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ABSTRACT 
 
Auctions are important market mechanisms for the allocation of goods and services. 
Auctions are often preferred to other common processes because they are open, quite fair, 
and easy to understand by participants, and lead to economically efficient outcomes. 
Design of auctions is a multidisciplinary effort made of contributions from economics, 
operations research, informatics, and other disciplines. Combinatorial auctions are those 
auctions in which bidders can place bids on combinations of items, called “packages,” 
rather than just individual items. The advantage of combinatorial auctions is that the 
bidder can more fully express his preferences. This is particularly important when items 
are complements. The multiple evaluation criteria can be used. There are dependencies 
among sellers, buyers, criteria and bundles of items. A variety of feedback processes 
creates complex system of items. The whole structure seems to be very appropriate to the 
Analytic Network Process (ANP) approach. The ANP method makes it possible to deal 
systematically with all kinds of dependence and feedback in the system of items. By 
using the ANP approach, the preferences of bundles of items can be evaluated. Dynamic 
Network Process (DNP) as an extension of ANP can deal with time-dependent priorities 
in combinatorial auctions. 
 
Keywords: combinatorial auctions, preference elicitation, Analytic Network Process, 
Dynamic Network Process  
 
Introduction 
Auctions are important market mechanisms for the allocation of goods and services. 
Many modern markets are organized as auctions. Combinatorial auctions are those 
auctions in which bidders can place bids on combinations of items, so called bundles. The 
advantage of combinatorial auctions is that the bidder can more fully express his 
preferences. This is particularly important when items are complements. The auction 
designer also derives value from combinatorial auctions. Allowing bidders more fully to 
express preferences often leads to improved economic efficiency and greater auction 
overall valuation. However, alongside their advantages, combinatorial auctions raise a 
host of questions and challenges (Cramton et al. 2006, Rothkopf et al. 1998).  
 
Auction theory has caught tremendous interest from both the economic side as well as the 
Internet industry. An auction is a competitive mechanism to allocate resources to buyers 
based on predefined rules. These rules define the bidding process, how the winner is 
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determined, and the final agreement. In electronic commerce transactions, software 
agents that negotiate on behalf of buyers and sellers conduct auctions. The popularity of 
auctions and the requirements of e-business have led to growing interest in the 
development of complex trading models (see Bellosta et al. 2004, Bichler 2000, Oliveira 
et al. 1999). 
 
Classification of auctions is based on some specific characteristics as:  

• the numbers of sellers and buyers, 
• the number of items, 
• traded items (indivisible, divisible, pure commodities, structured commodities), 
• participants’ roles in auctions (one-sided, multilateral auctions), 
• preferences of the participants, 
• the form of the private information participants have about preference, 
• objectives of auctions (optimization, allocation rules, pricing rules),  
• evaluating criteria, 
• complexity of bids (simply, related bids), 
• organization of auctions (single-round, multi-round, sequential, parallel, price 

schemes). 
 
Many specific factors of combinatorial auctions can be modeled and analyzed by 
Analytic Network Process and Dynamic Network Process (ANP/DNP) methods.  
 
 
1. Multicriteria combinatorial auctions 
For our model, we propose to use multidimensional auctions. These auctions can be 
classified: 
 

• multi-unit auction,  
• multi-item auction,  
• multi-criteria auction,  

 
Multi-unit auctions contain multiple units of items and make possible volume discount 
auction. Multi-item auctions can place bids on combinations of items, so called 
combinatorial auctions. The combinatorial auctions can define multiple criteria as: 
 

• revenue maximization - the seller should extract the highest possible price, 
• efficiency - the buyers with the highest valuation get the goods, 
• collusion possibility, 

 
Auctions with complex bid structures are also called multicriteria auctions because they 
address multiple attributes of the items (quality, quantity, price) in the negotiation space. 
Multicriteria optimization can be helpful for detailed analysis of combinatorial auctions. 
Buyers can specify aspiration levels that express their desired values on the attributes of 
the items to be purchased and reservation levels that represent the minimal values 
required. There are possible combinations of the multidimensional characteristics as 
multi-criteria, multi-unit, multi-item auctions. 
 
Multicriteria auctions require several key components to automate the process: 
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• a preference model, 
• a multicriteria optimization model, 
• a negotiation model. 

