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1. Introduction 
Cluster analysis is an unsupervised method to group objects such that homogenous objects are 

clustered in the same group. As an unsupervised method in which pre-defined class memberships are 

absent, the partitioning result from a cluster analysis has to be validated via relative, external, or internal 

criteria validation [1]. The validation criteria differ with respect to the compactness assumption and 

information provided in the data.  

Among the three criteria, the relative criteria do not require the compactness assumption. It is based 

on a re-sampling scheme via either cross-validation or bootstrap methods. The latter is a sampling with 

replacement strategy to assess the stability of clusters [2] and select the appropriate number of clusters 

[3]. The stability is then visualized in a heatmap figure [4] where a block diagonal figure depicts the 

most stable cluster result.   

The external criteria are commonly applied in a benchmarking process with either known classes or 

the “gold standard” algorithm [5]. When a new clustering algorithm is developed, the routine process 

to evaluate this algorithm is by applying it in a supervised environment. Then, an evaluation measure 

compares this new algorithm to the existing/ gold algorithms. Two examples of external criteria applied 

to compare a new algorithm are the clustering accuracy rate [6] and the cluster purity [5], [7]-[8]. 

Reference [9], moreover, has addressed many external criteria, e.g. Rand [10], and adjusted Rand [11].  

The internal criteria, on the other hand, are applied when a real data set, which is lacking true classes, 

is analyzed by means of cluster analysis. Reference [12] has cited as many as 19 internal validation indices, 

e.g. silhouette [13], and gap statistic [14]. A silhouette index is a well-known internal validation index 
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[15], which gains popularity due to its visualization of each cluster. It non-linearly combines the 

compactness and separation assumptions [16]. A similar approach to silhouette has been developed 

namely a shadow value [17]-[18], in which the value is calculated based on the first and second closest 

centroids and can also be visualized as in a silhouette index.  

Although the silhouette and shadow values can be visualized, they depict different figures for the 

same case such that presenting these two simultaneously requires extra attention. Well-separated 

clusters, for instance, are indicated by high values of the silhouette [13]. On the contrary, they have 

small indices in the case of shadow values [18]. While the silhouette index as a medoid-based approach 

is suitable for any type of data, the shadow value, which is based on a centroid-based method, is applicable 

for numerical data only. The latter can produce a 2-dimensional representation of the clustering results 

in a neighborhood graph. For any type of data, however, a neighborhood graph is not visible and a 

medoid-based approach visualization via the silhouette is also absent. 

In this paper, we propose a new formula of a medoid-based validation technique that imitates the 

silhouette and centroid-based shadow value characters. This technique produces also a similar figure to 

that of the silhouette such that a side-by-side presentation of these two figures is consistently 

interpretable. With the new medoid-based validation technique, in addition, a 2-dimensional graph of 

visualization for any type of data is also possible surpassing a neighborhood graph of the shadow value. 

2. The Proposed Method 

2.1. Shadow Value for Medoid-based Clustering 
The silhouette value can be calculated via  

  (1) 

where ax and bx are the average distance of object x to all objects within the cluster and to all objects 

within the nearest cluster, respectively [13].  The value of (1) has then a minimum -1 and maximum 1 

where the best-separated clusters have a value equal to 1. It is also applicable for any distance. The 

shadow value, on the other hand, is attained by  

  (2) 

where d(x, c(x)) is the distance between object x to the first closest centroid and d(x, c`(x)) is the distance 

between object x to the second closest centroid [18]. The poorly separated clusters are indicated by a 

shadow value of 1 in (2) meaning that the first and second closest centroids are equidistant from x. Due 

to the centroid calculation to determine the center of the cluster, the centroid-based shadow value (2) 

is only valid for numerical distances. 

