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ABSTRACT:  Currently, fully automated rehabilitation robots can assist therapists in 

providing rehabilitation therapy, hence the patients could get hurt. On the other hand, manual 

treatment may cause less patient injury but it is tiresome, and there are not enough therapists 

in most countries. Power assist rehabilitation robots can support the therapists in conducting 

the treatment and may help to alleviate this problem. The goal of this study is to develop a 

control strategy for the robot to assist the therapist’s movement in a power assist upper limb 

rehabilitation treatment. The system combines the advantages of robotic and manual 

rehabilitation therapy. Torque and position sensors fitted on the power assist upper limb 

rehabilitation robot arm are used for motion intention estimation. The amount of angular 

velocity necessary to be delivered to the feedback controller will be determined by predicting 

the therapist‘s motion intention using the impedance control method. The resulting velocity 

from the motion intention estimator is incorporated into the Sliding Mode Control - Function 

Approximation Technique (SMC-FAT) based adaptive controller. The SMC-FAT based 

adaptive controller in the feedback loop, overcomes the uncertain parameters in the 

combination of the robot and the human arm. The motion intention estimator forecasts the 

movement of therapists. The proposed controller is used to regulate elbow flexion and 

extension motion on a power assist upper limb rehabilitation robot with one degree of freedom 

(DOF). The proposed control system has been tested using MATLAB simulation and 

hardware experimental tests. The outcomes demonstrate the effectiveness of the proposed 

controller in directing the rehabilitation robot to follow the desired trajectory based on the 

therapist's motion intention, with maximum errors of 0.002rad/sec, 0.005rad/sec and 

0.02rad/sec for sinusoidal, constant torque values, and hardware experiment respectively. 

ABSTRAK: Pada masa ini, robot rehabilitasi automatik sepenuhnya dapat membantu ahli 

terapi dalam menyediakan terapi pemulihan, tetapi pesakit berkemungkinan tercedera. 

Sebaliknya, rawatan manual berkemungkinan mengurangkan kecederaan pesakit tetapi ia 

memenatkan, dan terdapat kurang ahli terapi yang mencukupi di kebanyakan negara. Robot 

pembantu rehabilitasi dapat membantu ahli terapi dalam menjalankan pemulihan dan 

mengurangkan masalah ini. Sistem ini menggabungkan kelebihan terapi pemulihan robotik 

dan manual. Alat pengesan tork dan kedudukan diletakkan pada anggota atas lengan robot 

rahabilitasi yang digunakan bagi mengesan anggaran jarak pergerakan ahli terapi. Anggaran 

halaju sudut diperlukan bagi kawalan gerak balas dan dapat diketahui melalui anggaran niat 

gerakan ahli terapi menggunakan kaedah kawalan impedans. Halaju yang terhasil daripada 

anggaran niat gerakan diadaptasi ke dalam pengawal adaptif berasaskan Kawalan Mod 
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Gelongsor - Teknik Anggaran Fungsi (SMC-FAT). Pengawal penyesuaian berasaskan SMC-

FAT dalam gelung maklum balas, mengatasi parameter yang tidak pasti dalam gabungan 

robot dan lengan manusia. Penganggar niat gerakan meramalkan gerakan ahli terapi. 

Pengawal yang dicadangkan digunakan bagi mengawal lenturan siku dan gerakan lanjutan 

pada robot rehabilitasi dengan satu darjah kebebasan (DOF). Sistem kawalan yang 

dicadangkan telah diuji menggunakan simulasi MATLAB dan ujian eksperimen perkakasan. 

Dapatan kajian menunjukkan keberkesanan pengawal yang dicadangkan dalam mengarahkan 

robot rehabilitasi mengikut trajektori yang dikehendaki berdasarkan niat gerakan ahli terapi, 

dengan ralat maksimum masing-masing 0.002rad/s dan 0.005rad/s bagi sinusoidal, nilai tork 

malar, dan eksperimen perkakasan masing-masing. 

KEYWORDS:  Upper Limb rehabilitation; Motion intention estimator; uncertainties; 

therapist assistance; rehabilitation robot 

1. INTRODUCTION  

Stroke victims frequently lose their ability to do daily tasks with their hands. Stroke is 

regarded as one of the most serious diseases and a vital issue in the nation because of the large 

number of its victims. Patients can restore arm functions and resume doing routine and essential 

daily tasks after intensive practice that is repeated and massed over the rehabilitation process. 

The two categories of power assist upper limb rehabilitation robots are end-effector and 

exoskeleton robots. These robots can conduct a variety of actions and undertake rehabilitation 

training activities to help patients complete certain therapies [1]. Additionally, it offers a 

consistent and demanding physical treatment, relieving physical therapists of a substantial 

amount of labor. End-effector systems may move limbs in space without requiring the patient's 

and robot's joints to be aligned by using footplates or grips. 

Manual rehabilitation therapy and robotic rehabilitation therapy are two rehabilitation 

approaches. A global issue with manual rehabilitation treatment is its inconsistency and its low 

therapist-to-patient ratio. The entirely autonomous nature of earlier rehabilitative equipment 

increases the potential for patient injury. This issue can be solved by a rehabilitation robot that 

combines manual and automated functions. The study focuses on a new control approach for a 

power assist rehabilitation robot that aids the therapist in moving the patient's arm during 

rehabilitation exercises, allowing the system to combine the advantages of completely robotic 

and manual rehabilitation treatment. In this manner, the system may provide patients with a 

rehabilitation program that is both safe and comfortable [2].  

