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ABSTRACT Nuclear Magnetic Resonance (NMR) is widely used to assess oil
reservoir properties especially those that can not be evaluated using conventional
techniques. In this regard, porosity determination and the related estimation of the oil
present play a very important role in assessing the economic value of the oil wells.
Nuclear magnetic resonance data is usually fit to the sum of decaying exponentials. The
resulting distribution; i.e. 7 distribution; is directly related to porosity determination.
In this work, three reservoir core samples (Tight Sandstone and two Carbonate samples)
were analyzed, Linear Least Square method (LLS); using regularization parameter (o)
to smoothen the solution; and non-linear iterative least square fitting; using Levenberg-
Marquardt method; were applied to calculate the T distribution and the resulting
incremental porosity. The linear solution was used as the initial guess for the iterative
nonlinear solution.

Linear modeling is usually used to extract T, information from NMR logging data in
real time. In experimental NMR logging, the goal is how to get the best inversion of the
data into T distribution regardless of the time of analysis. In terms of porosity, linear
modeling assumes that the pore sizes are pre-selected while nonlinear modeling, starting
from a properly chosen initial value, predicts pore sizes in an iterative way to properly
predict real pore size values. Thus, it is more favorable to use nonlinear models over
linear models. However, the order of magnitude of time needed for the linear solution is
in the range of few minutes while it is in the range of few hours for the nonlinear
solution.

Parametric analysis for the lincar vs. nonlinear methods was performed to evaluate
the impact of number of exponentials, and effect of the regularization parameter on the
smoothing of the linear solution. Effect of the type of solution on porosity determination
was carried out. Twelve exponentials were used for both the linear and nonlinear
solutions. It was shown that the linear solution begins to be smooth at a = 0.5 which
corresponds to the commonly used industry value. Regardless of the fact that small
differences exist between the linear and nonlinear solutions for the three samples, these
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small values make an appreciable difference in porosity. The nonlinear solution predicts
12% less porosity for the tight sandstone sample and 4.5 % and 13 % more porosity in
the two carbonate samples respectively.
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1. INTRODUCTION

During the past decade, the remarkable technology of nuclear magnetic resonance
(NMR) logging has been improved continually and has been adapted for improved
downhole assessment of formation pore and fluid properties [1].

In NMR, the entire pulse sequence - a 90° pulse followed by a long series of 180°
pulses - is called a Carr-Purcell-Meiboom-Gill Pulse Sequence (CPMG sequence). T) is
the time at which the magnetization reaches 63.32% of its final value. The time constant
of the transverse magnetization decay is called the transverse relaxation time, referred to
as T, The raw data obtained from the NMR logging are the spin-echo trains. Fig. 1
shows the time domain data of the NMR tool.

Fig. 1: Time domain data of the NMR tool

The amplitude of the spin-echo train at time ¢, which is the amplitude of the transverse
magnetization AX (%), is given by Ed. (1) [2]:

M (t)= M,e™® )

where M0X is the magnitude of the transverse magnetization at r = 0 (the time at which
the 90° pulse ceases). The T decay from the formation contains most of the petrophysical
information obtainable from NMR logging and therefore is the prime objective of NMR
logging measurements.

The time domain (actual) data measured in an NMR experiment are represented by a
number of points separated by time TE (called the echo spacing) where the number of
points equals the number of echoes. These data must be inverted into the 75 domain in
order to interpret the 77 distribution of the sample [3]. The single decay of the echo data
can be characterized as being made up of a continuous distribution of decays with T> as
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the decay constant. The data from an NMR experiment y(2) can be written as shown in Eq.

(2):

y(0)=| [ PE)EPa(T) el ®

where P(T3) is the T distribution; and et represents a continuous convolution of
exponential decays from T> = 0.0 to T2 = the bulk relaxation of water; and &(¢) is a vector
that represent the noise in the data. The echo amplitudes are influenced by pore size
distribution, diffusion within the pore space and bulk fluid properties.

2. COMEERCIAL VS. EXPERIMENTAL 7, ANALYSIS:

One of the most important steps in NMR data processing is to determine the 7>
distribution that produces the observed magnetization. This step, called echo-fit or
maping, is a mathematical inversion process [2].

