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ABSTRACT: In this paper, the individual relativistic perturbations are simulated and 
compared, for two orbit cases: (1) a medium altitude eccentric earth orbit (MEO), and (2) 
a Molniya orbit. The simulations‘ results are presented in both graphical and statistical 
form. The simulation data reveals that the specific forces that arise from the relativistic 
perturbations, do manifest as variations in the classical orbital elements. The simulated 
data also show that the specific forces exhibit similar effects that materialize from 
commonly considered perturbations that are used in orbit design and maintenance. 

ABSTRAK: Dalam kertaskerja ini, pengusikan relativistik disimulasi dan dibandingkan 
secara individu bagi dua kes orbit: (1) orbit eksentrik bumi ketinggian sederhana (MEO), 
dan (2) orbit Molniya. Hasil simulasi ini dibentangkan dalam bentuk grafik dan statistik. 
Data simulasi menunjukkan daya spesifik pengusikan relativistik timbul sebagai variasi 
bagi elemen orbit klasik. Data simulasi menunjukkan daya spesifik memberi kesan yang 
sama dengan pengusikan biasa yang digunakan dalam rekabentuk dan penyelenggaraan 
orbit. 
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1. INTRODUCTION  

In Newtonian mechanics, the natural motion of a spacecraft around a celestial body is 
described by a second order vectorial differential equation; assuming that the spacecraft is 
attracted only by the celestial body, which is assumed to be a perfect sphere [1]. This 
equation of motion is based on Newton's law of gravitation. Prior works in the literature 
have generalized the model of spacecraft motion to include the effect of gravity from a 
third body (other than the central body and the spacecraft) and continuous thrust forces 
[2]. The three-dimensional restricted four-body problem was also studied [3]. Lagrange 
points were also utilized to find low energy interplanetary trajectories [4]. All the work 
described above has been developed in a Newtonian framework; and exhaustive sets of 
numerical tools have been developed over years to carry out all orbital mechanics tasks 
including trajectory design, propagation, and determination. During the twentieth century, 
however, Einstein developed the special and general relativity theories. Einstein's field 
equations are the relativistic generalization of Newton's law of gravitation [5]. 

The General Theory of Relativity (GTR) has traditionally been looked at and utilized 
in the realms of theoretical and mathematical physics. The GRT was used to provide more 
accurate calculations for the purpose of matching observational data [6]. Several studies, 
however, have addressed the relativistic perturbations on low earth orbits. On one hand, 
some low earth missions require high precession navigation in which relativistic 
perturbations need to be accounted for. On the other hand, several measurements data 
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were collected from low altitude satellites and hence models for the relativistic 
perturbations at low earth altitudes are used for verifications. Reference [7], for instance, 
presents numerical simulations for the overall general relativity theory perturbations, 
among several other perturbations, on low earth orbits. This paper, however, focuses on 
the quantification of the individual relativistic perturbations on earth orbits. 

The Schwarzschild metric, ���, is implemented for space-time; and the line element 

in the space-time can be calculated by two simple contractions of the metric tensor with 
the differential length element (Schwarzchild solution [8]):  

��� � ��������� (1) 

Where the differential length element ��� is represented by the space-time 4-vector 

as, ��� � 	�
 �� �� �
��.  

Where �, �, and 
 are the polar coordinates, and 
 is the time. The geodesic equations 
that determine the motion of a particle in a Schwarzchild-space are:   
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Where c  is the speed of light, 
2

=
c

GM
m •  is the Schwarzschild radius, G  is Newton's 

constant, and •M  is the mass of an arbitrary planet. Since three-plus-one (space and time) 

coordinates are now being used, an independent fourth equation is needed. For this, the 
first integral of Equations [5,9,10] is used [11]:  
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� � ���

���� �  
�� *�1 � 2 �

� �+ ���
���� , �� ���

���� , �� sin�*�- ��&
�� ��- (5) 

It is possible to make the following two simplifying assumptions [10]: (1) the central 
body in a satellite-planet system is the only relativistically significant body, and (2) the 
influence of the relativistic forces is so slight that they may be thought of, and treated, as 
perturbations [10].  Applying these assumptions allows for the modeling of relativistic 
forces in the same manner that Newtonian gravitational forces and motion are modeled 
[12]:  

�./ � � �
�� �̂ , 1.23�� (6) 

 The individual relativistic perturbing accelerations that make up 1.23�� are outlined 

section 2. Section 3 shows the numerical results for simulations of the individual 
relativistic perturbations on two orbits: a Medium Earth Orbit (MEO) and a Molniya orbit. 