This paper presents a new control approach for the therapist, allowing them to actively 

intervene in the treatment, taking into account the robot and patient's parameter uncertainties. 

The controller consists of a motion intention estimator for the therapist based on the impedance 

controller.  The resulting output velocity is fed into the FAT-SMC based adaptive controller to 

cater to the uncertainties. The novelty of this paper is a new control strategy that focuses on 

assisting the therapist’s movement with a motion intention estimator combined with SMC-FAT 

based adaptive controller in the feedback loop for a power assist upper limb rehabilitation 

robot. 

The rest of the paper is organized as follows. Section 2 presents the summary of previous 

works on upper limb rehabilitation robot and motion intention estimation. Section 3 describes 

the methods and equations used in deriving the proposed control strategy. The simulation 

results and hardware experimental analysis are discussed in Section 4. Section 5 presents the 

conclusion of the paper. 
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2. PREVIOUS WORKS ON UPPER LIMB REHABILITATION ROBOT 

AND MOTION INTENTION ESTIMATION 

Due to the lack of a direct therapist intervention during training, the use of totally robotic 

rehabilitation treatment may increase the risk of patients' injuries and may be uncomfortable 

for the patients [3]. Additionally, mistakes in the treatment robot's actuation are possible. Thus, 

this paper presents a new control strategy for the upper limb rehabilitation robot that is not fully 

robotic and assists the therapist based on their motion intention to realize a smooth movement 

in the rehabilitation. This section represents the previous work in power assist upper limb 

rehabilitation robot and motion intention estimation methods. 

 2.1. Power Assist Upper Limb Rehabilitation Robot 

Power assist devices are created and intended to help physically challenged persons with 

everyday chores and self-rehabilitation. Tang et al. [4] developed an upper-limb power-assist 

exoskeleton actuated by pneumatic muscles. The exoskeleton may now be controlled in real 

time depending on the user's intended movements thanks to the development of proportional 

myoelectric control. The feature extraction technique and classification were utilized to create 

an electromyogram (EMG)-angle model for pattern recognition.  

An approach for perception-assist that modifies the user's mobility as necessary to help their 

movement and interaction with their environment was proposed [5]. A study on a power-assist 

robot arm using pneumatic artificial rubber muscles (PARMs) with a balloon sensor was 

published to help with upper-limb and back motions. The elbow and wrist joints may be moved 

by a single PARM, and the movement of the various arm portions is similar to that of the bi-

articular muscle. According to the independent joint control paradigm, an ideal linear quadratic 

Gaussian torque controller (LQG) with integral action for an upper limb rehabilitation robot 

was introduced. The controller's goals are to simplify the control design process, guarantee the 

best robust torque control, and prevent modeling uncertainties. 

2.2. Motion Intention Estimation Methods 

The intended velocity, which serves as a proxy for human intention is determined in real-

time using the robot's location, speed, and interaction force as well as contact point movement 

characteristics [6]. Impedance control, which enables the robot to follow a specified path, may 

be used for interaction control. The techniques for changing the assistance lever of the 

impedance parameters are often employed in various applications of human-robot shared 

control systems.  

The Radial-based Function Neural Network (RBFNN) model for evaluating the cooperation 

intention in touch human-robot collaboration has been developed. Lee et al. [7] suggested a 

new classifier based on force information measured by the robot's Force/Torque sensor and 

surface EMG signals from muscle activation to extract human intention during interaction with 

external force. The degree of external force produced by the encounter may be determined 

using the suggested classifier. In order to validate the suggested methodology, a simple control 

method is developed based on the proposed classifier to support the intention-based motion. 

A device that produce the intended trajectory based on the designer's assessment of the user's 

motion intention was introduced. Motion intention was proposed as a workable solution since 

it takes a lot of energy for a person to move the exoskeleton arm, especially if the difference 

between the robot's true position and the human's motion intention is large. The subject's 

desired intention of motion (DIM) must be determined via an indirect force control loop. The 

identification of DIM can be accomplished using the Damped Least Square technique (DLS). 
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A wearable double-shell robotic exoskeleton for upper-limb power assist was proposed by 

Huang et al. [8], based on an online assessment of the wearer's motion intention. 

A unique method for identifying human body motion intention for active power-assist lower 

limb exoskeleton robots (APAL) was investigated [9]. Both the inverse dynamics approach 

(IDA), which uses a dynamic model of the human body, and the sensing system integrated 

within an exoskeleton robot (APAL), which was developed to gather motion data and foot 

contact force, were used to do online estimations of the human joint torque. An approach to 

evaluate interaction motion intention for perception-assist with an upper-limb wearable power-

assist robot was given in a work by [10]. The power-assist wearable robot user was given 

instructions to use visual information from the camera that was worn to assess the other person's 

motion intention in this approach.  

The problem of tracking the user's motion intentions when they were using an upper-limb 

power-assist wearable robot in planned social interactions with other people was addressed by 

[11]. If the interaction is inappropriate, the power-assist wearable robot's user motion can be 

automatically changed to guarantee excellent interaction performance or to prevent unforeseen 

mistakes when using the device. 