Normally, the T, distribution of rocks is a continuous function. However, to simplify
fitting the echo train, the mapping process uses a multi-exponential model that assumes
that the T» distribution consists of m discrete relaxation times 7 as shown in Eq. (3):

# ¢
P()=2,a,exp(~ ). ®)

2

By dividing the total time into certain number of bins (usually around 10); the
amplitude of each decay curve is determined. The number of coefficients equals the
number of used bins. The essence of the linear modeling is that the values of T7; are pre-
selected (for example, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ms ...) and the
mapping process focuses on determining the decay coefficients a1’s.

In water-saturated rocks, it is proven mathematically [2] that the decay curve associated
with a single pore will be a single exponential with a decay constant proportional to pore
size; that is; small pores have small 75 values and large pores have T> values. At any
depth in the wellbore, the rock samples probed by the NMR tool will have a distribution of
pore sizes. Hence, the multi-exponential decay represents the distribution of pore sizes at
that depth, with each T, value corresponding to a different pore size.

Extracting most information from the tool data is a difficult problem, because of the
logging tool operates with a low signal-to-noise ratio to minimize total logging time, and
the transformation from the time domain into 7 relaxation domain is an ill posed problem

giving many possible solutions [4].

In NMR porosity determination, the linear least square method is usually used to get
the decay coefficients ai's. Linear modeling usually applies fast and robust algorithm and
can be used to extract T» information from NMR logging data in real time. This requires
combining the reservoir and operational expertise of data and consulting services with the
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superior technology development to improve hydrocarbon recovery, minimize operational
risks, reduce capital and operating costs and increase overall asset value,

The main difference between linear and nonlinear porosity determination is that in the
linear solution, the T3; values are pre-selected (for example, 0.5, 1, 2, 4, &, 16, 32, 64, 128,
256, 512, 1024 ms ...). Thus, the linear inversion algorithm focuses on finding the
amplitude of the decaying exponentials. In terms of porosity, this means that the pore
sizes are pre-selected. The values of the incremental porosity corresponding to each pore
size are determined after the inversion. While in case of nonlinear inversion, both the
incremental porosity and the pore size are determined in an iterative way starting from a
properly chosen initial guess.

Nonlinear models generally require the solution of nonlinear equations which can not
be found in closed form nor determined after a limited number of algorithmic steps. If the
solution of nonlinear models deviates from linear models only by small margin, then many
important characteristics of the linear model apply to nonlinear model as well. Thus, to
determine a relevant approximate solution, it is necessary to begin from an initial point
which is located sufficiently close to the desired solutien.

Tt is worth noting that using nonlinear methods in analyzing the NMR relaxation data
may result in predicting higher or lower porosity values relative to the linear methods.
This is franslated into more or less actual oil prediction. Thus, we must distinguish
between commercial and experimental nuclear magnetic resonance logging in ferms of
cost. Two parameters need to be considered: time and oil in place “OIP” (i.e., the amount
of crude oil that is estimated to exist in a reservoir and which has not been produced.).

In commercial NMR, the more time spent in analyzing the data, the higher the cost will
be. For example the average cost in Egypt of drilling machine is about 150,000 L.E. per
day [5]. This means that when logging tool is working, the well site answer must be
robust, compatible with further analysis in the data center, and must be computed in real
time, i.e., we must use linear modeling which consume extremely less time than nonlinear

modeling.

In experimental NMR logging, the time is not the critical factor since the goal is how to
get the best inversion of the data into T; distribution regardless of the time of analysis. In
this case, it is more favorable to use nonlinear models over linear models.
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3. T, ANALYSIS USING THE LINEAR LEAST SQUARE METHOD
(LLS)
In this paper, we analyzed the difference between linear vs. nonlinear least square

methods to calculate the 7, distribution and the associated porosity for three types of
porous reservoir core samples [6]. Some of the details of the three samples are shown in

Table 1.

Table 1: Samples Description [6]

Sample A Sample B Sample C
Material Tight Tight Carbonate (double Carbonate
Sandstone porosity)
(single porosity)
Echoes 6667 10833 4167

Numbers

The first step to get the T, distribution is to plot the values of the magnetic field
measured as a function of time. This is performed for each sample as. follows: The
number of echoes (M) is multiplied by TE (i.e., the echo spacing which equals 600
microseconds for the three samples) to get the total time of the train which is plotted as the
X-axis. The Y-Axis is the magnitude of the magnetic field measured at each time value of
the time axis. Results are shown in Fig. 2. As expected, carbonate samples are
characterized by slow decay rate compared with sandstone samples [2].