 
The preference model is used to let the buyer express his preferences. The multicriteria 
optimization model selects the best offer for the buyer. The negotiation model helps to 
find a consensus in auctions (Fiala, 1997). 
 
 
2. Winner determination problem 
The problem, called the winner determination problem, has received considerable 
attention in the literature. The problem is formulated as: Given a set of bids in a 
combinatorial auction, find an allocation of items to bidders to maximize the seller's 
revenue. It has introduced many important ideas, such as the mathematical programming 
formulation of the winner determination problem, the connection between the winner 
determination problem and the set packing problem, as well as the issue of complexity. 
There are some different approaches to solve winner determination problems. Main 
approaches for solving the problem are exact or approximate algorithms. The algorithms 
have some pros and cons. We propose to use an iterative approach for solving winner 
determination problems. The iterative approach is based on a primal-dual algorithm. 
 
Problem formulation 
Many types of combinatorial auctions can be formulated as mathematical programming 
problems. From different types of combinatorial auctions we present an auction of 
indivisible items with one seller and several buyers. Let us suppose that one seller offers 
a set G of m items, j = 1, 2, …, m, to n potential buyers. Items are available in single 
units. A bid made by buyer i, i = 1, 2, …, n, is defined as  
 

Bi = {S, vi(S)}, 
where 
 
S ⊆ M, is a combination of items, 
vi(S), is the valuation by buyer i for the combination of items S, the valuation is made by 
multiple criteria. 
 
The objective is to maximize the overall valuation of the seller given the bids made by 
buyers. Constraints establish that no single item is allocated to more than one buyer and 
that no buyer obtains more than one combination.  
 
Bivalent variables are introduced for model formulation: 
 
xi(S)  is a bivalent variable specifying if the combination S is assigned to buyer i (xi(S) = 
1).  
 
The winner determination problem can be formulated as follows 
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∑
=

n

i 1
∑
⊆MS

 vi(S) xi(S) →   max 

 
subject to 

 

∑
⊆MS

 xi(S) ≦ 1, ∀ i, i = 1, 2, …, n,                       

∑
=

n

i 1
∑
⊆MS

 xi(S) ≦ 1, ∀ j ∊ M,                           (1) 

xi(S) ∊ {0, 1}, ∀  S ⊆ M, ∀ i, i = 1, 2, …, n. 
 
 
The objective function expresses the overall valuation. The first constraint ensures that no 
bidder receives more than one combination of items. The second constraint ensures that 
overlapping sets of items are never assigned.  
 
The winner determination problem, i.e., determining the items that each bidder wins, is 
not difficult in the case of non-combinatorial auctions. It would take O(nm) time where n 
is the number of bidders and m is the number of items. But in the case of combinatorial 
auctions, the winner determination problem is much more complex. The payment 
determination problem also is an important and non-trivial problem. 
 
Complexity of the problem 
Complexity is a fundamental question in combinatorial auction design. There are some 
types of complexity: 
 

• computational complexity 
• valuation complexity 
• strategic complexity 
• communication complexity 

 
Computational Complexity covers such questions as: How much computation is 
expected of the mechanism to compute an outcome given the bid information of the 
bidders? This is an extremely important question because winner determination problem 
is an NP-complete optimization problem. The winner determination problem turns out to 
be an instance of a weighted set packing problem. The weighted set packing problem is a 
problem of finding a disjoint collection of weighted subsets of a larger set with maximal 
total weight. Weighted set packing is a classical NP-complete problem. 
 
Valuation complexity deals with such questions as: How much computation is required 
to provide preference information within a mechanism? Estimating every possible bundle 
of items requires exponential space and hence exponential time. Bidders need to 
determine valuations for 2m -1 possible bundles. 
 
Strategic complexity concerns such questions: Which of the 2m -1 bundles to bid on? 
What is the best strategy for bidding? Must bidders model behavior of other bidders and 
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solve problems to compute an optimal strategy? For instance, in a sealed bid 
combinatorial procurement scenario, sellers must not only take their valuation of the 
bundles into consideration but also the bidding behavior of their competitors. This 
requires sophisticated bidding logic. 
 
Communication complexity concerns such questions as: How much communication is 
required between bidders and auctioneer until an equilibrium price is reached the 
mechanism to compute an outcome? The amount of communication between the bidders 
and the auctioneer can become quite high. For instance, in an iterative combinatorial 
auction, where individual valuations are revealed progressively in an iterative manner, 
the communication costs could be high if the auction were conducted in a distributed 
manner over space and/or time. The problem of communication complexity can be 
addressed through the design of careful bidding languages that provide expressive but 
concise bids.  
 
