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ABSTRACT 

 

An AHP matrix of the quotients of the pair comparison priorities is transformed to a 

matrix of shares of the preferences which can be used in Markov stochastic modeling 

via the Chapman-Kolmogorov system of equations for the discrete states. It yields a 

general solution and the steady-state probabilities. The AHP priority vector can be 

interpreted as these probabilities belonging to the discrete states corresponding to the 

compared items. The results of stochastic modeling correspond to robust estimations of 

priority vectors not prone to influence of possible errors among the elements of a 

pairwise comparison matrix. 

 

Keywords: AHP; Markov stochastic modeling; Chapman-Kolmogorov equations. 

 

1. Introduction 

We consider a modified AHP for finding the robust preference estimation by a 

transformed matrix of the items shares. We show that this approach can be obtained from 

the Markov Stochastic Processing in the form of Chapman-Kolmogorov equations using 

the pair comparison data for intensity of transitions among the items in a system of 

differential equations. Solving this system yields the dynamic and the eventually reached 

steady-state probabilities. Comparison shows that the results of Markov modeling in the 

modified AHP and classical AHP priorities are very close. This means that the regular 

AHP preferences can be interpreted as the probabilities of belonging to the states 

corresponding to the compared items. The presented techniques have been studied in 

more detail in several works (Lipovetsky, 1996; Lipovetsky and Tishler, 1999; 

Lipovetsky and Conklin, 2002, 2003). The considered methods enrich the possibilities of 

priority estimation and its application for various practical problems, particularly, in the 

marketing research field. 

 

The approach described in this paper is based on the initial transformation of the pairwise 

ratios matrix into the matrix of priority shares. This transformation makes the opposite 

ratios more balanced. For instance the pairwise reciprocal values, 9/1 and 1/9 differ by 81 

times, but after the transformation they become 0.9 and 0.1, respectively, so they then 

differ by 9 times. There is also a problem because of the pairwise ratio’stransitivity and 
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the limited scale. The theory says that for consistency in a pairwise ratio matrix the 

condition aijajk=aik should hold because of the theoretical relation between the priorities 

w: if aij=wi/wj and ajk=wj/wk, then (wi/wj)(wj/wk)=wi/wk=aik. But it is often impossible to 

remain within the bounded scale for the judgments, for instance, if aij=3 and ajk=5, then 

the consistent estimate should be aik=15. However, the scale is limited to a maximum 

value of 9, so an expert can only assign aik=9, and that would cause inconsistency in the 

matrix. Thus, consistency can decrease not only because of the actual inconsistency in the 

expert judgments but also because of the bounded scale. A transformation of the shares, 

however,  makes all the pairwise judgments bij and bji to belong to the 0-1 range of values 

where they are equidistant from the diagonal elements bii=0.5, so that decreases 

inconsistency. 

  

 

2. AHP in a modified model 

A theoretical Saaty matrix (Saaty, 1980) of pair comparisons for n items defines each ij-

th element as a ratio of unknown priorities wi and wj: 
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Multiplying matrix (1) by the vector )',....,,( 21 nwwww  we get the identical relation 

 

                                      nwWw  ,                                                           (2) 

 

Elicited from a judge, an empirical pair comparison matrix of priority ratios is  
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This is a Saaty matrix with transposed-reciprocal elements 

 

                                    1 jiij aa .                                                           (4) 

 

Similarly to (2), priorities in the AHP are estimated by the eigenproblem for a matrix (3): 

 

                                     A ,                                                            (5) 

 

where the maximum eigenvalue corresponds to the term n in (2), and the principal 

eigenvector α  estimates the vector of priorities w.  