The 7> curve is obtained by using the multi-exponential decay model. By dividing the
total time into certain number of bins (usually around 10); the amplitude of each decay
curve is determined. The number of coefficients equals the number of used bins [7].

Ssmpla B Carbonate

Sample A Sandsune

Echo AmplHude

tcho Ampstide, |

g
]

Fig. 2: The decay of the spin-echo train for the three samples A, B, and C respectively.
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The least square method was used to get the decay coefficients ai's as mentioned in
Eq.(3). MATLAB was used to solve the least square problems with a regularization
parameter . The Tikhonov solution is applied. Thus, instead of a straightforward
inversion of the noisy data which produces widely oscillatory solution, the approach is to
add a penalty function (or a regularization term a) to smooth or "regularize" the solution
[3]. In case of NMR T} inversion, the best value of o depends on the apparatus used and
on the signal to noise ratio. It is logical to choose an o where the standard error just starts
to increase significantly. However, the choice is somewhat arbitrary. It can be anywhere
from a = 0.1 to slightly larger than 1 and it is usually around 0.5 [5].

3.1 Effect of changing the regularization parameter " a"

To estimate the impact of the value of the of regularization parameter “a” on the
smoothing of the solution, we determined the linear solution for the NMR data of the three
samples using different values of a; namely; 0.001, 0.5, and 10. As shown in Fig. 3, the
solution begins to be smooth at o = 0.5 which corresponds to the commonly used industry
value [5]. In Fig. 4, the linear solution was obtained for a narrower range of the
regularization parameter; namely; 0.05, 0.1, 0.3, 0.5 and 0.7. Moreover, the most favored
value appears to be around 0.5 and above. In all subsequent calculations, we used a value

of 0.5 for 0.

3.2 Effect of Number of Exponentials on the Linear Solution

We studied the effect of assuming different values for the number of exponentials to fit
the echo data of the three samples. The number of exponentials was taken to be 6, 12, 18,
and 24. After some trial, these values were found to indicate clearly the difference
between small and large number of exponentials. In Fig. 5 it is observed that 6
exponentials aré not enough to obtain a good fit to the data and 12, 18, and 24
exponentials are almost the same. We can take the 12 exponentials as the optimum
number of exponentials. As mentioned before, the usual industry trend is to choose 10
exponentials. Thus, using 12 exponentials is a good choice to be used in the analysis.

It should be mentioned that the number of exponentials nearly does not affect the time
required to solve the problem in the linear solution. However, as will be clear from
section 4, the number of exponential will affect the time needed to obtain the nonlinear
solution. Since the initial guess for the nonlinear solution was taken from the linear
solution, 12 exponentials seem to be acceplable to get a linear solution that can be
compared with the nonlinear one.
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Fig. 3: Linear solution for different values of regularization parameter a: 0.001, 0.5 and
10 for the samples A, B, and C.
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Fig. 4: Linear solution for narrower range of regularization parameter o 0.05,0.1,0.3,
0.5 and 0.7 for the samples A, B, and C.
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Fig. 5: T; distribution of sample A (Tight sandstone), sample B (Tight carbenate)
and sample C (Carbonate) for different number of exponentials 6, 12, 18, and 24 using
the linear model
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3.3 Incremental Porosity Using Linear Least Square Fitting Method

To check the validity of using the linear least square method, we determined the
incremental porosity curves for the different samples. This was done by normalizing the
amplitudes of the calculated I distribution curves to the incremental porosity units by
normalization of the maximum of the T2 distribution of each sample to the maximum of
the original data. The calculated incremental porosity curves compare favorably with the
original curves as shown in Figures 6, 7 and 8. As expected, the lowest porosity value was
for the tight sandstone sample (A). The tight carbonate sample (B) showed less porosity
relative to the carbonate sample (C).
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Fig. 6: Porosity distribution curves (a) Original values and (b) Values obtained by using
linear least square method for sample A (tight Sandstone)
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Fig. 7: Porosity distribution curves (a) Original values and (b) Values obtained by using
linear least square method for sample B (tight Carbonate)
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Fig. 8: Porosity distribution curves (a) Original values and (b) Values obtained by using
linear least square method for sample C (Carbonate)

4. NONLINEAR T2 ANALYSIS USING THE ITERATIVE
LEVENBERG-MARQUARDT METHOD

We used the iterative least square method “Levenberg-Marquardt” [8-11] which is
remarkably adaptive to the problem at hand. It is one of the most robust and certainly the
most applied method for the selution of difficult problems in nonlinear modeling [8]. It is
to be noted that nonlinear solution is ill posed and it is crucial to find a good starting
values for the parameters [12]. In this work we used the results from linear solution as the

initial guess of the nonlinear solution.