2. ORBIT RELATIVISTIC PERTURBATIONS 

The special perturbation technique and Crowell's formulation were chosen to produce 
the numerical results shown in section 3 because of its rapid succession. The form of the 
relativistic perturbing terms used in the numerical simulations are based on those 
presented in [10]. This section introduces the acceleration terms that are used in the 
numerical simulations. 
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2.1 Central Body Terms 

The central body shape effects are modeled in the relativistic framework as a 
combination of two perturbation terms [13]: (1) the spherical perturbation term, and (2) 
the relativistic oblateness term. The spherical body perturbation term provides the 
acceleration of a test particle around a spherically symmetric central body [8, 14, 13]. The 
spherical body perturbation term can be modeled as:  

1.4� � �5
���6 7�2*8 , 9- �:

� � ;<�.= . �.=?� �. , 2*1 , ;-*�.. �.=-�.=@ (7) 

where γ  and β  are the relativistic parameters, r  is the magnitude of the position 

vector �., and A: is the gravitational parameter of earth. The shape of earth is an oblate 

spheroid [12]. In non-relativistic theory, the earth's oblateness is modeled using 
derivatives of the zonal harmonic functions [12]. The most prominent of these is the 
second zonal harmonic term [9], which produces what is commonly refered to the B�-term. 
The final perturbation acceleration for the B�-term takes the form [12]:  

1.C� � � DC��:E:�
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�� - (8) 

 where ( zyx ,, ) are the components of �., K: is the average earth radius, and B� is the 

earth's oblateness factor. This term does not take into account the relativistic effects acting 
on the system [14]. The relativistic oblateness term takes the form [14]:  
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 where ⊕a  is the earth semimajor axis. The relativistic oblateness term may be 

regarded as an updated version of the standard oblateness term, because the latter was the 
starting point to derive the necessary relativistic correction [14]. 

2.2 Lense-Thirring and Rotational Energy Terms 

The Lense-Thirring perturbation term is referred to as a gravitomagnetic effect and 
arises from angular momentum of the central body [13]. This manifests itself by 
“dragging” a reference frame along an orbit in the direction of the the central body's 
rotation [12]. In other words, the Lense-Thirring effect forces the orbit to precess around 
the central body in the direction of the central body's rotation (frame dragging). 

The Lense-Thirring perturbation is modeled as:  

1Z[� � \*1 , ;- �:
���6  	 D

�� �ZBZ] ��Z ^ �Z= � , *�Z= ^ BZ]-�    (10) 

 where BZ] is the the Specific polar moment of inertia (1.3455`13a�), and \ is the 
Lense-Thirring parameter. Within the GTR framework, \may be taken to equal 1.0 [13]. 
Using this as a simplifying assumption, the classical form of the Lense-Thirring term takes 
the form [13]:  
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 Equation (11) was used in the simulations presented in this paper. 

The Lense-Thirring term does not give the entire picture of frame dragging 
because there is also the rotational energy perturbation acceleration, which is modeled as 
[13, 10]:  

1ZEg � D
 h  i:] *1 , ;- �:

���6  �j:
� �� 7O1 � 5 �H

���Q �Z , 2 O�Z. Ω̂:Q Ω̂:@  (12) 

 Reference [13], however, has shown that the rotational energy term contributes small 
perturbing forces. 

2.3 Geodesic Precession Term 

The form of the geodesic precession acceleration that was used to create the data in 
this paper is [10]:  

1Zlm � � �n
��E:n6 *1 , 2;-*KZ=

:n ^ KZ:n- ^ �Z=     (13) 

 Where Ao is the gravitational parameter of the sun, the relative position and velocity 

vectors of the earth with respect to the sun are KZ:n and KZ=
:n respectively, and the velocity 

vector of the satellite with respect to the earth is�Z=
. 

3. NUMERICAL RESULTS AND DISCUSSION 

All calculations for all terms were done in the earth-fixed coordinate frame. The 
earth's position and velocity data were generated using the HORIZONS system1, which is 
maintained by the Solar System Dynamics Group of the Jet Propulsion Laboratory (JPL)2. 