 

Let us introduce a theoretical matrix of shares 
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Each element uij is defined as i-th priority in the sum of i-th and j-th theoretical priorities: 
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To estimate the priority vector using the matrix (6) we write identical equalities:  
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Then using notation (7) we present the system (8) as:      
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In the matrix form the system (9) is: 

                        nwwUediagU  )( ,                                                      (10)  

 

where U is the matrix (6), e denotes a uniform vector of n-th order, and diag(Ue) is a 

diagonal matrix of totals in each row of matrix U. Relations (8)-(10) for the theoretical 

matrix of shares (6) are derived similarly to the problem (2) for the matrix (1).  

In classical AHP, pair ratios wi/wj (1) are estimated by elicited values aij (3). Using aij  in 

(7) we obtain empirical estimates bij of the pairs’ shares: 
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                                                             (11)  

This transformation of the elements of a matrix A (3) yields a pairwise share matrix B 

with elements (11). The elements of such a matrix (11) are positive, less than one, and 

have a property of symmetry:  

 

                                1 jiij bb .                                               (12)    
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This means that the transposed elements bij and bji are equidistant from the diagonal 

elements bii=0.5, so jiiiiiij bbbb  . Elements of a Saaty matrix (3) with large or small 

values are transformed in (11) to the values closer to one or zero, respectively. 

 

In the AHP, for the empirical Saaty matrix A (3) we have the eigenproblem (5) in place 

of the theoretical relations (2). By the same pattern, using empirical matrix B (11) in 

place of theoretical matrix U, we represent the system (10) as an eigenproblem 

 

                              )( eBdiagB ,                                                 (13) 

 

where α  as a vector of priority. Multiplying the matrix in (13) by the uniform vector and 

using (12) shows that this matrix has a property such that the total in its each column 

equals n: 

                    enBeeBeeBdiagB  )( ,                                              (14) 

 

where prime denotes transposition. Dividing both sides of equations (13) by the term n, 

we obtain an eigenproblem of a positive matrix with totals in the columns equal to one, 

which is an eigenproblem of the transposed stochastic matrix. Such a matrix has the 

maximum eigenvalue equal to one. Due to the Perron-Frobenius theory for a positive 

matrix, its main eigenvector always exists, is a unique one, and has all positive elements. 

Thus, the maximum eigenvalue in (13) equals n, and a solution for the main eigenvector 

exists and is unique, which ensures in the desired properties of the priority vector. 

 

 

3. AHP modeling in Markov-Chapman-Kolmogorov equations 

The eigenproblem (13) has a matrix that is of a transposed stochastic kind that relates it to 

matrices known in Markov modeling. Consider a discrete state and continuous time 

Markov model presented via Chapman-Kolmogorov differential equations describing a 

stochastic process of transitions among the states. This model is based on properties of a 

finite set of the elements (alternatives compared within a criterion) that are tied by the 

constant transition probabilities of each alternative’s prevalence over the others. The 

prevalence of one item over another one in the AHP corresponds to probability of the 

former item is preferred over the latter one in the eliciting process. The Chapman-

Kolmogorov equations express the change in probability to be found in any of n states as 

a linear combination of these probabilities with the coefficients of the transition 

intensities.  

 

Taking a pair of the elements bij and bji of the share matrix (11) we notice that each 

element can be interpreted in terms of probability to prefer one of the items over another 

one, due to the meaning of the theoretical shares (7). The preference of an  i-th item over 

a j-th item corresponds to transition between them with intensity bij. The share matrix B 

can be presented as a connected oriented graph with n nodes of states/alternatives and 

two edges between each of pair of nodes, one going to state i from state j corresponding 

to the transition intensity bij and the other going from state i to state j corresponding to the 

transition intensity bji.  