4.1 Effect of number of exponentials on the nonlinear solution

We studied the effect of assuming different values for the number of exponentials to fit
the echo data of the three samples. The number of exponentials was taken to be: 6, 12, 18,

and 24,

In Fig. 9 it is observed that 6 exponentials are not enough to obtain a good fit to the
data and 12 exponentials are the optimum number. It is important to note that in case of
nonlinear solution, the greater the number of exponentials the greater the time required to
solve the problem. It is worth noting that the order of magnitude of time needed for the
linear solution is in the range of few minutes while it is in the range of few hours for the

nonlinear solution.
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Fig. 9: T; distribution of sample A (Tight sandstone), sample B (Tight carbonate) and
sample C (Carbonate) for different number of exponentials: 6, 12, 18, and 24 using the
nonlinear solution.
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5. NONLINEAR VS. LINEAR SOLUTION

In Fig. 10 we made a comparison between linear and nonlinear solutions considering
the same number of exponentials “12”. It is to be noted that for the linear solution, the
spacing of the T relaxation times (corresponding to pore sizes) are equally spaced (on a
logarithmic scale) while in the nonlinear model they follow the actual rock pores size

distribution.
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For the samples under investigation, small differences exist between the two solutions,
This means that pre-selected pore sizes differ slightly from the actual pore sizes.
However, these small variations make an appreciable difference in total porosity as shown
in Table 2. The nonlinear solution predicts less porosity than predicted by linear solution
by about 12% for sample A (Tight Sandstone). It also predicts more porosity in both
samples B and C (Carbonate) by about 4.5% and 13% respectively.

Table 2: Percentage saving porosity calculated by using nonlinear solution over linear
solution to predict the porosity for the three samples.

Sample Percentage saving of porosity by using
nonlinear solution over linear solution
Sample A (Tight Sandstone) 12 %
Sample B (Tight Carbonate) -4.5%
Sample C (Carbonate) -13 %

To indicate the impact of the method of 7, analysis on estimation of porosity, Table 2
shows the percentage of saving porosity calculated by using nonlinear solution vs. linear
solution to predict the porosity of the three samples. If the porosity calculated from
nonlinear solution is greater than the porosity calculated from linear solution, we refer to
this as positive saving. On the other hand, if the porosity calculated from nonlinear
solution is smaller, we refer to this case as negative saving. This difference in porosity
estimation will be very useful to get more oil from the wells which mean more saving in
the money paid. It is to be noted that these nonlinear calculations should be done for each
sample to determine positive or negative porosity savings. Further analysis is needed to be
able to predict whether the nonlinear vs. linear methods of 7, analysis will yield positive
or negative savings. This may be needed to be done for samples having different porosity
distribution.

6 CONCLUSIONS

Three samples; namely, tight sandstone, tight carbonate and carbonate were used to
assess the difference between linear and nonlinear T, inversion to get the incremental
porosity. Comparison was made using 12 exponentials for the T2 inversion. The linear
solution begins to be smooth at « = 0.5 which corresponds to the standard industrial value
for the regularization parameter.

The order of magnitude of time needed for the linear solution is in the range of few
minutes while it is in the range of few hours for the nonlinear solution. For the T,
distribution, small differences exist between the linear and nonlinear solutions. This
means that pre-selected pore sizes differ slightly from the actual pore sizes for the three
samples under consideration. However, these small variations make an appreciable
difference in total porosity. Compared with the linear solution, the nenlinear solution
predicts 12% less porosity for the tight sandstone sample and 4.5 % and 13 % more
porosity in the two carbonate samples respectively.
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Further analysis of the 7> inversion using nonlinear methods is needed to examine if
there is a range of pore sizes where the nonlinear methods are more efficient.
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