Two orbits are considered for simulations: a Medium altitude Earth Orbit (MEO), and 
a Molniya orbit. The orbital elements for both orbits are listed in Table 1. 

Table 1: Orbital Parameters for Test Orbit Cases. 

Orbital Parameter  MEO  Molniya Orbit Units 

οθ
 28.0000  28.0000  degrees 

οe
 0.4500  0.7000  NA 

οa  
1.34147272 E4  2.66102228 E4 kilometers 

οp
 

1.6982450 E4  1.35712136 E4 kilometers 

οi  32.0000  63.9000 degrees 

οω
 18.0000  0.0000  degrees 

οΩ
 24.0000  0.0000  degrees 

Orbital Period Π  4.2952  12.0000  hours 

  

                                                
1
http://ssd.jpl.nasa.gov/?horizons 

2
http://www.jpl.nasa.gov/ 
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This section contains a discussion for the effects of the relativistic oblateness 
perturbation on two different orbit cases. The data presented includes orbital parameter 
differences plots as well as specific force magnitudes. This is followed by a comparison of 
the relativistic oblateness perturbation to the standard oblateness perturbation developed in 
the classical theory. A summery for the trends of all other relativistic perturbations is then 
presented. Detailed results for the other relativistic perturbations are not presented in this 
paper, but are available in [16]. 

3.1  Relativistic Oblateness Orbital Element Data 

The effects of the relativistic oblateness perturbations on the MEO and the Molniya 
Orbit are discussed in this section. The difference plots were generated by taking the data 
from the desired perturbation and subtracting out the data that was produced by integrating 
the orbit without perturbation. It is possible to classify the modulations experienced by the 
orbital elements into three classes [9]. They are: (1) short term periodic, (2) long term 
periodic, and (3) secular (adapted from [9]). A secular variation is a modulation that has a 
consistent trend over a long period of time. 

3.1.1 The MEO 

The true anomaly θ  and the magnitude of spacecraft's position vector r  exhibit 
periodicity, as seen in Fig. 1 and Fig. 2 respectively. Both are short term periodic. The 
periodicity of these difference plots suggests that these elements experience phasing. Both 
orbits, while exhibiting a strong periodic behavior, also show secular characteristics as 
well. As seen in Fig. 1 that the true anomaly difference increases with time. However the 
difference plot of the spacecraft position vector's magnitude, seen in Fig. 2, shows a full 
reversal. This full reversal implies that this difference quantity has a lead-lag relationship 
with the unperturbed orbit. 

The remainder of the orbital elements displayed in Fig. 1 and Fig. 2 exhibit 
predominately secular behavior. On a short time scale, all of these elements do show some 
short term periodicity. However, the short term periodicity is negligible in effect compared 
to the secular modulation. 

3.1.2 Molniya Orbit Case 

The true anomaly θ , the angle of inclination i , and the magnitude of the spacecraft 
position vector r  exhibit periodic behavior. The inclination is the only true periodic 
element, which exhibits both short and long term periodicity.  The  difference  plot  of  the  
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      Fig. 1: MEO Angular Differences for Relativistic Oblateness versus Time.

Fig. 2: MEO Distance Differences for Relativistic Oblateness versus Time.
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Fig. 2: MEO Distance Differences for Relativistic Oblateness versus Time. 
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true anomaly θ , shown in Fig. 3, presents with both short term periodic trends and a 
secular component. The difference plot of 
This phasing is evident because the difference between the perturbed and unperturb
orbits does go to zero. Even though this plot exhibits increasing phase, it is not a true 

secular variation. It can be seen from Figure 4 that the semi
parameter p , and the eccentricity 

further from their values in the unperturbed orbit.

  Fig. 3: Molniya Orbit Angular Differences for Relativistic Oblateness versus 

 Fig. 4: Molniya Orbit Distance Differences
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in Fig. 3, presents with both short term periodic trends and a 
secular component. The difference plot of r , seen in Fig. 4, does show phasing behavior. 
This phasing is evident because the difference between the perturbed and unperturb
orbits does go to zero. Even though this plot exhibits increasing phase, it is not a true 

secular variation. It can be seen from Figure 4 that the semi-major axis 
, and the eccentricity e  experience secular behavior and are all decreasing 

further from their values in the unperturbed orbit. 