 

An example of such a network is shown in Figure 1. 
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Figure 1. AHP network of the transition shares 

 

The system of Chapman-Kolmogorov equations can be presented as follows: 
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where pi denotes probability to belong to an i-th state, and coefficients bij are the values 

(11). Items with positive signs at the right-hand side (15) define influx to each state from 

all the others, and those with negative signs define departure from a state to all the other 

states. If canceling items 0.5pi are added to both positive and negative inputs in each i-th 

equation (15), this system can be represented in matrix form as: 

 

                        peBdiagBp )(  ,                                          (16) 

 

where p is a vector of the probabilities pi for all the states, p  denotes the vector of their 

derivatives, B is the same matrix with elements (11), B’ is its transposition, and e is the 

identity vector. Using property (14) that the sum of totals in i-th column and row of the 

matrix B equals n, we can rewrite (16) as: 

 

                      pnIeBdiagBp  )( ,                                                   (17) 

 

where I denotes the identity matrix of the n-th order.  

 

Considering the solution of the Chapman-Kolmogorov equations (17) for the steady-state 

probabilities when the process is stabilized, we put the derivatives in the left-hand side 

equal to zero, and (17) reduces to: 
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                         pnpeBdiagB  )( .                                                     (18) 

 

But (18) is nothing else but the same eigenproblem (13) with the largest eigenvalue n  

and a unique positive main eigenvector, as it was discussed in relation to equality (14). 

So the results of the AHP priority evaluation (13) can be interpreted from the point of 

view of the stochastic process steady-state solution (18) as follows: the AHP priority 

vector corresponds to the eventual probabilities of belonging to the discrete states, or 

alternatives, and these probabilities define the preferences among the compared items. 

 

Finding a general dynamic solution for system (17) can be also implemented for some 

problems in the AHP. For instance, a researcher can be interested in differences among 

the preferences and in their specific behavior (monotonic increase, decrease, or 

oscillation) before the process stabilizing. The solution of a homogeneous linear system 

of differential equations with constant coefficients can be presented as:  

 

                       ct
j

diagPtp ))(exp()(  ,                                        (19) 

where c is a vector of constants, λj are the eigenvalues and P is a corresponding matrix of 

columns pj of eigenvectors obtained in the problem: 

 

                      ppnIeBdiagB  )( .                                                     (20) 

 

This is the eigenproblem with the matrix at the right-hand side of Chapman-Kolmogorov 

system (17), and its solution coincides with the solution for the AHP problem (13) up to 

reducing the latter eigenvalues by n. For the initial moment t=0 the solution (19) is 

reducing to p(0)=Pc, and solving this linear system with the known vector of initial 

conditions p(0) yields the vector of constants c=P
-1

p(0). The general solution of the 

differential system is 

                   )0())(exp()( 1pPtdiagPtp j
  ,                                   (21) 

 

The expression 1))(exp( PtdiagP j  in (21) is known as the matrix exponent. Each 

component of the vector p(t) is a linear combination of the exponents in (21), and 

functions )exp( tj  behave in accordance with the specific values of λj obtained in the 

eigenproblem (20).  

 

As was mentioned above, the main eigenvalue in (20) is less by n than the main 

eigenvalue in (13), or (18), so it equals zero, λ1 = 0, that corresponds to the constant part 

of (21) behavior. The other eigenvalues (20) are real numbers or conjugated pairs of 

complex numbers. As we know from the Perron–Frobenius theory, all other eigenvalues 

have a less real value than the main eigenvalue, so all real eigenvalues or real parts in 

complex eigenvalues are negative. Thus, the general behavior of solution (21) is defined 

by a constant part (λ1 = 0), by diminishing exponents (real negative eigenvalues), and by 

oscillating diminishing exponents (complex eigenvalues giving sine and cosine parts of 

the functions). There also can be polynomial items corresponding to equal eigenvalues, 

although in practical numerical evaluations such cases are rare. The eigenvectors p of the 

complex eigenvalues are complex, but the total expression (21) yields real values. 
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4. Numerical comparisons 