Surface electromyography (SEMG), a bioelectrical signal created when a neuron conveys 

human motion intention information directly to a related muscle, is an example of artificial 

intelligence-based estimate. Therefore, without any information loss or delay, the motion’s 

purpose may be fully inferred.  Due to its wealth of data, superior collecting technology, and 

noninvasiveness, human motion intention recognition based on SEMG will become widely 

used. Machine learning (ML) based motion and SEMG-driven musculoskeletal (MS) model-

based motion are the two methods of SEMG-based motion intention recognition. The most 

important aspect of the entire procedure is determining human motion intentions [12].  

A neuro-fuzzy technique for accurately anticipating the motion intention of the power-assist 

rehabilitation robot user was proposed, taking the effect of the difference in posture into 

consideration. It seems that many sensor modalities are needed for sophisticated device control 

given the challenges of providing reliable control with simply EMG. An EMG-based 

admittance controller (EAC) was created to address the problem. Determining the human 

purpose for a multifunctional device's successful use and effective operation presents a number 

of challenges, though. The primary rationale is the time-varying and noisy character of the 

EMG signals [13].  In addition, there is a complicated non-linear connection between the output 

forces of the various muscles. 

Extreme Learning Machine (ELM), a revolutionary approach, was suggested as a solution 

to these problems [14]. Using radial basis function networks, single and multi-hidden layer 

neural networks, feed-forward neural networks may be generalized effectively. However, 

because these approaches are sluggish when simulating a broad class of natural occurrences, 

they are unsuitable for applications like discerning human purpose. The need to fine-tune each 

network parameter is the fundamental reason for this delayed learning. Based on information 

from force sensors, joint current location, and current moving speed, ELM can quickly assess 

desired goals, learn human motion patterns, and forecast future movement. In assistive robotics 

and rehabilitation, this desired motion may be used to increase performance and robot 

compliance. An exoskeleton-style rehabilitation or assistance robot may be managed more 

successfully and comfortably by the user by utilizing the recommended interface, intention 

estimate, and intention-based control algorithms [15]. The rehabilitation power-assisted robot 

must be able to increase its output proportionally to the amount of mobility required. 
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Utilizing EMG data, a lower limb neuromusculoskeletal model was used to determine the 

torque at each human joint before applying an admittance control strategy to attain the desired 

position. A synchronized and robust Human-Robot Interaction (HRI) was produced using an 

EMG-based admittance controller (EAC). Wang et al. [16] employed neural networks to 

discover model parameters online before adding the desired trajectory into the impedance 

control of an upper-limb humanoid robot. To illustrate the expected course of human mobility, 

they created a model of an upper human limb. When the human motion intention is unsure and 

the robot dynamics are unknown, an interactive robot utilizes adaptive impedance control. It 

was found that the joint torque of the human body fits the essential requirements of motion 

intention estimate for the active power-assist after looking at the conduction path and numerous 

stage manifestations of motion intention in the human body. Joint torque is also said to create 

real-time, continuous output, precede human limb movements, and indicate the intensity and 

direction of the wearer's efforts. This calls for the need for an accurate model, an evaluation of 

human intent, and a method for measuring human joint torque. 

Conventional control systems based on force/torque sensors have difficulty interpreting 

human intentions and are typically susceptible to misreading or distorting such intentions 

because of external contact force interruptions, such as those experienced in daily activities. 

Therefore, a power-assist robot controller cannot accurately evaluate the real human force. 

Force/torque sensors are used to measure the overall amount of applied force, which includes 

both human intention and unidentified environmental factors. The power assist robot may also 

employ motion sensors on the user to facilitate the anticipated actions. For a power support 

exoskeleton robot arm, a motion intention-based bionic control system was suggested [17]. To 

pre-process the recorded motion signal, filtering is utilized. 

An improved robot skill learning system that took motion production and trajectory tracking 

into account, was suggested by [18]. During robot learning demonstrations, dynamic 

movement primitives (DMPs) were used to imitate robotic mobility. Each DMP is composed 

of a number of dynamic systems that act in concert to increase the stability of the motion toward 

the aim. A hybrid force/position control approach for robotic arms based on the stiffness 

estimation of an unknowable environment was developed to provide precise control and a 

stable system. Predicting human intent necessitates human-robot interaction.  

The primary aspect affecting the creation of upper limb rehabilitation robots is human 

motion intention. Since assistive or rehabilitative robots must move in line with the wearer's 

request, estimating the wearer's motion intention is a key challenge. For Power support systems 

for wearables, it is extremely important to design an effective identification method for 

identifying the wearer's motion intention. Thus, in this research, the impedance control 

interaction strategy is used for motion intention estimation of the therapist and SMC-FAT- 

adaptive controller is used to cater for the parameter uncertainties for a power assist upper limb 

rehabilitation robot with patient’s arm. 

3.  PROPOSED CONTROL STRATEGY 

The block diagram for the proposed control strategy is shown in Fig. 1. The motion intention 

controller calculates the therapists’ motion prediction, and it is integrated into the SMC-FAT 

controller. This controller acts as the feedback controller to cater to the patient‘s arm parameter 

uncertainties [19]. It takes the information of the desired trajectory, 𝑥𝑑 , actual angular 

velocity, 𝑞̇, and therapist’s torque, 𝜏ℎ to calculate the desired velocity, 𝑞𝑑̇ , for the therapist’s 

motion intention estimation. The value is then passed to the SMC-FAT controller. The outcome 

is integrated into the lumped rehabilitation robot and human arm plant.  
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Fig. 1. Block diagram of control strategy 

Fig. 2 shows the block diagram of the experimental setup. The angular position of the 

robot’s joints with the patient’s arm and therapist’s torque exerted will be measured using 

encoders and torque sensors respectively, and supplied to the microcontroller. The amount of 

desired angular velocity based on the motion prediction of the therapist will be calculated. The 

necessary amount of voltage required for assisting the therapist will be provided to the upper 

limb rehabilitation robot from the SMC-FAT based adaptive controller. 

