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ABSTRACT: The ability of unicycle mobile robot to stand and move around using 

one wheel has attracted a lot of researchers to conduct studies about the system, 

particularly in the design of the system mechanisms and the control strategies. This 

paper reports the investigation done on the design of the controller of the unicycle 

mobile robot system to maintain its stability in both longitudinal and lateral 

directions. The controller proposed is a Linear Quadratic Controller (LQR) type 

which is based on the linearized model of the system. Thorough simulation studies 

have been carried out to find out the performance of the LQR controller. The best 

controller gain, K acquired through the simulation is selected to be implemented 

and tested in the experimental hardware. Finally, the results obtained from the 

experimental study are compared to the simulation results to study the controller 

efficacy. The analysis reveals that the proposed controller design is able to stabilize 

the unicycle mobile robot. 

ABSTRAK: Kemampuan robot satu roda untuk berdiri dan bergerak di sekitar telah 

menarik minat ramai penyelidik untuk mengkaji sistem robot terutamanya didalam 

bidang rangka mekanikal dan strategi kawalan robot. Kertas kajian ini melaporkan hasil 

penyelidikan ke atas strategi kawalan robot bagi memastikan sistem robot satu roda 

dapat distabilkan dari arah sisi dan hadapan. Strategi kawalan yang dicadang, 

menggunakan teknik kawalan kuadratik sejajar (Linear Quadratic Control) yang 

berdasarkan model robot yang telah dipermudahkan. Kajian simulasi secara terperinci 

telah dijalankan bagi mengkaji prestasi strategi kawalan yang dicadangkan. Dari kajian 

simulasi sistem robot, pemilihan faktor konstan, K yang sesuai di dalam strategi kawalan 

telah dibuat, agar dapat dilaksanakan ke atas sistem robot yang dibangunkan. Keputusan 

dari kajian simulasi dan tindak balas oleh sistem robot yang dibangunkan akhirnya 

dibandingkan bagi melihat kesesuaian faktor kostan, K yang dipilih. Analisa 

menunjukkan dengan menggunakan strategi kawalan yang dicadangkan dapat 

menstabilkan robot satu roda. 
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1. INTRODUCTION  

Unicycle mobile robot is a robot that can move and maneuver around using a single 

wheel. The advantage of the robot is its mechanism to stand upright without falling down 

either in the longitudinal or lateral directions within a small space has attracted many 

researchers to conduct studies on the system. The studies cover from the modeling of the 

system, designing and prototyping the mechanism, and the controller design. 

The way a human rides a unicycle has inspired many researchers. The rider of unicycle 

could stabilize his position by moving his two arms, wrist and body in unison. Meanwhile, 

the pitch angle is stabilized by pedalling the unicycle by using the two legs back and forth, 

in order to control the speed and the position of the wheel. Besides that, the yawing angle 



IIUM Engineering Journal, Vol. 13, No. 2, 2012 Ab Rashid and Sidek 

 

 174

of the unicycle is stabilized by rotating the left and the right hands synchronously. As a 

result from this, the researchers have proposed different models of unicycle mobile robot 

based on their assumptions on the way human rides a unicycle. Along with that, they have 

also proposed a few types of mechanisms and controllers to stabilize unicycle mobile 

robot.  

From the exploratory and intensive research conducted by other researchers earlier, 

different mechanisms of unicycle mobile robot have been proposed. Basically, in this 

paper, the proposed unicycle mobile robot system consists of a wheel, a frame and a 

rotating disc as mentioned in [1]. The three-dimensional (3D) unicycle robot system can 

be characterized by the three tilt angles namely the roll, the pitch and the yaw angles. This 

robot can reach longitudinal stability through appropriate control of the wheel (i.e. the 

control of pitch angle). It also can reach the lateral stability via applying appropriate 

torque generated by the rotating disc (i.e. the control of roll angle). 