Fig. 3: Molniya Orbit Angular Differences for Relativistic Oblateness versus 
Time. 

Fig. 4: Molniya Orbit Distance Differences for Relativistic Oblateness versus 
Time. 
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3.2  Discussion of Orbital Elements Data 

Comparisons between the relativistic oblateness and the standard oblateness 
perturbations are summarized in Tables 2 and 3. Table 2 displays the type of modulation 
(and trend where applicable) exhibited by each of the orbital elements. The minimum, 
maximum, mean and median values of the data contained in Table 2 are shown in Table 3. 

Table 2: Summary of Data Trends.  

 
Standard Oblateness Relativistic Oblateness 

MEO Molniya Orbit MEO Molniya Orbit 

θ  
Variation Sec. and Per. Sec. and Per. Sec. with Per. Sec. with Per. 

Trend Decreasing Decreasing Increasing Increasing 

a  
Periodic Periodic Secular Secular Periodic 

na  na  Decreasing Decreasing na  

e  
Periodic Periodic Secular Secular Periodic 

 na  na  Increasing Decreasing 

p  Variation Periodic Periodic Secular Secular 

Trend na  na  Decreasing Decreasing 

ω  
Variation Secular na  Secular na  

Trend Decreasing na  Decreasing na  

i  
Variation Periodic Periodic Secular Periodic 

Trend na  na  Increasing na  

Table 3: Summary of Data Values. 

 
Standard Oblateness Relativistic Oblateness 

MEO Molniya Orbit MEO Molniya Orbit 

θ  
(radians) 

Min -3.2678 -2.6793 -1.1757e-10 -6.9146e -10 

Max 6.1997 6.0730 5.3926 e -4 5.1826 e -4 

Mean -8.5404e-4 2.3265 e -4 6.1383 e -5 2.2210 e -5 

Median -0.5445 -0.2482 3.4025 e -5 7.7300 e -6 

a  (km) 

Min -9.7610 -36.3296 -0.0010 -0.0021 

Max 9.7989 51.6643 8.4599 e -6 3.9202 e -5 

Mean 7.3036 25.8456 -5.1849 e -4 -0.0010 

Median 8.8115 24.5990 -5.1853 e -4 -0.0010 

e  
(unitless) 

Min 4.2974e-4 -4.2159 e -4 -1.4417 e -10 -8.5419 e -9 

Max 6.3476e -4 5.1706 e -4 6.0703 e -8 4.6596 e -10 

Mean 4.7746e -4 2.1391 e -4 3.0292 e -8 -4.0785 e -9 

Median 5.7425e -4 2.1133 e -4 3.0303 e -8 -4.0768 e -9 

p  

(km) 

Min -2.6022 -2.8480 -0.0016 -7.6181 e -4 

Max 2.7285 8.5697 5.9371 e -6 1.7735 e -5 

Mean 0.0527 5.2019 -7.7922 e -4 -3.7429 e -4 

Median 0.0586 4.7992 -7.7954 e -4 -3.7438 e -4 

Ω  
(radians) 

Min 0.0000 0.0000 0.0000 0.0000 

Max 1.5443 0.1810 1.3594 e -9 0.0000 

Mean 0.7721 -0.0316 6.7998 e -10 -0.1222 

Median 0.7726 0.0882 6.8004 e -10 0.0000 

ω  
(radians) 

Min -0.3134 0.0000 -5.2862 e -7 0.0000 

Max 5.9688 0.0000 8.6658 e 11 0.0000 

Mean 4.2650 0.0000 -2.6394 e -7 7.2713 e -4 

Median 4.7864 2.6001 e -4 -2.6407 e -7 -6.1439 e -8 

i  
(radians) 

Min -1.9468e-4 -5.2546 e -5 -1.8407 e -13 -5.0848 e -14 

Max 2.0410e-4 1.5803 e -4 2.0363 e -11 1.5898 e -13 

Mean 3.9908e-6 9.5947 e -5 1.0153 e -11 1.2519 e -13 

Median 4.4409e-6 8.8525 e -5 1.0156 e -11 1.2768 e -13 
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3.2.1 Data Trends Analysis 

There are similarities between the standard and relativistic oblateness perturbations 

trends. Examples of these similarities are the true anomaly θ  and the argument of 
periapsis ω . The determination of ω  have been labeled as `` na '' because the inclination 
of the Molniya orbit is such that the rate of change of ω  vanishes. It is possible to see that 
the previously mentioned elements have the same type of modulation in each orbit case for 
their respective perturbations. There is a change in the trends exhibited by the true 
anomaly. The standard oblateness perturbation forces a decrease in this quantity. Whereas 
the relativistic oblateness perturbation induces an increase. 