 

Fig. 2.  Block diagram of the experimental architecture 

In this research, torque and position sensor measurements are used to calculate the 

therapist’s motion intention prediction. The therapist’s torque exerted and the robot joint’s 

angular position are the quantities that will be measured. The therapist’s torque is calculated 

using constant torque and sinusoidal value. The robot torque and position trajectory of the robot 

can only be derived from the output of the lumped upper limb rehabilitation robot and human 

arm, after the implementation of motion intention estimator and SMC-FAT- adaptive 

controller. The DAQ helps to communicate between the computer (PC) and the robot. In this 

research, a serial communication DAQ (NI USB-6211) is used, and it is connected to the Upper 

limb rehabilitation robot. The role of the PC is to program the controller and also serve as 

interface to help tune  and display the control parameters. The LabVIEW and the NI-DAQmx 

driver are installed into the PC to test the proposed controller on the power assist upper limb 

rehabilitation robot. Simulation and hardware experimental tests are used to evaluate the 

performance of the project with the aid of MATLAB and LabVIEW softwares. 
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3.1. Dynamic Model of the Integrated Power Assist Upper Limb Rehabilitation Robot 

with Human Arm  

The dynamic model of the upper limb rehabilitation robot with human arm can be written 

below. The mathematical model of the system is adopted from [20]. 

𝑋̇𝐵 = 𝐴𝐵𝑋𝐵(𝑡) + 𝐵𝐵𝑈𝑠(𝑡) + 𝐹𝐵𝑇(𝑡) + 𝑊𝐵𝑇̇(𝑡)                                     (1) 

where, 𝐴𝐵, 𝐵𝐵, 𝐹𝐵, 𝑊𝐵 are the system, input, load distribution, and rate of load distribution 

matrices with acceptable dimensions respectively. 𝑋𝐵(𝑡) is the vector consisting of the angular 

position, velocity, and acceleration of the electrical motor. 𝑈𝑠(𝑡) is an input vector, 𝑇(𝑡) is the 

mechanical link torque and 𝑇̇(𝑡) is its time derivative.  

where, 

𝑋𝐵(𝑡) = [𝑥1    𝑥2    𝑥3]                                                                                      (2) 

           = [𝑥1
𝐵    𝑥2

𝐵     𝑥3
𝐵]                                                                              (3)                    

           = [𝑞     𝑞̇      𝑞̈  ]                                                                                         (4) 

      𝐴𝐵 =  [
0 1 0
0 0 1
0 𝑎𝐵32 𝑎𝐵33

] 

𝐵𝐵 =  [
0
0

𝑏𝐵

]                                       𝐹𝐵 =  [
0
0
𝑓𝐵

]      

                                                                                                                              (5)  

𝑊𝐵 =  [
0
0

𝑤𝐵

]                            𝑈(𝑡) = [𝑈(𝑡)] 

 
𝑇(𝑡) = [𝑇(𝑡)]                           𝑇̇(𝑡) = [𝑇(𝑡)]                   

 

The non-zero elements of the 𝐴𝐵, 𝐵𝐵, 𝐹𝐵 and 𝑊𝐵 matrices are as follows [20]: 

            

          𝑎𝐵32 = −
𝑘𝑣𝑘𝑡 + 𝐵𝑣𝑅

𝐽𝑚𝐿
         𝑎𝐵33 = −

𝐵𝑣𝐿 + 𝐽𝑚𝑅

𝐽𝑚𝐿
   

         𝑏𝐵 =
𝑘𝑡

𝐽𝑚𝐿𝑁
 

                                                                                                                             (6) 

       𝑓𝐵 = −
𝑅2

𝑁2𝐽𝑚𝐿
                                     𝑤𝐵 = −

1

𝑁2𝐽𝑚
 

 
where, 

𝐽𝑚 is the moment of inertia, R is the armature resistance, L is the armature inductance, 𝐵𝑣  

is the viscous friction constant, 𝑘𝑣 is the Back Emf constant, and N is the inverse of gear ratio 

[20].   

 

The dynamic equation of the mechanical links of the 1 DOF rehabilitation robot with human 

arm can be written as follows. 

𝑇(𝑡) = 𝑀(𝑞(𝑡), 𝜁)𝑞̈(𝑡) + 𝐷̄(𝑞(𝑡), 𝜁)𝑉̂(𝑞̇) + 𝐺(𝑞(𝑡), 𝜁) + 𝐹𝑐 𝑠𝑔𝑛( 𝑞̇)𝑠 + 𝑉𝑐𝑞̇(𝑡)       (7)    
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where,                                                                                            

𝑞(𝑡) = [𝑞(𝑡)]𝑇                                                                                    (8)                                                                                               

𝑇(𝑡) = [𝑇(𝑡)]𝑇                                                                                    (9)                                                                                               

𝑀(𝑞, 𝜁) = [𝑀]                                                                                    (10)                                                                                               

𝐷̄(𝑞, 𝜁) = [𝐷̄11 0 0   0 𝐷̄15 𝐷̄16]        

𝑉̂(𝑞̇) = [𝑞̇],                                   𝐺(𝑞) = [𝐺]                                      (11)                                                                                                                                    

𝐹𝑐 = [𝐹𝐶]                                      𝑉𝑐 = [𝑉𝐶]                                    (12)                                                                               

where,  

𝑞 is the joint angular position 

𝑞 ̇  is the joint angular velocity 

𝑞̈  is  the joint angular acceleration  

𝑀(𝑞, 𝜁) is the positive definite inertia matrix. 