The main problem of the research is to control the unicycle mobile robot especially 

when the posture of the robot needs to be stabilized upright, both whenever the robot is 

moving or when it is in the still mode.  The posture of the robot can be characterized by 

three tilt angles namely the roll angle that is the lateral tilt angle which is perpendicular to 

direction of motion, the pitch angle  or known as longitudinal tilt angle which is parallel to 

the direction of motion and lastly the yaw angle.  

Thus, the problem in the research work can be stated as to develop a unicycle mobile 

robot that can be stabilized by using proper controller based on the operation of the 

inverted pendulum system autonomously. This is to ensure the unicycle system can stay 

uprights without falling down longitudinally or laterally. A specific mathematical model 

of the system developed could lead to multiple ways to construct the robotic platform. On 

top of that, the system controller is designed and simulated as well as implemented in the 

real system hardware.   

In the following, an overview of works done in this field is mentioned in section-2. The 

dynamic modeling of the unicycle mobile robot is addressed in section-3. Section-4 

elaborates the controller design. The simulations and the experimental results are reported 

in section-5. Finally a conclusion is drawn in section-6. 

2. LITERATURE SURVEY 

2.1 System Classification 

Over the last few decades, many researches and studies have been conducted on 

inverted pendulum system. Inverted pendulum can be defined as a system with a mass 

attached to a rod which can rotate about a pivot point [2]. 

According to [3], an inverted pendulum attached to a cart is called a cart-pole system. 

The pole with mass is pointing upward, while the cart can move back and forth in 

horizontal plane to make the pole stays upright. Another type of system related to inverted 

pendulum is called inertia wheel pendulum or better known as reaction wheel pendulum 

mentioned by [4] in their research. Reaction wheel pendulum consists of a symmetric disc 

attached to the end of rod which is freely rotated about an axis, parallel to the axis of 

rotation of the pendulum. The reaction disc can be actively controlled by coupling torque 

generated by angular acceleration actuated through a DC motor. In the research done by 

[5], the author classified the system into two classes; class 1 and class 2. Reaction wheel 

pendulum is considered as class 1 system while cart pole system is a class 2 system. 
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From the above mentioned definition, unicycle mobile robot can be composed of class 

1 and class 2 systems. The rotating disc and frame (i.e. with fixed wheel) of the robot can 

be considered as class 1 while combination of robot’s wheel and frame (i.e. fixed rotating 

disc) can be classified as class 2 system.  

Furthermore, unicycle mobile robot is an under-actuated system because it possesses 

fewer control inputs compared to degree of freedoms [5]. Unicycle mobile robot has two 

motors to control its position and orientation. Besides, unicycle mobile robot is a non-

holonomic system because it has dynamic non-holonomic constraint mentioned by [6]. It 

is considered as non-holonomic since the wheel of unicycle is maintained at a contact 

point on a planar plane, the wheel is impossible to move transversally and wheel 

displacement along the plane is equal to the wheel arc [7]. In the next section, the studies 

done by previous researchers related to the controller to control various unicycle’s 

mechanism are explored. 

2.2 Controller Design 

In the research by [8], the author used Linear Quadratic Gaussian (LQG) controller to 

control the lateral and longitudinal stability of the unicycle mobile robot. The robot 

developed by this author is in the form of system that mimicked a human riding a unicycle 

which consists of a wheel, a frame which acted as the rider’s body and rotary turntable as 

the human arms. During simulation study, the lateral stability could be achieved at 

nonzero wheel speed by twisting the turntable and the wheel moved forward and 

backward.  

The author in [9] had proposed a new modified LQG method to control longitudinal 

stability of the unicycle robot which previously developed by [8]. However, the control 

strategy using the same method applied for lateral stability was not mentioned in the 

paper. The author then used gain scheduled lateral controller to control the lateral stability 

of the system. The author mentioned that friction effects in forward and yawing direction 

was contributed by wheel surface friction while drive train friction was considered as pitch 

and yawing friction. The author had used bang-bang controller to deal with the friction 

effects on the system. 

