
LEMPEL-ZIV SLIDING WINDOW UPDATE
WITH SUFFIX ARRAYS

Artur Ferreira1,3,4 Arlindo Oliveira2,4 Mário Figueiredo3,4
1Instituto Superior de Engenharia de Lisboa (ISEL)

2Instituto de Engenharia de Sistemas e Computadores – Investigação e Desenvolvimento (INESC-ID)
3Instituto de Telecomunicações (IT)

4Instituto Superior T́ecnico (IST), Lisboa, PORTUGAL
arturj@isel.pt aml@inesc-id.pt mtf@lx.it.pt

Keywords: Lempel-Ziv compression, suffix arrays, sliding window update, substring search.

Abstract: The sliding window dictionary-based algorithms of the Lempel-Ziv (LZ) 77 family are widely used for uni-
versal lossless data compression. The encoding component of these algorithms performs repeated substring
search. Data structures, such as hash tables, binary search trees, and suffix trees have been used to speedup
these searches, at the expense of memory usage. Previous work has shown howsuffix arrays(SA) can be used
for dictionary representation and LZ77 decomposition. In this paper, we improve over that work by proposing
a new efficient algorithm to update the sliding window each time a token is produced at the output. The pro-
posed algorithm toggles between two SA on consecutive tokens. The resulting SA-based encoder requires less
memory than the conventional tree-based encoders. In comparing our SA-based technique against tree-based
encoders, on a large set of benchmark files, we find that, in some compression settings, our encoder is also
faster than tree-based encoders.

1 INTRODUCTION

The Lempel-Ziv 77 (LZ77) [14, 19], and its vari-
ant Lempel-Ziv-Storer-Szymanski (LZSS) [14, 16],
are lossless compression algorithms that are the basis
of a wide variety of universal data compression appli-
cations, such as GZip, WinZip, PkZip, WinRar, and
7-Zip. Those algorithms are asymmetric in terms of
time and memory requirements, with encoding being
much more demanding than decoding. The main rea-
son for this difference is that the encoder part requires
substring search over a dictionary, whereas decoding
involves no search.

Most LZ-based encoders use efficient data struc-
tures, such asbinary trees(BT) [6, 11], suffix trees
(ST) [5, 7, 9, 13, 17], and hash tables, thus allow-
ing fast search at the expense of higher memory re-
quirement. The use of a Bayer-tree, along with spe-
cial binary searches on a sorted sliding window, has
been proposed to speedup the encoding procedure [6].
Suffix arrays(SA) [7, 10, 15], due to their simplic-
ity, space efficiency, and linear time construction al-
gorithms [8, 12, 18], have been a focus of research;
e.g., SA have been used in encoding data with anti-

dictionaries [4] and to find repeating sub-sequences
for data deduplication [1], among other applications.

Recently, algorithms for computing the LZ77 fac-
torization of a string, based on SA and auxiliary ar-
rays, have been proposed to replace trees [2, 3]. These
SA-based encoders have the two following memory-
related advantages over tree-based encoders: they re-
quire less memory; the amount of allocated memory
is constant anda priori known, being independent of
the dictionary contents. In contrast, encoders based
on hash tables or trees encoders, usually require al-
locating a maximum amount of memory. The main
disadvantage of SA-based encoders is their encoding
time, which is typically above that of tree-based en-
coders, attaining roughly the same compression ratio.

Regarding previous work on SA for LZ decompo-
sition, it has been found that the main drawback of the
method in [2] is the absence of a strategy to update the
SA as encoding proceeds: the entire SA is repeatedly
rebuilt. The proposals in [3] for LZ decomposition
with SA are memory efficient, but the encoding time
is above that of tree-based encoders.

i-ETC: ISEL Academic Journal of Electronics,
Telecommunications and Computers
CETC2011 Issue, Vol. 2, n. 1 (2013) ID-4

http://journals.isel.pt/index.php/IAJETC

1.1 Our Contribution

In this paper, we improve on previous approaches
[2, 3] by proposing an algorithm for sliding win-
dow update using SA and a fast technique for find-
ing the tokens. The application of these techniques to
LZ77/LZSS encoding does not involve any changes
on the decoder side. Our SA-based encoder uses a
small amount of memory and can be faster than the
tree-based ones, like 7-Zip, being close to GZip in en-
coding time on several standard benchmark files, for
some compression settings.