𝐷̄(𝑞, 𝜁) is the Coriolis and Centrifugal torques.  

𝐺(𝑞, 𝜁) is the gravitational torque. 

𝜁is the uncertain human arm mass carried by the rehabilitation robot. 

𝑇 is the control input torque from the actuators.  

Fc and Vc are the coulomb friction coefficients and viscous friction coefficients respectively.                      

The terms 𝐷̄(𝑞, 𝜁) 𝑉̂(𝑞̇) and 𝐺(𝑞, 𝜁) in Eq. (7) can be modified as 𝐷̂(𝑞, 𝑞̇, 𝜁) 𝑞̇ and 𝐺̂(𝑞, 𝜁)𝑞 

respectively. Hence, the lumped 1DOF rehabilitation robot with human arm dynamic model 

can be rewritten as: 

𝑇(𝑡) = 𝑀(𝑞(𝑡), 𝜁)𝑞̈(𝑡) + 𝐷̂(𝑞(𝑡), 𝑞̇(𝑡), 𝜁)𝑞̇(𝑡) + 𝐺̂(𝑞(𝑡), 𝜁)𝑞(𝑡) + 𝐹𝑐[𝑠𝑔𝑛(𝑞̇)𝑞(𝑡)] +
                    𝑉𝑐𝑞̇(𝑡)                                                                               (13) 

where,  

𝐷̂(𝑞, 𝑞̇, 𝜁) = [𝐷𝑞̇]                                                                           (14)                

𝐺̂(𝑞, 𝜁) = [
𝐺

𝑞
]     𝑠𝑔𝑛̂(𝑞̇) = [

𝑠𝑔𝑛(𝑞̇)

𝑞
]                                 (15)                                                                                                                       

 

The derivative of the torque with respect to time for 1 DOF rehabilitation robot with human 

arm  from Eq. (13) can be written as  

𝑇̇(𝑡) = 𝑀(𝑞, 𝜁)𝑞(𝑡) + 𝐶̃(𝑞, 𝑞̇, 𝜁)𝑞̈(𝑡) + 𝐷̃(𝑞, 𝑞̇, 𝜁)𝑞̇(𝑡) + 𝐹𝑐[𝑠𝑔𝑛(𝑞̇)𝑞̇(𝑡)] +

                    𝐹𝑐𝑞
𝑑

𝑑𝑡
(𝑠𝑔𝑛(𝑞̇)) +𝑉𝑐𝑞̈(𝑡)  (16)   

 By substituting Eq. (13) and Eq. (16) into the augmented actuator dynamic Eq. (1), the 

integrated dynamic model of a 1-DOF rehabilitation robot with human arm can be obtained in 

the following form. Only one joint of rehabilitation robot is considered in this study, which is 

the elbow for flexion and extension. The robot and human arm are considered as lumped body. 

The dynamic model is taken from [20] and can be written as: 

𝑋̇𝐵(𝑡) = 𝐴𝐵(𝑋𝐵, 𝜁, 𝑡)𝑋𝐵(𝑡) + 𝐵𝐵(𝑋𝐵, 𝜁, 𝑡)𝑈(𝑡)                               (17)       

where,  

𝐴𝐵(𝑋𝐵, 𝜁, 𝑡) = [𝐼3𝑁 − 𝑊𝐵𝑀(𝑋𝐵, 𝜁, 𝑡)𝑍𝐵]−1{𝐴𝐵 + [𝐹𝐵𝑀(𝑋𝐵, 𝜁, 𝑡) + 𝑊𝐵𝐶̃(𝑋𝐵, 𝜁, 𝑡) + 
𝑊𝐵𝑉𝐶]𝑍𝐵 + [𝐹𝐵𝐷̂(𝑋𝐵, 𝜁, 𝑡) + 𝐹𝐵𝑉𝐶(𝑋𝐵, 𝜁, 𝑡) + 𝑊𝐵𝐷̃(𝑋𝐵, 𝜁, 𝑡) + 𝑊𝐵𝐹𝐶𝑠𝑔𝑛̂(𝑞̇) + 

292



IIUM Engineering Journal, Vol. 24, No. 1, 2023 Adeola-Bello et al. 
https://doi.org/10.31436/iiumej.v24i1.2604 

 

 

𝑊𝐵𝑑̂(𝑡)]𝑍𝐵1 + [𝐹𝐵𝐺̂(𝑋𝐵, 𝜁, 𝑡) + 𝐹𝐵𝐹𝐶 𝑠𝑔𝑛( 𝑞̇) + 𝐹𝐵𝑑̂(𝑡) + 𝑊𝐵 𝑑̇̂(𝑡) +

𝑊𝐵𝐹𝐶 [
𝑑

𝑑𝑡
((𝑞̇))] 𝑍𝐵2}  (18)                                                                                            

𝐵𝐵(𝑋𝐵, 𝜁, 𝑡) = [𝐼3𝑁 − 𝑊𝐵𝑀(𝑋𝐵, 𝜁, 𝑡)𝑍𝐵]−1𝐵𝐵                                (19)     