The author in [10] had proposed the unicycle movement based on the design by [8] and 

assumed that, when the robot moved in longitudinal plane, there is no lateral and yawing 

effect occurs on it. It was assumed that the linearized model behaved like an inverted 

spherical pendulum with a base that is free to move in the surface plane. The author 

proposed Linear Quadratic Regulator (LQR) controller to stabilize the system. The 

controller however was implemented in the simulation stage only. 

The author in [11] had proposed to use PD controller to control the lateral stability the 

unicycle mobile robot which had asymmetric turntable rotor rotated by a geared motor on 

the top of the system to control the roll angle while the wheel was driven by linkages that 

were connected to two motors. The linkages were assumed to replace human’s thigh and 

foot when they were riding the unicycle. From the author point of view, the experimental 

results conducted depend on initial posture of robot and ground unevenness. In another 

paper [11], the same author had proposed a new controller by using fuzzy gain schedule 

PD control technique. Experimental results shown that both of the robot’s longitudinal and 

lateral postures could be successfully stabilized. By comparing the experimental results 

with PD and D controllers, it was found that the lateral and the pitch controls with two 

fuzzy gain schedule PD controllers produced better results. 
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Another controller proposed by [12] and [13] developed a system namely as Gyrover 

which was a single wheel vehicle equipped with an internal gyroscope. This internal 

gyroscope was aligned with the wheel and spinning in the direction of forward motion. 

Angular momentum from the gyro contributed to the lateral stability when the wheel 

stopped or moved slowly. A tilt device tilted the gyro’s axis about roll axis with respect to 

the wheel. Because the gyro acts as inertial reference, the effect of tilt action caused the 

wheel to lean left and right and then caused the wheel to steer. 

The author in [14] had used LQR optimal control to control the robot whose design is 

slightly similar as the one in [12] and [13]. The author [14] had considered the motion 

about roll axis only and neglected the pitch and yaw controls. 

In the study done by [15], the researchers had used feedback control technique to 

stabilize the roll and pitch angles of the unicycle system. The system was equipped with 

two gyros which were used to detect angular velocities around the rolling and the pitching 

axes. Another gyro was applied to detect an angular velocity around yawing axis which 

was used to find the heading direction. The same control strategy was also applied to 

control the mechanism discussed in the research done by [12] and [13]. In the paper 

produced by, [16], a controller had been designed to control the yaw angle of unicycle by 

applying time phase difference on the roll and pitch angles. However, the study had been 

conducted only at simulation level.  

Further studied carried out by [17] had proposed a new fuzzy logic controller (FLC) to 

control the unicycle robot in two dimensional system. In the FLC design, the author had 

leveraged the linear quadratic regulator (LQR) and the gain-scheduling technique to obtain 

the FLC parameters. In addition by further comparing the FLC with the LQR which was 

designed around an operating point, the FLC coefficients could be easily tuned. However, 

the controller could only be applied to control the pitch angle of the system dynamics.  

Moreover, in another paper done by [18], the author had used linear controller to 

stabilize their design. The design done by [18] was based on inverse mouse roller ball. The 

controller had two loops; the proportional-integration (PI) controller as the inner loop and 

LQR as the outer loop. The study carried out by [19] had used an adaptive nonlinear 

control together with Radial Basis Function Neural Networks (RBFNN) which was based 

on adaptive back-stepping control technique to stabilize the system design. However, the 

author only provided the simulated results and no comparison was done between 

simulated results and experimental results. 

Another method proposed by [20] had used gain scheduling with linear parameter 

varying technique to control the unicycle robot. The system developed was composed of 

two gyroscopes acting as actuator for lateral stabilization and a wheel as actuator for 

longitudinal stabilization. The experimental results for lateral and longitudinal control 

were very good even though small oscillations still could be observed. 

Research by [21] had used the pole-placement and LQR to control the unicycle robot in 

longitudinal direction only. The system analysis and estimation of system- coefficients 

were completed on the simulated stage.  