Solving the problem 
The algorithms proposed for solving the winner determination problem fall into two 
classes:  
 

• exact algorithms 
• approximate algorithms  

 
Exact approaches to solving the winner determination problem require algorithms that 
generate both good lower and upper bounds on the maximum objective function value. In 
general, the upper bound on the optimal solution value is obtained by solving a relaxation 
of the optimization problem. There are two standard relaxations for winner determination 
problem: Lagrangean relaxation and the linear programming relaxation. By Lagrangean 
relaxation the feasible set is usually required to maintain 0-1 feasibility, but many if not 
all of the constraints are moved to the objective function with a penalty term. By LP 
relaxation only the integrality constraints are relaxed, the objective function remains the 
original function. Exact methods come in three varieties: branch and bound, cutting 
planes and a hybrid called branch and cut. Integer programming techniques can be used 
to handle winner determination in combinatorial auctions with a small enough number of 
items. 
 
There are a few special cases where the winner determination problem can be solved 
exactly using polynomial time algorithms. For example, paper (de Vries and Vohra. 
2003) looks at polynomially solvable instances of the winner determination problem in 
terms of the structure of the constraint matrix: totally unimodular matrices, balanced 
matrices, and perfect matrices. A matrix is said to be totally unimodular if the 
determinant of every square submatrix is 0, 1, or −1. A 0-1 matrix is called balanced if it 
has no submatrix of odd order with exactly two 1’s in each row and column. A matrix is 
said to be perfect if it is the vertex-clique adjacency matrix of a perfect graph. In all these 
cases, it is shown that the winner determination problem can be solved as a linear 
program.  
 
Approximate algorithms have also emerged as a major approach to solving the allocation 
problem in combinatorial auctions. One way of dealing with hard integer programs is to 
give up on finding the optimal solution. An approximation algorithm is a polynomial time 
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algorithm with a provable performance guarantee. Approximate algorithm seeks a 
feasible solution fast and hopes that it is near optimal. Fast approximation algorithms for 
the winner determination problem can be obtained by translating results for combinatorial 
problems related to winner determination, mainly the weighted set packing problem and 
the weighted stable set problem to the context of winner determination (Sandholm 2002). 
Approximate algorithms and heuristics include greedy algorithms, simulated annealing, 
genetic algorithms and others. 
 
 
3. Preference elicitation 
The key feature that makes combinatorial auctions most appealing is the ability for 
bidders to express complex preferences over bundles of items, involving 
complementarity and substitutability. Items are complements when a set of items has 
greater utility than the sum of the utilities for the individual items. Items are substitutes 
when a set of items has less utility than the sum of the utilities for the individual items.  
 
Two items A and B are complementary, if it holds  
 

v({A, B}) > v({A}) + v({B}). 
 
Two items A and B are substitute, if it holds  
 

v({A, B}) < v({A}) + v({B}). 
 
Different elicitation algorithms may require different means of representing the 
information obtained by bidders. Sandholm and Boutilier (2006) describe a general 
method for representing an incompletely specified valuation functions. A constraint 
network is a labeled directed graph consisting of one node for each bundle b representing 
the elicitor's knowledge of the preferences of a bidder. A directed edge (a, b) indicates 
that bundle a is preferred to bundle b. Figure 1 represents an example of a constraint 
network for bundles of three items (A,B,C). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 Constraint network. 
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The constraint network representation is useful conceptually, and can be represented 
explicitly for use in various elicitation algorithms. But its explicit representation is 
generally tractable only for small problems, since it contains 2m nodes. Preference 
elicitation of bundles in a constraint network can be used Analytic Network Process. 
 
The Analytic Hierarchy Process (AHP) is a method for setting priorities (Saaty, 1996). A 
priority scale based on reference is the AHP way to standardize non-unique scales in 
order to combine multiple performance measures. The AHP derives ratio scale priorities 
by making paired comparisons of elements on a common hierarchy level by using a 1 to 9 
scale of absolute numbers. The absolute number from the scale is an approximation to the 
ratio wj/wk and then is possible to derive values of wj and wk. The AHP method uses the 
general model for synthesis of the performance measures in the hierarchical structure. 

j
1

n

i jk
j

u v w
=

=∑ . 