Then, the integrated model of the 1-DOF robot manipulator can be obtained and has the 

following form: 

`𝑋̇𝐵(𝑡) = 𝐴(𝑋𝐵, 𝜁, 𝑡)𝑋𝐵(𝑡) + 𝐵(𝑋𝐵, 𝜁, 𝑡)𝑈(𝑡)                                 (20)                                                                                            

where,                                                      

𝐴𝐵(𝑋𝐵, 𝜁, 𝑡) = [
0 1 0
0 0 1

𝑎𝐵31 𝑎𝐵32 𝑎𝐵33

]                                               (21)                                                                                                 

𝐵(𝑋𝐵, 𝜁, 𝑡) = [𝑏]                                                                              (22)                                                                                                                                                                                          

A detailed explanation of the dynamic model of the rehabilitation robot exoskeleton with 

human arm can be found in  [20] , which will serve as a guide for the derivation of the integrated 

model of the 1 DOF robot arm.            

3.2. Motion Intention Controller 

For the motion intention controller, the impedance control is adopted [21]. Impedance control 

is defined as the relationship between the motion state of the endpoint and applied force. The 

relationship between the therapist’s torque, 𝜏ℎ, contact force, 𝐹𝑒𝑥𝑡 and transpose form of the 

Jacobian vector of the exoskeleton is given as [22]. 

𝜏ℎ = 𝐽𝑇𝐹𝑒𝑥𝑡                                                                                                    (23) 

The target impedance adopted from [22] is given as a second-order differential equation and can 

be written as 

𝑀(𝑋̈ − 𝑋̈𝑑 ) + 𝐵(𝑋̇ − 𝑋̇𝑑 ) + 𝐾(𝑋 − 𝑋𝑑 ) = −𝐹𝑒𝑥𝑡                                    (24) 

For this research, only one degree of freedom is used. To overcome some practical 

challenges in impedance control, 𝐹𝑔 is the extra gravity compensated force is considered [23].  

Eq. (24) is modified as.  

𝑀(𝑋̈ − 𝑋̈𝑑 ) + 𝐵(𝑋̇ − 𝑋̇𝑑 ) + 𝐾(𝑋 − 𝑋𝑑 ) = −𝐹𝑒𝑥𝑡 − 𝐹𝑔                           (25) 

𝑀(𝑋̈ − 𝑋̈𝑑 ) is omitted for simplicity. Therefore, Eq. (25) can be written as. 

𝐵(𝑋̇ − 𝑋̇𝑑 ) + 𝐾(𝑋 − 𝑋𝑑 ) = −𝐹𝑒𝑥𝑡 − 𝐹𝑔                                                     (26) 

where, 

𝑀 is the moment of inertia 

𝑋̈ is the actual acceleration 

𝑋̈𝑑 is the desired acceleration 

𝑋̇ is the actual velocity  

𝑋̇𝑑 is the desired velocity 

𝑋 is the actual position 

𝑋d  is the desired position  

𝐵 is the damping coefficient 

𝐾 is the stiffness 

𝐹𝑔 is the extra gravity compensated force. 
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A relationship between the target speed and the interaction torque of each joint is necessary 

to obtain the motion intention estimation [24]. Thus, the angular velocity needs to be converted 

to the velocity of the endpoint of the robotic arm by using the Jacobian matrix [24].  Hence, Eq. 

(26) is multiplied by the Jacobian matrix, 𝐽𝑇 

𝐽𝑇𝐵(𝑋̇ − 𝑋̇𝑑 ) + 𝐽𝑇𝐾(𝑋 − 𝑋𝑑 ) = −𝐽𝑇𝐹𝑒𝑥𝑡 − 𝐽𝑇𝐹𝑔                                      (27) 

Substituting Eq. (23). into Eq. (27) yields. 

𝐽𝑇𝐵(𝑋̇ − 𝑋̇𝑑 ) + 𝐽𝑇𝐾(𝑋 − 𝑋𝑑 ) = −𝜏ℎ − 𝐽𝑇𝐹𝑔                                            (28) 

Expand and simplify Eq. (28) will result in. 

𝐽𝑇𝐵𝑋̇ − 𝐽𝑇𝐵𝑋̇𝑑 + 𝐽𝑇𝐾(𝑋 − 𝑋𝑑 ) = −𝜏ℎ − 𝐽𝑇𝐹𝑔                                         (29) 

𝐽𝑇𝐵𝑋̇𝑑 = 𝜏ℎ + 𝐽𝑇𝐹𝑔 + 𝐽𝑇𝐾(𝑋 − 𝑋𝑑 ) + 𝐽𝑇𝐵𝑋̇                                           (30) 

Substituting 𝑋𝑑̇ = 𝐽𝑞𝑑̇ [23] into Eq. (30) to obtain the velocity of the endpoint, gives.    