 

3. DYNAMIC MODELING OF THE UNICYCLE MOBILE ROBOT 

Based on [1] and [22], the model of the unicycle mobile robot for this research can be 

described in the form of non-linear model: 
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Eqn.(2) as mentioned by [1] and [22] can be linearized so that the linear controller can 

be used. This equation is linearized with respect to the desired operating point and it can 

be described as: 

�� � /� � �0 (2) 

and the operating point for the system is exx ====  where 0≈≈≈≈ex  which is the upright 

position of the unicycle robot.. 

 

In order to linearize Eqn. (2), Jacobian matrix is developed as shown in Eqn. (3); 
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By employing Eqn. (1) - (2), Eqn. (3) can be represented as: 
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The input to the system, 0 is given as: 

0 � 10 0 	1 	22' (4) 

4. CONTROLLER DESIGN 

In order to control the unicycle mobile robot, a linear controller has been designed. The 

controller is known as Linear Quadratic Controller (LQR) and designed to control the roll 

(α) and pitch angles (β) of the unicycle robot system shown in Figure 1 for both the 

simulation and the experimental study at the operating point. The performance of 

controller is then compared.  

 

Fig. 1: The generalized coordinate for unicycle mobile robot, roll angle (α), pitch 

angle (β), disc angle (η) and wheel angle (ω). 

The advantage of using the LQR controller in this system is, it can regulate the system 

output, x to zero while stabilizing the closed loop. In other words, it is strictly intended to 

stabilize the system and to make the time response faster as mentioned in [23]. 
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By considering the unicycle mobile robot model in the Eqn. (2), a full state feedback 

regulator for the system is designed based on [24] by using control input vector as in the 

Eqn. (5). 

0 � 34���� (5) 

The target of the designed controller is to obtain the gain K so that u in Eqn.(5) can be 

included into quadratic objective function expressed in Eqn. (6). 

5 � 6 1�' 7� � 0' 8029:
9 ;� (6) 

Where, �� is the final time, and � is the initial time. 

In this system, we are interested in the steady state behaviour of the unicycle mobile 

robot system. As such the control period for the system will be infinite. Thus, tf in Eqn. (6) 

will be approaching infinity, ∞ and the quadratic objective function then become J∞. J∞ 

can be considered as the energy function. When J∞ is small, the energy of the closed loop 

system is also small. Since x and u in Eqn. (6) governed by J∞, neither x nor u is large. 

When J∞ is minimized, x becomes zero as tf goes to ∞ and it guarantees that the system is 

stable. 

In order to minimize J∞, the matrix Q and matrix R need to be selected. Matrix Q is 

defined as in Eqn. (7) while matrix R can be defined in Eqn.(8). 

7 �

(
)
)
)
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-
-
-
.
 (7) 

8 �

(
)
)
)
*
D== 0 0 … 0
0 D?? 0 … 0
0 0 D@@ … 0
A A A B A
0 0 0 … DEE,
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-
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Where, matrix Q must be n x n symmetric positive definite matrix, and matrix R should 

be m x m symmetric positive definite as well.  

The criteria for selecting matrix Q and R is by following the Bryson’s rule as the 

guidelines as mentioned in [25] and these criteria are elucidated in Eqn. (9) and Eqn. (10) 

where the diagonal Q and R can be: 

7FF � =
EGHFEIE GJJKL9GMNK HO

P (9) 

where i=1,2,3,4…n 

8FF � =
EGHFEIE GJJKL9GMNK QGNIK IR

P (10) 

where j=1,2,3,4…n 

Even though the matrix Q and R are bounded by Eqn. (9) and Eqn. (10), the matrix Q 

and matrix R still need to be found and tested through trial and error to find the optimized 

performance and the fast response can be obtained if the q11 is quite large compared to 

q22,q33. 
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After selecting matrix Q and matrix R, the control input u can be defined as: 

0 � 34� � 38S=�'T� (11) 

From Eqn.(11), it is observed that, matrix P is required to solve for the control input u. 

Matrix P is a symmetric and positive semi-definite which can be found by solving an 

algebraic Ricatti equation which is shown in the Eqn. (12). 