The centroid-based shadow value (CSV) has 0 as a minimum value, which is achieved when the 

object is very close to the centroid. When an object has twice the distance to the second closest centroid 

compared to the first closest centroid, the shadow value is 0.67, which is considered as a high shadow 

value. Fig. 1, moreover, illustrates well-separated clusters via the silhouette and shadow values where 

high peaks occur in the silhouette and low peaks appear in the shadow plot. Due to the contradictory 

image between silhouette and shadow plots, it requires careful consideration when interpreting a side-

by-side of these plots.  

A new formula is developed to calculate a new shadow value in a medoid-based clustering technique. 

To adapt the silhouette and CSV characters, these following constraints are applied: 

1. The lower and upper bounds of the value are 0 and 1. 

2. The worst separated cluster is 0, while the best is 1. 

3. The value of 0 is valid for an equidistant between the first and second closest medoids. 

4. The value of 1 is achieved when the object is the medoid object. 
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With these constraints, the new shadow values in a medoid-based clustering are then simplified into 

  (3) 

where d(x, m(x)) is the distance between object x to the first closest medoid and d(x, m`(x)) is the 

distance between object x to the second closest medoid. Due to a medoid being the cluster center, any 

distance method is applicable in the medoid-based shadow value (MSV). 

 

Fig. 1.  Silhouette (a) and shadow (b) values of well-separated clusters. 

 Fig. 2 illustrates the MSV of well-separated clusters where it depicts a similar figure to the 

silhouette plot (Fig. 1(a)), i.e. all bars have high peaks. Table 1, in addition, compares the index of the 

CSV vs MSV in a specified distance of the second closest centroid/medoid. An object that has an 

equidistant between the first and second closest centroid/medoid, has CSV equal to 1 compared to 0 in 

the MSV.   

 

Fig. 2.   Medoid-based shadow value (MSV) of well-separated clusters. 

(a) (b) 
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Table 1.  Centroid-based shadow (CSV) and medoid-based shadow (MSV) values comparison 

Indices 
Distance to the second closest centroid/ medoid 

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 

CSV 1.00 0.67 0.50 0.40 0.33 0.29 0.25 0.22 0.20 0.18 

MSV 0.00 0.50 0.67 0.75 0.80 0.83 0.86 0.88 0.89 0.90 

2.2.  Visualization 
The CSV gains an advantage over the silhouette because the former can be visualized in two-

dimensional space of a network graph topology, called a neighborhood graph. The graph has k nodes, 

where k is the number of clusters and is an undirected graph with an average of shadow values of the 

closest clusters as its edges/ lines [18]. The cluster similarity is measured by the average shadow value 

within a cluster and the closest cluster. Fig. 3 illustrates a neighborhood graph of well-separated clusters 

where all clusters have thin edges. A thick edge in a neighborhood graph, on the other hand, denotes a 

high shadow value indicating poor-separated clusters.  

The representation of either thin or thick edges in a neighborhood graph is naturally attractive where 

a thick edge implies poorly separated clusters (close to each other). The thickness of the edge 

characteristic in the CSV is retained to develop a new technique of visualization in the MSV. The MSV 

visualization, however, gains an advantage due to its suitability for any type of data, i.e. numerical, binary, 

categorical, and mixed variables. In the MSV visualization, there are two types of graphs, namely the 

medoids and all-object visualizations. 

 

Fig. 3.  Neighborhood graph of well-separated clusters 

To create a medoids visualization, a matrix of k x k dimension, M, is introduced, where k is the 

number of clusters. The matrix M is then defined as 

𝐌𝐌 =  �
𝑎𝑎11 ⋯ 𝑎𝑎1𝑘𝑘
⋮ ⋱ ⋮
𝑎𝑎𝑘𝑘1 ⋯ 𝑎𝑎𝑘𝑘𝑘𝑘

� �
𝑎𝑎𝑖𝑖𝑖𝑖 = 0,                                       𝑖𝑖 = 𝑗𝑗

𝑎𝑎𝑖𝑖𝑖𝑖 =  
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖−max�𝑑𝑑�𝑚𝑚𝑖𝑖, 𝑑𝑑�𝑚𝑚𝑗𝑗�

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
, 𝑖𝑖 ≠ 𝑗𝑗  ,  (4) 

where dmij is the distance between the medoids of the cluster i and j, i.e. the between-cluster distance, 

and d̅mi is the average distance between the medoid of the cluster i to all objects in the cluster i, i.e. the 

average distance of the within cluster distance. Hence, the matrix M in (4) is an MSV among clusters. 