Table 1 presents an example of a matrix A (3) of pair comparison among eight criteria 

used for the problem of “Choosing the best home” – a classical AHP problem described 

in several articles (Saaty, 1996; Saaty and Kearns, 1985; Saaty and Vargas, 1994). This 

matrix was also used for testing some new techniques in Lipovetsky (1996), Lipovetsky 

and Tishler (1999), Lipovetsky and Conklin (2002). The items of comparison in Table 1 

are: 1 – size of house, 2 – location to bus, 3 – neighborhood, 4 – age of house, 5 – yard 

space, 6 – modern facilities, 7 – general condition, 8 – financing. The transformed matrix 

B (11) is presented in Table 2. This transformation makes all the elements belong to 0-1 

interval and diminishes the influence of any possible errors in pair comparisons. The row 

and column totals in Table 2 correspond to Be and B’e vectors related due to (14). The 

grand total can be used for checking – it equals n
2
/2. 

 

 

Table 1  

Example of AHP pair comparison Matrix A 

 

item 1 2 3 4 5 6 7 8 
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Table 2  

Pair shares Matrix B 

 
Item 1 2 3 4 5 6 7 8 total 

1 

2 

3 

4 

5 

6 

7 

8 

.500 

.167 

.250 

.125 

.143 

.143 

.750 

.800 

.833 

.500 

.750 

.167 

.250 

.250 

.833 

.875 

.750 

.250 

.500 

.143 

.250 

.200 

.143 

.833 

.875 

.833 

.857 

.500 

.750 

.800 

.875 

.889 

.857 

.750 

.750 

.250 

.500 

.667 

.833 

.857 

.857 

.750 

.800 

.200 

.333 

.500 

.833 

.857 

.250 

.167 

.857 

.125 

.167 

.167 

.500 

.667 

.200 

.125 

.167 

.111 

.143 

.143 

.333 

.500 

5.123 

3.542 

4.931 

1.621 

2.536 

2.869 

5.101 

6.278 

Total 2.877 4.458 3.069 6.379 5.464 5.131 2.89 1.722 32 

 

Table 3 presents several methods of priority estimation. Each vector is normalized so that 

the total equals one. The matrix A from Table 1 is used to obtain three vectors shown as 

“Regular Methods” in Table 3. The first of these vectors is obtained in the classic AHP 

eigenproblem (5), the next by the Least Squares approach also known in AHP, and the 

third vector is estimated by the Multiplicative AHP technique (Saaty and Vargas, 1984, 

1994; Lootsma, 1999). The last column in Table 3 contains the results of the modified 

estimation obtained by the transformed matrix B from Table 2 in the eigenproblem (13) 

or the Chapman-Kolmogorov equations for the steady-states (18). The ranks of the items 

are shown in parentheses after the elements. The solutions yield different priority 

ordering that could indicate inconsistent relations in the pairwise matrix.  

 

 

Table 3  

Priority Vector in Several Estimations 

 

i Eigenvector Least Squares Multiplicative Chapman-

Kolmogorov 

1 

2 

3 

4 

5 

6 

7 

8 

.173  (6) 

.054  (4) 

.188  (7) 

.018  (1) 

.031  (2) 

.036  (3) 

.167  (5) 

.333  (8) 

.199  (7) 

.100  (4) 

.148  (5) 

.017  (1) 

.045  (2) 

.065  (3) 

.184  (6) 

.242  (8) 

.175  (7) 

.063  (4) 

.149  (5) 

.019  (1) 

.035  (2) 

.042  (3) 

.167  (6) 

.350  (8) 

.150  (6) 

.054  (4) 

.141  (5) 

.022  (1) 

.037  (2) 

.041  (3) 

.163  (7) 

.392  (8) 
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The eigenvalues in the problem (20) approximately equal the following values: 
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The behavior of the solution (21) is mostly defined by the several first exponents with the 

bigger absolute value of the eigenvalues – those are the functions 

),5.0sin(9.2),5.0cos(9.2,2,1 ttettete   and the other functions’ decay is much steeper. 