T/ � /'T 3 T�8S=�'T � 7 � 0 (12) 

After obtaining gain value for K, then, the stability of matrix A-BK is tested by finding 

eigen-values of A-BK. As mentioned previously, if the eigen-values of A-BK are all 

negatives, then the system is considered as stable system. 

5. RESULT AND DISCUSSION 

By employing Eqn.(5)- Eqn(11), the values of Q and R are shown in the Table 1. 

Table 1: List of Diagonal Q and R.  

Values for Q and R for Case A: 

Diagonal Q 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Diagonal  R 1     1 

Values for Q and R for Case B: 

Diagonal Q 10       10     1   1     1   1     1  1 

Diagonal  R 1     1 

Values for Q and R for Case C: 

Diagonal Q 5     5   5      5    1       1   1     1 

Diagonal  R 1     1 

Values for Q and R for Case D: 

Diagonal Q 10       1     10    10    1       1   1   1 

Diagonal  R 1     1 

Based on Table 1 and Eqn.(11), the gain K can be acquired. The gain, K obtained can 

be divided into two segments where K1 is used to control roll angle and K2 is used to 

control pitch angle. The simulation and the experimental performance of the controller are 

done on different set of gains. The different sets of gains are listed in the Table 2. 

Table 2: List of Controller Gain. 

Controller gain for Case A: 

K1 -25.3145    0.0000    0.0000   -0.1000   -5.6920    0.0000    0.0000   -0.2097 

K2 0.0000  -11.2555   -0.1000    0.0000    0.0000   -2.6621   -0.1728    0.0000 

Controller gain for Case B: 

K1 -72.8391   -0.0000   -0.0000   -1.0000  -15.6677   -0.0000   -0.0000   -1.5155 

K2 -0.0000  -62.6028   -1.0000   -0.0000   -0.0000  -16.0568   -1.5424   -0.0000 

Controller gain for Case C: 

K1 -88.1863    0.0000    0.0000   -2.2361  -18.8843    0.0000    0.0000   -2.1426 

K2 0.0000  -78.2178   -2.2361    0.0000    0.0000  -20.1313   -2.2104    0.0000 

Controller gain for Case D: 

K1 -99.5209   -0.0000   -0.0000   -3.1623  -21.2502   -0.0000   -0.0000   -2.6076 

K2 -0.0000  -89.8938   -3.1623    0.0000   -0.0000  -23.1768   -2.7100    0.0000 
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Fig. 2: Simulink/Matlab block diagram for Unicycle Mobile Robot. 
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5.1 Simulation Results 

The gain K obtained from all the cases are applied into the simulation block diagram in 

the SIMULINK/MATLAB environment as shown in Fig. 2. Figure 2 shows that the model 

of the plant is set as state space and the errors of the system are regulated by gain K 

founded in the previous. The input of the system is set to be zero so that the system can be 

stabilized at zero position which is the upright position of the system. 

By using gain K obtained, behavior of the unicycle mobile robot is analyzed. The 

performance of the controller based on gain K for every case, Case A, Case B, Case C and 

Case D are elucidated in Fig. 3 – Fig. 12.  

 

Fig. 3: Simulated Case 1(a): Result for roll angle and disc rotation by using gain K 

derived from case A. 

The data of interest for roll and pitch angles versus time are captured. The simulation 

result for roll angle and disc rotation by using gain K derived from case A is shown in Fig. 

3 while the simulation result for pitch angle and wheel rotation is depicted in Fig. 4. The 

initial condition set for the unicycle system in roll direction is at 

[[[[ ]]]]00001.0001.0====X   where roll angle, α= 0.1rad or 6 deg and disc angle, η 

=0.1rad=0.016 rev. For the initial condition in pitch direction, the posture of the robot is 

set as [[[[ ]]]]000001.01.00====X  where pitch angle, β= 0.1rad or 6 deg and wheel 

angle, ω =0.1rad=0.016 rev.  