Applying (4), the off-diagonal elements of the matrix M are within [0, 1] where a value close to 0 

indicates a low separation index, i.e. the cluster i and j are poorly separated, conversely, a value close to 

1 indicates a high separation index. 

 The separation indices in the matrix M can be directly visualized in a network graph, which consists 

of nodes and edges. The aesthetics of the network graph consist of three parts; the number of nodes is 

equal to k, the off-diagonal elements of the matrix M represent edges, and the diagonal elements of the 

matrix M guarantee that there is no self-loop in each node. To set the thickness of the edges, we apply 
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a transformation to the off-diagonal elements in order to create a network graph. They are transformed 

into 1—aij such that a high separation index has a low value of the edge thickness, while a low separation 

index has a high value of the edge thickness. Thus, they produce either a thin or thick edge that 

corresponds to a high or low separation index, respectively, in a network graph.  

As the nodes and edges are properly defined, they are laid in a 2-dimensional space via a graph layout 

algorithm. Reference [19] has surveyed many graph layouts, e.g. Kamada-Kawai [20] and Fruchterman-

Reingold [21]. The x and y axes are then meaningless whereas it is more relevant when the data have 

non-numerical variables than a neighborhood graph. Fig. 4 shows a network graph of the MSV by 

plotting directly the matrix M. The graph is similar to the neighborhood graph, which shows well-

separated clusters indicated by thin edges. 

 
Fig. 4.  Medoids network graph of well-separated clusters (Kamada-Kawai layout)   

In the all-object visualization, on the other hand, a matrix of n x n dimension, O, is required, where 

n is the number of objects. The matrix O is defined as 

  (5) 

where msv(i)j is the MSV of object i, computed by (3), with the corresponding first closest medoids j. 
Thus, there are only a single value, which is an MSV, and (n – 1) NAs in each row of the matrix O. A 

non-NA value in each row of the matrix O is deemed as a compactness index. Due to the MSV in (3) 

indicating a closeness of an object to the medoid, a high value in the matrix O denote a high closeness 

(compactness). 

 For the visualization of the matrix O in a network graph, it has also three aesthetic parts; the number 

of nodes is equal to n, the edges connect the objects to a particular medoid, and the NA values assure 

that each object is only connected to the medoid of the cluster. Then, to set the thickness of the edge, 

a thick edge indicates high compactness, which is identical to the MSV, in the matrix O. If the matrix 

O is visualized in a network graph directly, it produces a graph of connected nodes within a cluster yet 

disconnected nodes between clusters (medoids). 

 In order to produce a graph of connected nodes in both within and between clusters, all pieces of the 

network information from the matrix M and O have to be combined. Then, it can be directly translated 

into a network graph of the all-object MSV visualization. Fig. 5 illustrates well-separated clusters in a 

network graph with all-object visualization where it has a high separation and compactness, indicated by 

thin edges among medoid nodes and thick edges among object nodes, respectively. A constant (c) is also 

introduced in order to multiply the MSV such that the separation and compactness edges are more 

visible. The constant c is also applicable to the aforementioned medoid visualization such that the matrix 

M (4) is modified into a matrix c(M). 
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Fig. 5.  All-object network graph of well-separated clusters with c = 1 (a) and c = 2 (b). 