With equal initial conditions pi(0)=1/n=0.125 in (21), the total behavior of the Chapman-

Kolmogorov solution is shown in Figure 2.  
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Figure 2. AHP priority in Chapman-Kolmogorov solution 

 

The numbers of the alternatives are given at the right of the curves. Beginning from about 

the third iteration, the process is stabilized. Eventually, all the curves reach priority levels 

coinciding with those presented in the Table 3 last column. 

 

 

5. Inconsistency and robust estimation 

As it was shown in Lipovetsky and Conklin (2002) on the same example, the appropriate 

ranks are given by the results in the last column of Table 3, which presents the robust 

solution not prone to the possible inconsistencies in the data matrix. Let us describe how to 

find such inconsistencies. Returning to (1), we see that the theoretical Saaty matrix equals 

the outer product 

 

                                                              'vwW  ,                                            (22) 

of a vector-column w of priorities 

 

                                                       )',....,,( 21 nwwww                                     (23) 

 

and a vector-row v' of element-wise reciprocal priorities (or anti-priorities): 
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2

1

1

 nwwwv .                               (24) 

 

Multiplying the matrix (1) by the vector (23) from the right side, or by the vector (4) from 

the left side, we get identically true relations 

 

                                                      nvvWnwWw  ,                               (25) 

 

that correspond to the right and the left eigenproblems for the W matrix. Notation W’ is 

used for the transposed W matrix.  

 

Using vectors (23) and (24), consider the theoretical matrix (1)-(2) as the structure in the 

following Table 2. 

 

Table 4  

Theoretical Saaty matrix as a contingency table 

 

                Anti-priority 

Priority 

       1         2        …        n         Row Total 

       1 

       2 

      … 

       n 

    w1v1     w1v2     …    w1vn      

    w2v1     w2v2     …    w2vn 

       --  --  --  --  --  --  --  --  --  --  --  --  

  wnv1     wnv2      …    wnvn 

w1jvj     

        w2jvj  

         -- -- -- -- 

     wnjvj 

Column Total    v1iwi      v2iwi      ….   vniwi   (iwi )(jv j)  

 

Each element wij of this matrix can be seen as product of i-th row sum and j-th column 

sum divided by grand total: 

                                     
totalgrand

totalcolumntotalrow
vww

ji

jiij

)()(
                  (26) 

 

This type of theoretical (or expected) structure of the table is well-known in statistical 

analysis as a contingency table. AHP theoretical matrix (1) corresponds to an n by n 

contingency table of two vectors – priority (in rows) and anti-priority (in columns) (see 

Table 2). The difference is that the AHP matrix does not describe counts, or frequencies, 

as a regular contingency table does. However, taking product p of all priorities wi in 

denominators of theoretical matrix (1) 

 

                                                  p =  w1 w2 … wn                                                  (27)  

 

and multiplying each element of theoretical Saaty matrix by this term results in integer 

numbers in place of the pairwise ratios (1): 

 

                                               wij = (wi / wj ) p                                                   (28) 

 

These integer numbers (12) make sense of the proportions which describe how each item 

is preferred or failed in pairwise comparison with other items in consideration. Relation 
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(28) can be seen as a connection between AHP priority ratios and relative proportions of 

preference among the items. 

 

Similarly to Table 4, an elicited Saaty matrix (3) can be presented as a contingency table 

in the following Table 5. 

 

Table 5  

Empirical Saaty matrix as a contingency table 

 

                Anti-priority 

Priority 

       1         2        …        n         Row Total 

       1 

       2 

      … 

       n 

      a11      a12       …       a1n      

      a21      a22       …       a2n 

       --  --  --  --  --  --  --  --  --  --  --  --  

    an1      an2       …       ann 

j a1j     

        j a2j  

         -- -- -- -- 

     j anj 

Column Total    i  ai1       i  ai2        ….        i  ain        ij aij  

 

 

Expected values of elements in this contingency table are defined similarly to the 

expression (26), using the margins of Table 5: 

 

                                  eij = (k  aik )( t  at j ) / ( k  t  ak t 
 

To estimate the agreement between observed (empirical) and expected (theoretical) 

composition of numbers in cells, we use the Chi-squared objective: 

 

                                     





n

ji ij

ijij

e

ea

1,

2

2
)(

                                                   (30) 

 

If an elicited data matrix (3) corresponds exactly to the theoretical matrix (1) then all 

deviations equal zero and the value (30) is zero as well. The bigger the discrepancy 

between elicited data and theoretical AHP structure (1) the higher the value (30).  