From Fig. 3 and Fig. 4, it is observed that when the robot is released at positive 

direction, the reaction disc will rotate in the opposite direction to bring the robot to 

stabilization point. However, when the robot moves to negative direction, the reaction disc 

will rotate in the positive direction. From the behavior of the system, it is shown that the 

force from the reaction disc is imposed in the negative and positive direction in order to 

compensate the roll angle’s error of unicycle robot. The same behavior also applied to the 

pitch angle of the robot. When the pitch angle is little bit deviates from the stabilization 

point, the robot’s wheel will move forward to catch the unicycle robot. The simulation in 

Fig. 3 and Fig. 4 shows that the unicycle system reaches the settling time at t = 2s in the 

roll direction while it’s settling time in pitch direction is in t = 1.5s.  
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Fig. 4: Simulated Case 1(b): Result for pitch angle and wheel rotation by using gain 

K derived from case A. 

 

Fig. 5: Simulated Case 2(a): Result for roll angle and disc rotation by using gain K 

derived from case B. 

In another case, the roll angle and disc rotation which uses gain value K derived from 

case B is plotted in Fig. 5 while the pitch and wheel rotation from the same case is plotted 

in the simulated Fig. 6. When the robot is released at α = +6 deg, the reaction disc will 

rotate opposite to the movement of the robot in order to bring the robot to its stabilization 

point. Figure 5 shows that unicycle robot has responded and stabilized faster compared to 

previous figure (Fig. 3).The unicycle robot has swung more and reaches settling time at t = 

1.5s in the roll direction.  
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Figure 6: Simulated Case 2(b): Result for pitch angle and wheel rotation by using 

gain K derived from case B. 

 

 

Fig. 7: Simulated Case 3(a): Result for roll angle and disc rotation by using gain K 

derived from case C. 
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Fig. 8: Simulated Case 3(b): Result for pitch angle and wheel rotation by using gain 

K derived from case C. 

The simulated Case 3(a) and simulated Case 3(b) as shown in Fig. 7 and Fig. 8 are 

used to simulate the performance of LQR controller on the unicycle robot which uses the 

gain K value derived from Case C previously. Figure 7 shows the behavior of the robot 

when it is released from positive roll direction and the response of the controller can be 

seen through the response of the reaction disc. The robot has swung more and took longer 

time to stabilize compared to the previous Fig. 3 and Fig. 5. The settling time for the robot 

under this case is at t = 3s.  

 

Fig. 9: Simulated Case 4(a): Result for roll angle and disc rotation by using gain K 

derived from case D. 
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Fig. 10: Simulated Case 4(b): Result for pitch angle and wheel rotation by using 

gain K derived from case D. 

The performance of the controller for the Case D can be observed in Fig. 9 and Fig. 10. 

By using the same initial condition as the previous cases, the robot requires more time and 

it swings left and right while the reaction disc rotates in the direction vice versa. The robot 

achieves the stabilization in roll direction in t = 4 s. 

The robot’s movement in the pitch direction as shown in Figure 10 shows that the robot 

also requires more time to stabilize.  

 

Fig. 11: Simulated Case 5(a): esult for roll angle and disc rotation subjected to 

disturbance (i.e K derived from case D). 
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stabilizes. The robot achieved postural stabilization in pitch direction more than 1.5 s. 
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cases have been plotted as shown in Fig. 11 and Fig. 12. The gain value K from case D is 

0 1 2 3 4 5 6 7 8 9 10
-20

-10

0

10

20

time (s)

P
it

c
h

 a
n

g
le

(b
e

ta
)

(d
e

g
/s

)

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

time (s)

W
h

e
e

l 
ro

ta
ti

o
n

 (
o

m
e

g
a

)
 (

re
v

)

0 2 4 6 8 10 12 14
-20

-10

0

10

20

time (s)

R
o

ll 
a

n
g

le
(a

lp
h

a
)

(d
e

g
s

)

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1

time (s)

D
is

c
 r

o
ta

ti
o

n
 

(e
ta

)
(r

e
v

)



IIUM Engineering Journal, Vol. 13, No. 2, 2012 Ab Rashid and Sidek 

 

 188

selected as the case study.  The purpose of selecting Case D as a case study is to see the 

behavior of the robot (response and settling time) when it is subjected to disturbance when 

it is already stabilized. Figure 11 illustrates the action of the robot in the roll direction 

when it deals with the pulse disturbance at time, t = 8s. The robot slants back to the 

stabilization position after the pulse signal applied to it since it is pushed back by reaction 

disc. The robot going back to the stabilization position either it is subjected to disturbance 

in roll or pitch direction as shown in Fig. 11 and Fig. 12. 