3. Method 
To apply the proposed MSV validation and visualization, some simulated data sets are generated. 

Reference [22] has developed an algorithm to generate numerical data set for clustering algorithm 

benchmarking with a pre-specified degree of separation [23]. The simulated data sets in this study vary 

in the separation degree only (well, middle, and poorly separated). The results of these three different 

separated clusters are compared among the three internal validation indices, i.e. the silhouette, CSV, and 

MSV, which produce visualizations.  

Due to the focus of the study on the different settings of degree separation, the variables of n (the 

number of objects), p (the number of variables), and k (the number of clusters) in the simulated data are 

fixed such that they are set as 1000, 2, and 5, respectively (Table 2). The algorithm to group the data is 

also fixed via a popular partitioning around medoid (PAM) algorithm [24], which is one of the medoid-

based algorithms. Then, each simulated data set is replicated. Although 50 replications for each 

simulated data set are fairly precise [25], the strategy to replicate the simulated data in this paper is via 

subsetting by choosing the number of the subset sample m = n/2, i.e. 1000/2 = 500 replicates. 

For real data sets, the data sets from the UCI repository [26], which represent well and poorly 

separated clusters, are also analyzed. The analyses produced in this article, moreover, are run in an Intel 

i3 4GB RAM using R software environment [27] using the clusterGeneration, cluster, kmed, ggplot2, 
geomnet, and flexclust packages. 

Table 2.  The settings of the simulated data sets 

Simulated 
data set Separation n number of objects p number of 

variables 
k number of 

clusters 

1  

0.5 (well) 

1000 2 5 2 
0.0 (middle) 

3 
-0.5 (poor) 

4. Results and Discussion 
In this section, the MSV proposed index is applied in simulated data sets and real data sets. The 

simulated data sets are generated via the clusterGeneration package [28]. Meanwhile, the real data sets 

are two data sets of UCI repository data sets [26] namely the well-known iris data set, and lenses data 

(b) (a) 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 82 

 Vol. 5, No. 2, July 2019, pp. 76-88 

 

 Budiaji (Medoid-based shadow value validation and visualization) 

sets to represent numerical and categorical data sets, respectively, partitioned by PAM via the cluster 
package [29]. The silhouette and CSV, moreover, are obtained by the kmed package [30]. While the 

neighborhood graph is visualized via the flexclust [17]-[18] package, a function, created with the 

assistance of the ggplot2 [31] and geomnet [32] packages, visualizes the MSV network graph. 

4.1. Simulated data 
The first simulated data set (well-separated clusters) has high values in both the silhouette (Fig. 6(a)) 

and MSV (Fig. 6(b)) indices, yet it has low values in the CSV (Fig. 6(c)).  The contradictory results of 

the CSV to the silhouette and MSV, moreover, occur in all types of simulated data set except in the 

middle-separated clusters where all indices produce comparable results between 0.4 and 0.6.  Fig. 6 also 

shows that the MSV has always had a higher index compared to the silhouette value. It can be explained 

that the span value of the MSV is shorter than the silhouette value, i.e. [0,1] compared to  [-1, 1] [13]. 

 

Fig. 6.  Boxplot of the mean value indices of the silhouette (a), MSV (b), and shadow (c) values 

As an internal validation index, compared to the CSV that produces in opposite values, the proposed 

MSV index adapts the behavior of the silhouette values well. Thus, the MSV gains an advantage of the 

similarity interpretation of the silhouette index, i.e. a high value of the index indicates a well-separated 

cluster. However, due to a shorter span of the MSV than silhouette index, a different threshold to define 

the quality of cluster results applies. A value of 0.5 in the silhouette value, for instance, may indicate a 

middle-separated cluster, while it is a poor-separated cluster in the MSV.  