 

For instance, using the same data from the example given in Table 1, the total value 

(30) equals 

 = 32.7. The mean value of these deviations is 0.51, and the standard 

deviation is 1.51, and all the items of the Chi-squared sum (30) are presented in Table 6. 

 

The biggest deviations of empirical pairwise ratios from their theoretical values identify 

the coordinates of the inconsistent data in a Saaty matrix. In our example, the Chi-

squared item of one element a37 equals 11.91 which is far beyond a reasonable confidence 

interval for a mean value of 0.51 with a standard deviation of 1.51. The reciprocally 

symmetrical element a73 could be also considered as an outlier (both a37 and a73 are 

marked by asterisk in Table 6). The input of these two elements among all 64 elements in 

sum (30) is about 41% of its total value. 
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Table 6 

Items of the Chi-squared sum 

 

     j 

i 

1 2 3 4 5    6 7 8 

1 

2 

3 

4 

5 

6 

7 

8 

0.32 

0.44 

0.85 

0.00 

0.10 

0.22 

1.14 

1.08 

0.13 

0.44 

0.07 

0.07 

0.31 

0.63 

0.27 

0.25 

0.51 

0.36 

0.25 

0.00 

0.01 

0.18 

1.54* 

1.91 

0.12 

0.55 

0.05 

0.18 

1.25 

1.33 

0.03 

0.77 

0.15 

0.21 

0.35 

0.02 

0.00 

0.20 

0.01 

0.14 

0.20 

0.24 

0.00 

0.07 

0.25 

0.13 

0.02 

0.10 

 1.35 

 0.53 

11.91* 

 0.00  

 0.09 

 0.23 

 0.38 

 0.17 

0.12 

0.03 

0.11 

0.17 

0.05 

0.01 

0.00 

0.15 

 

 

Criterion (30) uses the expected values estimated as the margins given in (29). More 

exact estimation of the expected values could be performed using the first pair of the 

vectors in the spectral decomposition of a matrix A. But a more convenient approach 

good for all practical needs can be the following one. 

           

When the theoretical Saaty matrix is considered as a contingency table, all the rows are 

proportional one to another, and the columns as well. This means that for a more 

consistent empirical matrix the correlations between rows (and between columns) 

become closer to one. Thus, instead of chi-squared we can find the matrix of correlations 

between rows and the matrix of correlations between columns – let us denote them as Rr 

and Rc. For each of these two matrices, calculate vectors of mean correlations in each 

row, and the results are as follows: 

 

 

             Mean (Rr) = (.78     .85     .57*     .80     .80     .83     .73      .73),          

             Mean (Rc) = (.73     .83     .69      .78     .78     .79     .32*     .73).     

       

The asterisk here marks the minimum values among the others, when the average 

correlation suddenly falls. We see that items 3 and 7 have the lowest mean correlations, 

so elements a37 and a73 of the Saaty matrix in Table 1 could be considered outliers. 