The rest of the paper is organized as follows. Sec-
tion 2 reviews basic concepts of LZ77/LZSS encoding
and decoding as well as the use of SA for this pur-
pose. Section 3 describes the proposed algorithms.
The experimental results are presented and discussed
in Section 4, while Section 5 contains some conclud-
ing remarks.

2 LEMPEL-ZIV BASICS

The LZ77 and LZSS [14, 16, 19] lossless com-
pression techniques use a sliding window over the
sequence of symbols to be encoded with two sub-
windows:

• the dictionary which holds the symbols already
encoded;

• the look-ahead-buffer(LAB), containing the next
symbols to be encoded.

As the string in the LAB is encoded, the window
slides to include it in the dictionary (this string is said
to slide in); consequently, the symbols at the far end
of the dictionary are dropped (theyslide out).

At each step of the LZ77/LZSS encoding algo-
rithm, the longest prefix of the LAB which can be
found anywhere in the dictionary is determined and
its position stored. For these two algorithms, encod-
ing of a string consists in describing it by a token. The
LZ77 token is a triplet of fields, (pos, len, sym), with
the following meanings:

• pos - location of the longest prefix of the LAB
found in the current dictionary;

• len - length of the matched string;

• sym- the first symbol in the LAB that does not
belong to the matched string (i.e., that breaks the
match).

In the absence of a match, the LZ77 token is
(0,0,sym). Each LZ77 token uses log2(|dictionary|)+
log2(|LAB|)+ 8 bits, where|.| denotes length (num-
ber of bytes); usually,|dictionary|� |LAB |. In LZSS,

the token has the format (bit,code), with the structure
of codedepending on valuebit as follows:

{

bit = 0 ⇒ code= (sym),
bit = 1 ⇒ code= (pos, len). (1)

In the absence of a match, LZSS produces (0,sym),
otherwise (1,pos, len). The idea is that, if a match
exists, there is no need to explicitly encode the next
symbol. Besides this modification, Storer and Szy-
manski [16] also proposed keeping the LAB in a cir-
cular queue and the dictionary in a binary search tree,
to optimize the search. LZSS is widely used in prac-
tice since it typically achieves higher compression ra-
tios than LZ77 [14]. The fundamental and most ex-
pensive component of LZ77/LZSS encoding is the
search for the longest match between LAB prefixes
and the dictionary.

In LZSS, the token uses either 9 bits, when it
has the form (0,sym), or 1+ log2(|dictionary|) +
log2(|LAB|) bits, when it has the form (1,(pos,len)).
Figure 1 shows an example of LZ77 encoding for a
dictionary of length 16 and LAB with 8 symbols.

2.1 Decoding Procedures

Assuming that the decoder and encoder are initialized
with equal dictionaries, the decoding of each LZ77
token (pos,len,sym) proceeds as follows:

1) len symbols are copied from the dictionary to the
output, starting at positionposof the dictionary;

2) the symbolsymis appended to the output;

3) the string just produced at the output is slid into
the dictionary.

For LZSS decoding, we have:

1) if the bit field is 1,len symbols, starting at posi-
tion posof the dictionary, are copied to the output;
otherwisesymis copied to the output;

2) the string just produced at the output is slid into
the dictionary.

Both LZ77 and LZSS decoding are low complexity
procedures which do not involve any search, thus de-
coding is much faster than encoding.

2.2 Using a Suffix Array

A suffix array(SA) represents the lexicographically
sorted array of the suffixes of a string [7, 10].
For a stringD of length m (with m suffixes), the
suffix array P is the set of integers from 1 to
m, sorted by the lexicographic order of the suf-
fixes of D. For instance, if we consider dictio-
nary D=business-machine (with m=16), we get

A.Ferreira et al. | i-ETC - CETC2011 Issue, Vol. 2, n. 1 (2013) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt/index.php/IAJETC

Figure 1: Illustration of LZ77 encoding with dictionary “business-machine”. We show the corresponding outputted LZ77
tokens for the encoding of the prefix of the LAB.

Figure 2: LZ77 and LZSS with dictionary “business-machine” and its representation with SAP. The encoding of the prefix
“s-mak” of the LAB can be done with substrings ranging fromD[P[le f t]] to D[P[right]]. We choose the 4-symbol match at
P[13]producing the depicted LZ77/LZSS tokens.

P= {9,11,1,12,16,6,13,14,4,10,15,5,8,3,7,2}, as
shown in Figure 2.