The same pattern is seen in the semi-major axis a  and semi-parameter p . Both of 

these elements have been shown to only exhibit purely periodic modulation under the 
standard oblateness perturbation [9]. When the relativistic oblateness perturbation is 
applied it is seen that both of these elements modulate in a secular fashion with a 
decreasing trend. 

Eccentricity's, e , modulation type switches to secular with the implementation of the 

relativistic perturbation in the same manner as the modulation type of a  and p  in the 

preceding paragraph. However, there is a unique discrepancy of how the relativistic 
oblateness perturbation manifest in the MEO compared to how the perturbation manifests 
in the Molniya orbit. The relativistic oblateness perturbation effects the test orbits' 
eccentricity in the opposite manner -- i.e. the MEO's eccentricity increases while the 

Molniya orbit's decreases. In both trial orbits, the inclination i  experienced periodic 
modulation when the standard oblateness is simulated. This is in agreement with the proof 
provided in [9]. This is the same type of variation that is exhibited with the Molniya orbit 
when the relativistic oblateness perturbation is implemented. However, the MEO's 
inclination, under the relativistic oblateness perturbation, exhibits an increasing secular 
variation. 

3.2.2 Discussion of Data Values 

Table 3 shows the minimums, maximums, means, and medians of the difference data 

for the orbital elements. The true anomaly, θ , is more effected for the MEO in both the 
standard and relativistic oblateness. However, the difference values are extremely close 
between each orbit case. This implies that there is very little difference between the 
different perturbation on this orbital parameter. The orders of magnitude for all of the 
comparison values (minimum, maximum, mean, and median) differ between half to one 
order of magnitude. 

The semi-major axis is more effected for the Molniya orbit case under both 
perturbations. For the standard oblateness, the semi-major axis difference values are 
approximately one order of magnitude higher. This equates to a maximum instantaneous 
difference of approximately 51 kilometers. However, these difference values do not 
contribute to a secular change in this parameter as was mentioned previously. The 
difference values for the relativistic perturbation do contribute to the negative secular 
deviations pointed out in the last section. 

The MEO's eccentricity, e , is more effected than the Molniya's eccentricity in both 
the standard and relativistic oblateness perturbations. The order of magnitudes of the 
comparison values are all similar in the case of the standard perturbation. However, in the 
case with the relativistic perturbation, there are order of magnitude differences. These 
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differences are seen in all of the comparison values. In general, the order of magnitude 
differences are between one and two orders of magnitude lower for the Molniya orbit.

The semi-parameter, p , is more effected for the Molniya orbit under the standard 

oblateness perturbation; however, the MEO's semi
influence of the relativistic oblateness perturbation. There is a difference of two orders of 
magnitude difference higher in the mean and median comparison values under the 
standard perturbation. In comparison, the MEO case, while under the influence of the 
relativistic perturbation, is approximately one order of magnitude higher. However, the 
order of magnitude analysis for the the orbit cases under the relativistic perturbat
inconclusive. Therefore, the same argument could be made for the Molniya orbit case.

For the inclination, i , the Molniya orbit is more effected under the standard 
perturbation. The MEO's inclination is more effected under the r
Under the standard perturbation, there is a one order of magnitude difference in all 
comparison values. Under the relativistic oblateness perturbation, there is a one order of 
magnitude difference in the minimum comparison value a
difference in all other comparison values

3.3  Discussion of Specific Force Data

The specific force components (

from the relativistic oblateness perturbation is 
calculated through a post processing routine that used the outputted state vectors.

3.3.1 Relativistic Oblateness Perturbation

For both the MEO and the Molyina cases, all of the components and the magnitude of 
the specific force plots shown in Fig. 5 and Fig. 6 exhibit short term periodicity. All of the 
components also show full reversal. The mean value of the components, as well as the 
magnitude, also remains relatively constant.