 𝐽𝑇𝐵𝐽𝑞𝑑̇ = 𝜏ℎ + 𝐽𝑇𝐹𝑔 + 𝐽𝑇𝐾(𝑋 − 𝑋𝑑 ) + 𝐽𝑇𝐵𝑋̇                                  (31) 

Eq. (31) is simplified to derive the equation for the motion intention estimator 

𝑞𝑑̇ =
𝜏ℎ+𝐽𝑇𝐹𝑔 +𝐽𝑇[𝐵𝑋̇+𝐾(𝑋−𝑋𝑑 )]

𝐵 𝐽𝑇𝐽
                                                                        (32) 

where, 

𝜏ℎ is the interaction torque from the therapist 

J is the Jacobian matrix 

𝐽 = [
−𝑙 sin 𝑞    
𝑙 cos 𝑞   

𝑙

]                                                                                                     (33)                                                                         

According to the equation, each joint's intended velocity will change throughout active 

training sessions as the interaction torques from the associated joint change. Contact torques, 

departure from the endpoint's reference trajectory, and the damping impedance coefficient 𝐵, 

all have an impact on the rate of current changes. The desired velocity of each joint modifies 

when the endpoint position deviates from the prescript trajectory, bringing the subject back to 

the reference trajectory, indicating 𝑋𝑑 ≠  𝑋. The adjustment range is determined by the stiffness 

and damping impedance coefficients 𝐾and 𝐵 [24]. The interaction controller outputs the 

required joint velocity 𝑞𝑑̇, which the SMC-FAT adaptive controller will use. Fig.3 shows the 

block diagram for the motion intention controller. 

3.3.SMC-FAT-based Adaptive Controller 

The motion intention estimator is integrated into the SMC-FAT based adaptive controller to 

get the desired motion and cater to the uncertainties in the lumped robot and human arm plant. 

The SMC-FAT controller equation used in the proposed control law for the feedback loop is 

written as [25]. 

𝑋𝑎 = [𝑞      𝑞̇       𝑞̈]𝑇                                                                                      (34)                                                                                                                                                            

𝑋𝑑𝑎 = [𝑞𝑑      𝑞̇ 𝑑      𝑞̈𝑑]𝑇                                                                                (35) 

𝑈𝑠(𝑡) = 𝑈𝑒𝑞 + 𝑈𝑃𝐼 + 𝑈𝑎                                                                              (36) 
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Fig. 3. Block diagram of motion intention estimator 

 

The measured (actual trajectory) and desired (desired trajectory) state variables can be 

represented by vectors 𝑋𝑎 and 𝑋𝑑𝑎  respectively. 

where, 𝑈𝑠  , 𝑈𝑒𝑞 , 𝑈𝑃𝐼 and 𝑈𝑎  terms of the proposed controller are described below. The 𝑈𝑠  is 

the control signal supplied to the plant. The equivalent control term 𝑈𝑒𝑞 is considered for the 

approximately known nominal system [25]. 

𝑈𝑒𝑞 = 𝐵𝐵̄
−1

(𝑋̇𝑟 − 𝐴𝐵̄𝑋𝑎)                                                                           (37) 

where, 𝐴𝐵̄ and 𝐵𝐵̄ represent the nominal matrices of 𝐴𝐵 and 𝐵𝐵respectively. 

𝑋𝑎 is the actual trajectory 

𝑋̇𝑟 is the reference acceleration and it is denoted by the term 𝑋̇𝑑𝑎 −
𝜆2

2𝑒

2𝜆1
 

The second term of the control strategy 𝑈𝑃𝐼 is a sort of PI (Proportional Integral) controller 

that is required to increase closed-loop stability and transient performance. 

𝑈𝑃𝐼 = −𝐵𝐵̄
−1

𝐾1𝑆(𝑡) = −𝐵𝐵̄
−1

𝐾1(2𝜆1𝑒 + 𝜆2
2

∫ 𝑒𝑑𝑡)
                              

(38) 

where, 𝐾1   is a positive definite constant and 𝑆(𝑡) is the sliding surface of the controller 

𝜆1 and 𝜆2 are 𝑛 × 𝑛 diagonal positive definite matrix 

𝑒 = 𝑋𝑎 − 𝑋𝑑𝑎 is the tracking error vector  

The term 𝑈𝑎 is the term used to describe the process of removing approximation errors.
  

𝑈𝑎 = −𝐵𝐵̄
−1

𝐾0𝛼̂0[𝑠𝑔𝑛( 𝑆(𝑡))]
                                                                 

(39) 

where, 𝐾0 is a constant, 𝛼̂0is the estimation of 𝛼0, and the upper bound of the uncertainties. 

 

Substituting Eq. (37), Eq. (38), and Eq. (39), into Eq. (36), as shown below. 

𝑈𝑠(𝑡) = 𝐵𝐵̄
−1

(𝑋̇𝑟 − 𝐴̄𝑋𝑎 − 𝐾1𝑆 − 𝐾0𝛼̂0[𝑠𝑔𝑛( 𝑆(𝑡))])                           (40) 

A detailed explanation of the derivation and stability proof of the controller can be found in 

[25]. 

3.4.Simulation Results 

 The simulation was carried out using different values of the constant and sinusoidal 

waveform for the torque exerted by the therapist. This research focuses on a 1 DOF upper limb 

rehabilitation arm, therefore only one motor is used in the verification experiment. The motion 

intention estimator based on impedance control as in Section 3.2, is adopted for the motion 

intention controller. The impedance parameters of the motion intention controller are set as 

𝐾  = 0.34 N/m and 𝐵 = 50𝑁𝑠/m. The extra gravity compensated force is set at 𝐹𝑔 = [0; 0; 0] 
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N initially. The SMC-FAT controller parameters are set as 𝜆1 = 50, 𝜆2 = 1, 𝐾0 = 1 and 𝐾1 =
337. 

Fig. 4 and 5 shows the tracking performance of the motion intention controller using a 

constant torque and sinusoidal waveform respectively. The range of the constant torque was 

calculated using the formula in Eq. (41) and the sinusoidal formula to represent the torque from 

the therapist is shown in Eq. (42). 