In Fig. 12, wheel response increasing because it is quite not so stable. As a result, Fig. 

12 (the gain K from case D) is not selected to be implemented in the real hardware system. 

 

Fig. 12: Simulated Case 5(b): Result for pitch angle and wheel rotation subjected to 

disturbance (i.e K derived from case D). 

5.2  Experimental Results 

In order to validate the simulation results, a few numbers of postures of unicycle 

mobile robot system were inspected experimentally and compared with the results 

acquired previously. In order to accomplish the experimental study, the posture of the 

robot in the roll and pitch angle were studied independently. Based on the previous 

simulation results, gain value K obtained through case B was selected to be implemented 

in the controller to control the system hardware. Even though the gain K from case B was 

used, the value was tuned within the range ±2 in the controller program to improve the 

performance of the system. The experimental results showed the estimated measurement 

between gyroscopes and accelerometers from Inertial Measurement Unit (IMU) attached 

to the robot. 

Figure 13 shows the study of the robot’s posture under influence of controller in the roll 

direction. The robot was released at initial condition, roll angle, α=+6° or 0.1 radian. From 

the figure, it is observed that when the robot is released, the reaction disc responded in the 

opposite direction to bring back the unicycle to nearly its stabilization point. This 

behaviour can be seen clearly from t = 0 s to t = 1 s. The stabilization range for the 

unicycle mobile robot is between α = -20
ο
 and +20

ο
. The robot swung back and forth 

between this range and the reaction disc swung in the opposite direction. It was hard to 

make the unicycle robot to move to α = 0
ο
 due to the dynamic behaviour of the robot. 

However, the result is acceptable and matches with the result shown in Fig. 5. 

0 2 4 6 8 10 12 14
-20

-10

0

10

20

time (s)

P
it

c
h

 a
n

g
le

(b
e

ta
)

(d
e

g
s

)

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1

time (s)

W
h

e
e

l 
ro

ta
ti

o
n

(o
m

e
g

a
)

(r
e

v
)



IIUM Engineering Journal, Vol. 13, No. 2, 2012 Ab Rashid and Sidek 

 

 189

In another experiment conducted, the unicycle robot was released in the pitch direction 

at β = +6deg. When the robot was released at this position, the robot’s wheel tried to catch 

up the position and made the robot stable. From Fig. 14, the stabilization range for the 

unicycle robot in the pitch direction is between -15
ο
 to +15

ο
. The result from Fig. 14 can 

be said comparable to Fig. 6. 

 

Fig. 13: Experimental result for roll angle with initial angle = +6° (i.e. K derived 

from case B). 

 

Fig. 14: Experimental result for pitch angle with initial angle = +6° (i.e. K derived 

from case B). 
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0 rev and ends at +3rev. The pitch angle measured from the stabilization point, 0
ο
 and the 

wheel just rotates forward or backward to ensure the robot achieved postural stabilization 

in pitch direction. The positive revolution shown by the wheel’s encoder means that the 

robot moves forward to catch the inclination angle in positive pitch direction. 

 

Fig. 15: Experimental result for roll angle with initial angle = -6° (i.e. K derived 

from case B). 

 

Fig. 16: Experimental result for pitch angle with initial angle = -6° (i.e. K derived 

from case B). 

6. CONCLUSION 

This paper discusses the controller design which is based on the system linearized 

model. The simulation results, the experimental results and the comparison between both 

are presented and discussed thoroughly. The LQR control scheme is used as the system 
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parameters are then selected and implemented on the real system controller where the 

performance is analyzed based on the response recorded. Overall, the experimental results 

show acceptable match with the simulation results. 
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