Fig. 5: MEO Specific Force for Relat
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all of the comparison values. In general, the order of magnitude 
differences are between one and two orders of magnitude lower for the Molniya orbit.
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teness perturbation; however, the MEO's semi-parameter is more effected under the 
influence of the relativistic oblateness perturbation. There is a difference of two orders of 
magnitude difference higher in the mean and median comparison values under the 
tandard perturbation. In comparison, the MEO case, while under the influence of the 

relativistic perturbation, is approximately one order of magnitude higher. However, the 
order of magnitude analysis for the the orbit cases under the relativistic perturbat
inconclusive. Therefore, the same argument could be made for the Molniya orbit case.

, the Molniya orbit is more effected under the standard 
perturbation. The MEO's inclination is more effected under the relativistic perturbation. 
Under the standard perturbation, there is a one order of magnitude difference in all 
comparison values. Under the relativistic oblateness perturbation, there is a one order of 
magnitude difference in the minimum comparison value and a two order of magnitude 
difference in all other comparison values. 
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from the relativistic oblateness perturbation is shown in Fig. 5. These quantities were 
calculated through a post processing routine that used the outputted state vectors.
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Fig. 5: MEO Specific Force for Relativistic Oblateness versus Time.
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Fig. 6: Molniya Orbit Specific Force for Relativistic Oblateness versus Time.

3.3.2 Comparison of Specific Force Data

Table 4 shows the specific forces that are generated under the standard and relativistic 
perturbations for the two different test case orbits. The component values shown in Table 
4 are expressed in the geocentric coordinates.  

Table  4: Summary

 

x  

Component 

Min -3.0423 e 
Max 7.6572 e 
Mean 1.2876 e 

Median -3.2454 e 

y  

Component 

Min -2.2845 e 
Max 6.2540 e 
Mean 1.5400 e 

Median -1.8304 e 

z  
Component 

Min -7.9387 e 
Max 6.6685 e 
Mean -3.9613 e 

Median 1

Magnitude 

Min 1.6380 e 
Max 8.8841 e 
Mean 1.4639 e 

Median 3.8642 e 
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Fig. 6: Molniya Orbit Specific Force for Relativistic Oblateness versus Time.

3.3.2 Comparison of Specific Force Data 

Table 4 shows the specific forces that are generated under the standard and relativistic 
or the two different test case orbits. The component values shown in Table 

4 are expressed in the geocentric coordinates.   

Summary of Specific Force Data Values in Newtons.  

Standard Oblateness Relativistic Oblateness

MEO 
Molniya 

Orbit 
MEO 

Molniya 

Orbit

3.0423 e -6 -3.2203 e -6 -6.3920 e -15 -6.7929 e 
7.6572 e -6 6.4808 e -6 1.3470 e -14 7.7277 e 
1.2876 e -7 -3.9026 e -11 2.9774 e -16 -2.2701 e 
3.2454 e -8 -5.0618 e -9 -6.9152 e -17 -1.5839 e 

2.2845 e -6 -2.4222 e -6 -6.5751 e -15 -6.1795 e 
6.2540 e -6 2.0221 e -6 1.1796 e -14 6.3781 e
1.5400 e -7 -4.3278 e -10 9.3342 e -17 2.4601 e 
1.8304 e -8 -4.4576 e -10 -6.4501 e -17 2.8740 e 

7.9387 e -6 -4.7849 e -6 -8.7283e-15 -1.7159 e 
6.6685 e -6 4.7861 e -6 1.2881 e -14 1.7461 e 
3.9613 e -7 1.5461 e -10 2.5341 e -16 6.7349 e 
1.6383 e -7 6.2050 e -12 -4.7312e-17 1.8596 e 

1.6380 e -7 6.2615 e -9 1.0676 e -16 1.6441 e 
8.8841 e -6 6.4826 e -6 1.6818 e -14 1.8775 e 
1.4639 e -6 3.9380 e -7 2.2605 e -15 8.5347 e 
3.8642 e -7 1.2752 e -8 2.6582 e -16 3.6663 e 
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Fig. 6: Molniya Orbit Specific Force for Relativistic Oblateness versus Time. 

Table 4 shows the specific forces that are generated under the standard and relativistic 
or the two different test case orbits. The component values shown in Table 

of Specific Force Data Values in Newtons.   

