates of the classical kernels with real data examples. The value of the AMISE for the sample size of 
5000 in Table 1 is smaller than the sample size of 2500, and this simply implies that larger sample sizes 
are more beneficial in the non-parametric estimation, particularly in kernel density estimation. It should 
be clearly pointed out that our comparison of performance started with the Biweight kernel since the 
Epanechnikov kernel is the same for the proposed and the classical kernels. However, the Epanechnikov 
kernel is included in the graphs and Tables in the analysis with simulated and real data. 

 
 

 
 

Fig. 3.  Kernel estimated of classical beta polynomial functions using old faithful data 

  

  

Fig. 4.  Kernel estimates of proposed beta polynomial functions using old faithful data 
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The kernel estimates of the proposed beta polynomial with the old faithful data are similar to the 
classical beta polynomial kernel estimates, as seen in Fig. 3 and Fig. 4, respectively. In terms of retaining 
the data's inherent and essential features, the proposed kernel functions retained the data's bimodal 
feature just as the classical kernels. However, in performance evaluation using the AMISE criterion, the 
proposed beta polynomial kernels outperformed their classical counterpart because they produce a 
minimum value of the AMISE in all the cases considered, whether in simulations or real data 
applications. 

4. Conclusion 

This paper propounds new polynomial kernels from the classical beta polynomial family using the 
exponential progression approach. On evaluating the performance of the proposed beta polynomial 
kernels with the AMISE, the outcomes show that the proposed kernels performed better than the 
classical beta polynomial kernels. In terms of visualization of data, due to the huge information that 
kernel estimates provide in features highlighting for decision making, the proposed kernels compete 
favorably with the existing kernels to retain and preserve inherent statistical features in the observations 
examined. An extension of the proposed univariate kernel functions to the multi-dimensional kernel is 
an area of future research work since many kernel estimation applications are higher dimensional.  
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