For the network visualization of the simulated data, which are partitioned into 5 clusters, all objects 

are plotted by comparing the well, middle, and poorly separated cluster data sets. Fig. 7 shows the 

dissimilarity among them. The well-separated clusters (Fig. 7(a)) have thin edges among the medoids 

and thicker edges in the within a cluster indicating that they have a high separation and compactness, 

respectively. Meanwhile, the poorly separated clusters (Fig. 7(c)) have the opposite image where the 

edges among the medoids are thicker than the edges within a cluster, which represents low separation 

among the medoids. 

(a) (b) (c) 



83 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 5, No. 2, July 2019, pp. 76-88 

 

 Budiaji (Medoid-based shadow value validation and visualization) 

 

Fig. 7.  All-object visualizations of well (a), middle (b), and poorly (c) separated clusters 

4.2. Real data sets 

4.2.1. Iris data set 
The iris data set is a well-known data set that consists of 150 objects divided into three species of iris 

(Setosa, Versicolor, and Virginica) with four numerical variables. To compare the silhouette, CSV, and 

MSV indices, the PAM algorithm in the Euclidean distance matrix of this data is applied with the 

number of clusters k equal to 3. The accuracy rate of the PAM algorithm is 86.67% (Table 3), which is 

100% correct achieved in cluster 1 (Setosa class).  

Table 3.  The misclassification table of the PAM algorithm in the iris data set 

 Setosa Versicolor Virginica 
Cluster 1 50 0 0 

Cluster 2 0 48 18 

Cluster 3 0 2 36 

  

When the internal validations with the silhouette, CSV, and MSV indices are plotted (Fig. 8), they 

produce similar results. However, it requires extra caution when the CSV figure is illustrated due to its 

dissimilarity to the other two. Cluster 1 has the best result indicated by a high peak of the silhouette 

and MSV, and a small peak of the CSV. Table 4 confirms the identical result. It also shows that cluster 

2 and 3 are poorly separated. 

 

Fig. 8.  Silhouette (a), CSV (b), and MSV (c) plots of the iris data set 

(a) (b) (c) 

(a) (b) (c) 
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Table 4.  The means of the internal validation indices of the PAM algorithm in the iris data set 

 Silhouette CSV1 MSV2 
Cluster 1 0.80 0.23 0.86 

Cluster 2 0.42 0.62 0.52 

Cluster 3 0.45 0.58 0.57 

1) 

Centroid-based shadow value, 

2) 

Medoid-based shadow value 

 

In a network graph, Fig. 9 illustrates network graphs of iris data set based on the all-object MSV 

visualization with two different multiplication constant (c). By adjusting the value of c into 2 (Fig. 9(b)), 

clusters 2 and 3 are discernable that they have a low separation, i.e. a thick edge. It also shows that 

cluster 1 has the highest compactness among the three clusters portrayed by having the thickest edges 

within cluster 1.  

 

Fig. 9.  All-object visualization of the iris data set with c = 1 (a) and c = 2 (b)  

 The value of c = 2 is then adopted in the medoid visualization (Fig. 10(b)). It shows that cluster 1 is 

separable to cluster 2 and 3. If it is compared to the neighborhood graph (Fig. 10(a)), it depicts a similar 

image where clusters 2 and 3 have a low separation. 

   

Fig. 10. The neighborhood graph (a) and medoids visualization c = 2 (b) of the iris data set 

The other difference between a neighborhood graph and a medoids visualization is that the former 

has interpretable axes. They can be the first and second principal components. In addition, they are 

replaceable by the variables. In the iris data case, for instance, the combination of x1 and x2 for the x and 

(a) 
(b) 

(a) (b) 
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y axes can be selected. Hence, the total combination of the x and y axes that can be produced is six 

combinations due to the four variables involved. This is a good property of the neighborhood graph 

because all combinations can be applied and a final graph for a suitable visualization can be determined 

subsequently. Meanwhile, at the same time, too many variables involved in a data set cause impractical 

choices.  