Relativistic Oblateness 

olniya 

Orbit 

6.7929 e -15 
7.7277 e -15 
2.2701 e -17 
1.5839 e -18 

6.1795 e -15 
6.3781 e-15 
2.4601 e -19 
2.8740 e -21 

1.7159 e -14 
1.7461 e -14 
6.7349 e -19 
1.8596 e -20 

1.6441 e -18 
1.8775 e -14 
8.5347 e -16 
3.6663 e -18 
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Under the influence of the standard oblateness perturbation the Molniya orbit is less 
effected. The maximum order of magnitude differences in the specific force components is 
two. However, this trend is also echoed in the magnitude values of specific force. 

The MEO is also more effected when subjected to the relativistic oblateness 
perturbation. Three is the maximum order of magnitude between specific force values 
while the different orbit cases are under the influence of the relativistic perturbation. The 
same conclusion may also be drawn from the magnitude data comparison values. 

Using the data contained int Table 4 it is also possible to draw the conclusion that the 
relativistic oblateness perturbations are considerably weaker then the standard oblateness 
perturbation. As can be seen in Table 4, there are up to a thirteen orders of magnitude 
difference between the specific forces generated by the standard and relativistic 
perturbation. 

3.4  Other Relativistic Perturbations 

The output data from simulations for all relativistic perturbations described in section 
2 is huge. For a concise presentation of the results, only the trends of the relativistic 
perturbations on the MEO orbit are listed in Table 5. The minimum, maximum, mean, and 
median values of the specific force magnitudes, on the MEO, are listed in Table 6. 
Detailed results are available in [16]. 

Table  5: Summarized Orbital Parameter Data for Standard Orbit Petrubations. 

 Spherical 
Lense- 

Thirring 

Relativistic 

Oblateness 

Rotational 

Energy 

Geodesic 

Precession 

θ  
Variation Sec. with Per. Sec. with Per. Sec. with Per. Sec. with Per. Sec. with Per. 

Trend Increasing Increasing Increasing Increasing Increasing 

a  
Variation Sec. with Per. Secular Secular Secular Secular 

Trend Decreasing Decreasing Decreasing Decreasing Decreasing 

e  
Variation Secular Sec. with Per. Secular Secular Secular 

Trend Increasing Increasing Increasing Increasing Increasing 

p  Variation Secular Secular Secular Secular Secular 
Trend Decreasing Decreasing Decreasing Decreasing Decreasing 

Ω  
Variation Indeterminate Secular Secular Secular Secular 

Trend Indeterminate Increasing Increasing Decreasing Increasing 

ω  
Variation Secular Secular Secular Secular Secular 

Trend Increasing Decreasing Decreasing Decreasing Decreasing 

i  
Variation Indeterminate Periodic Secular Secular Secular 

Trend Indeterminate na  Increasing Decreasing Decreasing 

Table  6: Specific Force Magnitude Data Summary for Standard Case in 
2/ sm  

  Spherical 
Lense- 

Thirring 

Relativistic 

Oblateness 

Rotational 

Energy 

Geodesic 

Precession 

Min 3.4830 e -7 4.9138 e -11 1.0676 e -16 2.0045 e -18 1.4906 e -14 
Max 5.2509 e -12 2.6990 e -9 1.6818 e -14 6.7816 e -16 4.2298 e -14 
Mean 1.745 e -12 5.3501 e -10 2.2605 e -15 8.0623 e -15 2.6379 e -14 

Median 9.5935 e -13 1.3613 e -10 2.6582 e -16 6.5495 e -18 2.4894 e -14 

4. CONCLUSION 

The model that was derived and utilized in this research is essentially a modified form 
of the model that is used in classical Newtonian orbit theory. The relativistic perturbation 
terms that were used in the models, while being derived in a fully relativistic format, were 
implemented in the same manner as a standard perturbing term for the methods. This 
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implementation was possible because of the form of the relativistic perturbations could be 
manipulated into a form that allowed them to be treated as a standard perturbation term. 

The difference in orbital parameter deviation, specific force components, and specific 
force magnitudes were easily seen in the oblateness perturbations presented in the last 
section because the same effect was looked at, and derived, in both non-relativistic and 
relativistic frameworks. The differences that were exhibited between the effects produced 
by the non-relativistic perturbing terms and the relativistic perturbing terms are significant, 
albeit the the relativistic effects are comparatively smaller then the non-relativistic terms. 
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