          𝜏ℎ = 𝐹 ×  𝑟                                                                              (41) 

𝜏ℎ = A sin(𝑡) + ∅                                                                              (42) 

In Fig.4 the red line shows the actual angular velocity and the dash blue line represents the 

desired angular velocity. It can be seen that the actual angular velocity follows the desired 

angular velocity that is calculated using the therapist’s motion intention estimation based on 

his/her input torque 𝜏ℎ. This result shows that the proposed control strategy has successfully 

calculated the therapist’s motion intention and the robot follows the prescribed velocity 

trajectory under the SMC-FAT based adaptive controller. 

 

Fig.4. Tracking performance of the proposed control strategy at constant 𝜏ℎ 

Fig. 5 shows the tracking performance of the motion intention estimator using the sinusoidal 

equation, 𝜏ℎ = sin(2) + 11.76 𝑁𝑚 to represent variation in the torque exerted by the therapist. 

It can be seen in Fig. 5 below that the actual angular velocity follows the desired angular 

velocity resulting from the motion intention estimator, under the proposed control law strategy. 

 
Fig.5. Tracking performance of the proposed control strategy at sinusoidal torque 

From the simulation results, it can be observed that the proposed controller is effective. The 

motion intention estimator produces the desired velocity based on the therapist’s torque. This 
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value was fed into the SMC-FAT controller and the robot follows the desired trajectory 

precisely. The average percentage error at sample time of 5 seconds is 0.002rad/sec and 

0.005rad/sec for constant and sinusoidal therapist‘s torque respectively. 

 

4. SIMULATION RESULTS AND EXPERIMENTAL ANALYSIS 
 The simulation of the motion controller has been conducted using MATLAB Simulink for 

different inputs of torque and the experimental analysis is done with the aid of LabVIEW from 

National Instruments (NI). 

 

4.1.Experimental Results 

The experimental setup consists of 1 DOF robot arm and computer installed with LabVIEW 

to control the robot arm with the proposed motion intention estimator. LabVIEW is used to test 

and analyze the proposed motion intention controller on the robot arm. The National 

Instruments Data Acquisition (NI DAQmx) driver has been installed along with LabVIEW into 

the computer to aid the communication between the robot and the computer. The computer that 

is installed with LabVIEW is connected to the robot using the NI USB-6211 DAQ. The 

schematic diagram of the control strategy and motion intention estimator has been built in 

LabVIEW and run to check for errors. After the schematic has been verified, the robot is 

powered on, and the LabVIEW programming is launched. The robot motor torque, robot 

position, actual angular velocity, and desired angular velocity are displayed on the interface of 

the LabVIEW on the computer. 

 

The motion intention controller impedance parameters are set as 𝐾  = 0.34 N/m and 𝐵 =
50𝑁𝑠/m. The gravity force is set at 𝐹𝑔 = [0; 0; 0] N at first. The SMC-FAT controller 

parameters are set as 𝜆1 = 50, 𝜆2 = 1, 𝐾0 = 1 and 𝐾1 = 337. The experimental result of the 

robot’s joint angular velocity is shown in Fig. 6.  

 

Fig. 6 shows the desired angular velocity trajectory based on the therapist’s motion intention 

estimation, 𝑞𝑑̇  and the actual angular velocity 𝑞̇, under the control of the SMC-FAT controller.  

 

 
Fig.6. Experimental result of actual angular velocity and desired angular velocity against 

time using human torque 

 

Fig.7 shows the corresponding therapist’s torque during the experiment. The result shows 

that the controller produces the estimated motion intention based on the torque exerted by the 

therapist and drives the robot to track the resulting desired trajectory.  
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Fig.7. Therapist’s torque input in hardware experimental test  

 

From the simulation results and hardware experiment, it can be observed that the proposed 

controller is effective in generating the desired angular velocity, 𝑞𝑑̇  based on the motion 

intention of the therapist and controlling the upper limb rehabilitation robot to follow the 

desired trajectory. The results verify that the proposed control strategy is successful. The 

therapist‘s motion intention can be predicted for the upper limb rehabilitation robot based on 

the torque exerted by the therapist under the proposed technique. The SMC-FAT - based 

adaptive controller integrated into the motion intention estimator can overcome the 

uncertainties in the robot and human arm parameters. The maximum error is 0.02rad for the 

hardware experiments. 

 

5. CONCLUSION  
A new control method has been formulated for therapists‘ motion intention estimation in a 

power assist upper limb rehabilitation robot based on impedance controller. The controller uses 

the therapist’s interaction torque to estimate his/her motion intention and produces the desired 

angular velocity for the feedback controller. The SMC-FAT adaptive controller implemented 

in the feedback loop overcomes the uncertainties, in the lumped rehabilitation robot and human 

arm plant. Integrating the formulated motion intention estimator and SMC-FAT Adaptive 

control yields high tracking accuracy with the therapist’s motion intention.  The simulation 

results and hardware experiment validated that the proposed control strategy is successful in 

producing the motion intention estimation and accurate trajectory tracking with a maximum 

error of 0.005 rad/sec and 0.02 rad/sec respectively. In future work, the integrated motion 

intention controller and SMC-FAT controller can be used for a higher DOF of the upper limb 

rehabilitation robot arm system. Other types of uncertainties can also be considered in future 

studies. 
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