The neighborhood graph also has fewer edges than the medoids visualization, because the former 

draws an edge between two nodes if only at least one object has the closest and second closest to those 

nodes [17]. Meanwhile, the medoids visualization is based on the squared matrix M such that the 

number of edges is equal to kC2. With the number of clusters (k) equal to 5, for instance, there are 10 

edges drawn among the medoids. Although a loaded of the edges can occupy the space of the graph 

when the number of clusters is large, a c parameter is a key to set the edge visibility of the image. 

4.2.2. Lenses data set 
The lenses data set consists of 24 patients with four categorical variables. The patients are classified 

into three groups: hard contact lenses, soft contact lenses, and none of those two types of lenses. The 

PAM algorithm in the simple matching distance matrix of this data is applied with k equal to 3. The 

accuracy rate is low, i.e. 50% (Table 5), which indicates poor separated clusters. Moreover, Fig. 11 shows 

that the three internal criteria validations indicate poorly separated clusters, i.e. low peaks in both the 

silhouette and MSV and high peaks in the CSV. Table 6 emphasizes the result, which all clusters are 

poorly separated. 

Table 5.  The misclassification table of the PAM algorithm in the lenses data set 

 Hard Soft None 
Cluster 1 3 1 5 

Cluster 2 1 3 4 

Cluster 3 0 1 6 

  

 

Fig. 11. Silhouette (a), CSV (b), and MSV (c) plots of the lenses data set 

(a) (b) 
(c) 
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Table 6.  The means of the internal validation indices of the PAM algorithm in the lenses data set 

 Silhouette CSV1 MSV2 
Cluster 1 0.16 0.64 0.48 

Cluster 2 0.12 0.68 0.43 

Cluster 3 0.20 0.59 0.55 

1) 

Centroid-based shadow value, 

2) 

Medoid-based shadow value 

 

When all objects are visualized in a network graph with c = 2, all clusters have low separation indices 

indicated by thick edges among the medoids (Fig. 12(b)). The compactness within a cluster is also low 

representing by thin edges within a cluster. Fig. 13, moreover, illustrates the medoid visualization with 

c = 2, adapted from the all-object network graph, in which all medoids are close to each other, i.e. poorly 

separated. On the other hand, the neighborhood graph version of this plot is absent due to non-

numerical variable data set.  

 With this type of data set, i.e. categorical data set, the centroid calculation is unfeasible in the CSV 

context. Although a transformation of a medoid-based into a centroid-based algorithm in order to 

produce a CSV is applicable [17], a neighborhood graph is unachievable due to the absence of the 

centroid values. Thus, the medoids visualization gains an advantage compared to a neighborhood graph 

in a non-numerical data set, i.e. a categorical and mixed variables data set.  

 

Fig. 12. All-objects visualization of the lenses data set with c = 1 (a) and c = 2 (b) 

 

Fig. 13. The medoid visualization of the lenses data set with c = 2  

(a) (b) 
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5. Conclusion 
In this paper, we proposed an internal criteria validation for clustering results, namely the medoid-

based shadow value (MSV). The MSV index imitated the silhouette index behavior where the higher 

value of the index, the better the clustering result, i.e. it had identical interpretation to the silhouette 

index. On the other hand, the value of the MSV was always higher than the silhouette index due to a 

shorter span of the MSV such that a particular threshold to determine the quality of cluster results 

applied. For the visualization of the MSV, a medoids graph of the MSV produced a similar figure to a 

neighborhood graph of the CSV. An all-object visualization was able to be created from the MSV as 

well. Both the medoid and all-object network visualizations of the MSV had a parameter c to regulate 

the visibility of the edges. It was suggested to first apply the all-object network graph with multiple 

values of c. Then, the c obtained from the all-object visualization is adapted as the suitable c for the 

medoids graph. The important difference between the medoids graph of the MSV and the neighborhood 

graph was meaningless axes of the medoids graph. With this property, a medoids graph of the MSV was 

more preferred and suitable than a neighborhood graph in any type of data set, especially a non-numerical 

data set. 
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