The Analytic Network Process (ANP) is the method (Saaty, 2001) that makes it possible 
to deal systematically with all kinds of dependence and feedback in the performance 
system. The well-known AHP theory is a special case of the Analytic Network Process 
that can be very useful for incorporating linkages in the system.  
 
The structure of the ANP model is described by clusters of elements connected by their 
dependence on one another. A cluster groups elements that share a set of attributes. At 
least one element in each of these clusters is connected to some element in another 
cluster. These connections indicate the flow of influence between the elements (see 
Figure 2).  
  
               Sellers      
 
 
                    

           Criteria                                   Buyers 
 
 

                                                   Bundles 

                         
                       

Figure 2 Clusters and connections in multicriteria combinatorial auctions. 
 
The clusters in multicriteria combinatorial auctions can be sellers, buyers, bundles of 
items, and evaluating criteria. Paired comparisons are inputs for preference elicitation in 
combinatorial auctions. A supermatrix is a matrix of all elements by all elements. The 
weights from the paired comparisons are placed in the appropriate column of the 
supermatrix. The sum of each column corresponds to the number of comparison sets. The 
weights in the column corresponding to the cluster are multiplied by the weight of the 
cluster. Each column of the weighted supermatrix sums to one and the matrix is column 
stochastic. Its powers can stabilize after some iteration to the limit supermatrix. The 
columns of each block of the matrix are identical in many cases, though not always, and 
we can read off the global priority of the elements. 
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Recent work has focused on the question of how to limit the amount of valuation 
information provided by bidders by adaptively limiting the precision of the bids that are 
specified.  
 
4. Iterative combinatorial auctions 
In the iterative approach, there are multiple rounds of bidding and allocation and the 
problem is solved in an iterative and incremental way. Iterative combinatorial auctions 
with multiple criteria are proposed in this paper as complex trading models. 
 
One way of reducing some of the computational burden in solving the winner 
determination problem is to set up a fictitious market that will determine an allocation 
and prices in a decentralized way. In the iterative approach, there are multiple rounds of 
bidding and allocations and the problem is solved in an iterative and incremental way. 
Iterative combinatorial auctions are attractive to bidders because they learn about their 
rivals' valuations through the bidding process, which could help them to adjust their own 
bids. For analysis of iterative combinatorial auctions, this paper proposes to use dynamic 
version of ANP. 
 
Auctions have emerged as a particularly interesting tool for negotiations. Combinatorial 
auctions provide a mechanism for negotiation between buyers and sellers. Various 
concepts of negotiation models can be used for modeling of combinatorial auctions. 
 
There is a connection between efficient auctions for many items and duality theory. The 
Vickrey auction can be taken as an efficient pricing equilibrium, which corresponds to 
the optimal solution of a particular linear programming problem and its dual. The simplex 
algorithm can be taken as a static approach to determining the Vickrey outcome. 
Alternatively, the primal-dual algorithm can be taken as a decentralized and dynamic 
method of determining the pricing equilibrium. 
 
A primal-dual algorithm usually maintains a feasible dual solution and tries to compute a 
primal solution that is both feasible and satisfies the complementary slackness conditions. 
If such a solution is found, the algorithm terminates. Otherwise the dual solution is 
updated towards optimality, and the algorithm continues with the next iteration. 
 
The fundamental work (Bikhchandani and Ostroy 2002) demonstrates a strong 
interrelationship between the iterative auctions and the primal-dual linear programming 
algorithms. A primal-dual linear programming algorithm can be interpreted as an auction 
where the dual variables represent item prices. The algorithm maintains a feasible 
allocation and a price set, and terminates as the efficient allocation and competitive 
equilibrium prices are found.  
 
For the winner determination problem, we will formulate the LP relaxation and its dual. 
Consider the LP relaxation of the winner determination problem (1): 
 

∑
=

n

i 1
∑
⊆MS

 vi(S) xi(S) →   max 

subject to 
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∑
⊆MS

 xi(S) ≦ 1, ∀ i, i = 1, 2, …, n,                       

∑
=

n

i 1
∑
⊆MS

 xi(S) ≦ 1, ∀ j ∊ M,                           (2) 

xi(S) ≥ 0, ∀  S ⊆ M, ∀ i, i = 1, 2, …, n. 
 