 

Instead of averaging the elements in rows of the correlation matrices Rr and Rc we can 

apply principal component analysis to see the relations between the items. The first 

vectors of these two matrices are as follows: 

 

             PC (Rr) = (.35     .39     .25*     .37     .37     .38     .36     .33),         

             PC (Rc) = (.36     .41     .34      .38     .39     .39     .12*    .36),         

 



IJAHP Article: Lipovetsky, Conklin/ AHP Priorities and Markov Steady-States Probabilities 

 

 International Journal of the 

Analytic Hierarchy Process 

361 Vol. 7 Issue 2 2015 

ISSN 1936-6744 

http://dx.doi.org/10.13033/ijahp.v7i2.243 

where the asterisk denotes positions of elements with the weights noticeably below the 

mean level of 35.08/1  . Again, the results show that a37 and a73 are probable outliers 

in the Saaty matrix in Table 1, and they reduce consistency of the data. 

 

Identification of the outliers can be found by means of the regular AHP  measures. Let us 

take the matrix in Table 1 and solve the AHP problem (5). The maximum eigenvalue 

there is 9.67, and the consistency index 

 

                                                   CI=(-n)/(n-1) =0.24. 

  

Excluding one item at a time from the set of eight and solving the AHP problem for each 

set of seven items, we get the following values of consistency index: 

 

         CI = (0.20     0.27     0.12*     0.27     0.28     0.28     0.12*     0.26). 

 

We see that without the 3
rd

 and 7
th
 items, the consistency index falls lower, which 

indicates an improved consistency of the matrix. Again, we localize a37 and a73 as the 

probable outliers in the data in Table 1. 

 

In this assumption, we change the value of a37 (and take a73 as the reciprocal value) in a 

wide range of possible values, and each time solve the AHP problem (3) for finding 

maximum eigenvalue and the consistency index CI. The results are given in Table 7. 

 

Table 7 

Eigenvalue and consistency index of subsequently adjusted matrix 

 

 a37       6            4            2            1          1/2         1/4         1/5      

 max      9.669     9.369     9.037     8.868     8.812     8.847     8.879 

CI     .238       .196       .148       .124       .116        .121      .126 

 

Table 7 shows that the best consistency (the minimum value of CI) is attained for the 

value a37 =1/2 (and a73 =2, respectively). Adjusting by these values makes the matrix of 

Table 1 become highly consistent, so any method yields very similar priority estimations 

and the same priority ordering. Ranks of priorities for the adjusted matrix coincide with 

the ranks given in the last column of Table 3.  

 

So we see that the results of the eigenproblem (13) or the Chapman-Kolmogorov 

equations for the steady-states (18) are very robust to possible inconsistencies in the data. 

Being applied to the original matrix in Table 1 with the inconsistent elements, the robust 

methods yield the same priority ordering as estimations by the regular AHP approach 

applied to the adjusted matrix with the corrected elements. These results were observed in 

numerous calculations with different data. 

 

Finally, it is interesting to note that the eigenproblem (13) or (18) can be described in 

terms of the errors in the elicited data as follows. For the elements (11), consider a model 

with relative errors  

 

                                       bij ( i + j ) = i (1+ ij )                                       (31)       
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Summing the relations (31) by index j yields a system of equations: 

 

                            
 


n

j

i

n

j

ijjiji

n

j

ij ninbb
1 11

,...,1,)()(   .             (32) 

 

In the assumption of equal sums of errors for all i, denote 

 

                                     nin
n

j

ij ,...,1,
1

 


     ,                                    (33)   

 

then the system (32) reduces to the eigenproblem (13). Thus, the eigenproblem (13) 

corresponds to the assumptions of multiplicative errors (31) and the equalized total errors 

in rows (33). 

 

 

6. Summary 

Transformation of a pairwise ratio AHP matrix to the pairwise share matrix and solving 

the corresponding eigenproblem is considered. This approach can be obtained in 

Chapman-Kolmogorov modeling of transitions among the discrete states of the 

alternatives. Coincidence of these results for AHP priority evaluation and of the 

stochastic steady-state solution suggests a useful interpretation: the AHP priorities have a 

meaning of the eventual probabilities of belonging to the discrete states of the compared 

items. The priorities expressed as the choice probabilities are useful in theoretical 

consideration and practical applications for various multiple criteria decision making 

problems. 
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