 
The corresponding dual to problem (2) 
 

∑
=

n

i 1

p(i) + ∑
∈Sj

p(j) →   min 

subject to 

p(i) + ∑
∈Sj

p(j) ≥  vi(S)  ∀ i, S,                          (3)                 

   p(i), p(j) ≥  0,    ∀ i, j,                       
 
The dual variables p(j) can be interpreted as anonymous linear prices of items, the term 

∑
∈Sj

p(j) is then the price of the bundle S and p(i) = 
S

max [vi(S) −∑
∈Sj

p(j)] is the 

maximal utility for the bidder i at the prices p(j). 
 
Several auction formats based on the primal-dual approach have been proposed in the 
literature. Although these auctions differ in several aspects, the general scheme can be 
outlined as follows: 
 
1. Choose minimal initial prices. 
2. Announce current prices and collect bids. Bids have to be higher than or equal to the 
prices. 
3. Compute the current dual solution by interpreting the prices as dual variables. Try to 
find a feasible allocation, an integer primal solution that satisfies the stopping rule. If 
such solution is found, stop and use it as the final allocation. Otherwise update prices and 
go back to step 2. 
 
Concrete auction formats based on this scheme can be implemented in different ways. 
The most important design choices are the following: 
 

• pricing scheme, 
• price update rule, 
• way of computing a feasible primal solution in each iteration, 
• stopping rule, 
• type of information feedback. 

 
The combinatorial auctions can be classified into the auctioneer-side allocation auctions 
and the bidder-side allocation auctions. The bidder-side allocation auctions were 
developed for small problems where bidders can cooperate in order to find a better 
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allocation by themselves at each step in the iteration. In the auctioneer-side allocation 
auctions the auctioneer solves the winner determination problem after the bids are 
collected. The auctioneer then provides some kind of feedback to support the bidders in 
improving their bids in the next iteration. Usually the bidder’s current winning bids and 
item prices are used as the feedback. The key challenge in the iterative combinatorial 
auction design is to provide information feedback to the bidders after each step in the 
iteration. Assigning prices to items and/or item bundles was adopted as the most intuitive 
mechanism of providing feedback. 
 
The AHP and ANP have been static, but for today’s world, analyzing is very important 
time dependent decision making. The DHP/DNP (Dynamic Hierarchy Process/ Dynamic 
Network Process) methods were introduced by Saaty (Saaty, 2003). There are two ways 
to study dynamic decisions: structural, by including scenarios, and functional by 
explicitly involving time in the judgment process. For the functional dynamics, there are 
analytic or numerical solutions. The basic idea with the numerical approach is to obtain 
the time dependent principal eigenvector by simulation.  
 
The Dynamic Network Process seems to be the appropriate instrument for analyzing 
dynamic network effects (Fiala, 2006). The method is appropriate also for the specific 
features of multicriteria combinatorial auctions. The method computes time dependent 
weights for bundles of items of weights of bidders (Figure 3). 
 
 
 
 

 
Figure 3 Time dependent weights. 

 
 
In the multicriteria combinatorial auction model, we take into account auctioneer, 
bidders, criteria and packages as clusters and different types of connections in the system. 
There are also some dependencies and feedback among elements and clusters also. The 
dynamic version of the model is tested. 
 

Time 

Weights 

Winner 

Loser

Battle zone 
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We used the alpha version of the ANP software Super Decisions developed by Creative 
Decisions Foundation (CDF) for some experiments testing the possibilities of the 
expression and evaluation of the multicriteria combinatorial auction models (Figure 4).  
 
 

 
 

Figure 4. Multicriteria Combinatorial Auction Model. 
 
5.  Conclusions 
For electronic auctions, we propose to use multicriteria iterative combinatorial auctions. 
Combinatorial auction is the important subject of an intensive economic research. 
Iterative process helps the bidders express their preferences. Combinatorial auctions 
promise to increase efficiency and reduce exposure risk in an economic environment 
where synergy is significant. The winner determination problem is by far the most 
researched issue in combinatorial auctions. Winner determination problem is an NP-
complete optimization problem. Decentralized way for iterative combinatorial auctions 
based on primal-dual algorithm seems to be very promising for solving the winner 
determination problem. There are many variations how to use this approach. Multicriteria 
optimization can be helpful for detailed analysis of combinatorial auctions. The 
combination of such approaches can give more complex views on auctions. A possible 
flexible approach is presented. The approach is based on the Dynamic Network Process.  
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