Each integer inP is the suffix number correspond-
ing to its position inD. Finding a substring ofD, as
required by LZ77/LZSS, can be done by searching ar-
rayP; for instance, the set of substrings ofD that start
with ‘s’, can be found at indexes 3, 7, and 8 ofD,
ranging from index 13 to 15 onP. In this work, we
use thesuffix array induced sorting(SA-IS) algorithm
to build the SA [12].

3 SLIDING WINDOW UPDATE
ALGORITHM

In this section we present the proposed algorithm
for sliding window update as well as an accelerated
technique to obtain the tokens over a dictionary. This

work addresses only the encoder side data structures
and algorithms, with no effect in the decoder. De-
coding does not need any special data structure and
follows standard LZ77/LZSS decoding, as described
in subsection 2.1.

3.1 Accelerated Encoder

The LZ77/LZSS tokens can be found faster if we use
an auxiliary array of 256 integers (named LI –Left-
Index). This array holds, for each ASCII symbol,
the first index of the suffix array where we can find
the first suffix that starts with that symbol (theleft
index for each symbol, as shown in Figure 3). For
symbols that are not the start of any suffix, the corre-
sponding entry is labeled with -1, meaning that we
have an empty match for those symbols. Figure 3
shows the LI array for the dictionary of Figure 2. The
left value, as depicted in Figure 2, is computed by

A.Ferreira et al. | i-ETC - CETC2011 Issue, Vol. 2, n. 1 (2013) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt/index.php/IAJETC

Figure 3: The LI (LeftIndex) auxiliary array: for each symbol that starts a suffix it holds the index of the SAP in which that
suffix starts. For the symbols that are not the start of any suffix, the corresponding entry is marked with -1, meaning that we
have an empty match for substrings that start with that symbol.

le f t ← P[LI[LAB[1]]]. Theright indicator is found
by iteratingP starting on indexleft and performing a
single symbol comparison. If we want LZ77/LZSS
“fast” compression, we choosepos= left; for “best”
compression, we chooseleft≤ pos≤ right, such that
we have the longest match between substrings starting
atD[pos]andLAB[1].

3.2 Proposed Algorithm

The key idea of our sliding window technique is to
use two SA of length|dictionary|, namedPA andPB,
and a pointerP (to PA or PB) to represent the dictio-
nary. At each substring match, that is, each time we
produce a token, we toggle pointerP between the two
SA and we also update the LI array. If the previous
token was encoded withPA, the steps next described
are carried out usingPB, and vice-versa. This idea
somewhat resembles the double buffering technique,
since we are switching from one SA to the other, ev-
ery time a token is produced. If we used a single SA,
we would have a slow encoder, because we would
have to perform several displacements of the integers
on the unique large SA. These integer displacements
would leads to us to a situation in which the encoder
would be slow. For both LZ77/LZSS encoding, each
time we output a token encodingL symbols, the dic-
tionary is updated as follows:
R. Removesuffixes{1, . . . ,L} (theyslide out);

I. Insert in a lexicographic order the suffixes rang-
ing from |dictionary|−L+1 to |dictionary|(they
slide in);

U. Update suffixes {L + 1, . . . ,|dictionary|}; these
are subtracted byL.

Figure 4 shows these R, I, and U actions, for the dic-
tionary in Figs. 2 and 3, after encodings-mak with
L=5 symbols. The removal action (slid out) is im-
plicit by toggling from SAPA to PB; the updated suf-
fixes keep the order between them; the inserted (slid
in) suffixes are placed in the destination SA, in lexico-
graphic order. Algorithm 1 details the set of actions
taken by our proposed algorithm. Algorithm 1 runs
each time we produce a LZ77/LZSS token; in the case
of LZ77, we setL = len+1; for LZSSL = len. We
can also update the SA with the entire LAB contents
usingL = |LAB|, after we produce the set of tokens
encoding the entire LAB. This algorithm also works
in the “no match” case of LZSS, in which the token
is (0, sym), withL=1. Notice that we use two aux-
iliary arrays with length up to|LAB|; we thus have
a memory-efficient sliding window algorithm. The
amount of memory for the encoder data structures is

MSA= 2|P|+ |LI |+ |PS|+ |I | (2)

bytes. Figure 5 illustrates Algorithm 1 using the dic-
tionary shown in Figs. 3 and 4, after encodings-mak
with L = 5. We see the SAPA as origin andPB as des-
tination; we also show the contents ofPS andI with 5
positions each.

A.Ferreira et al. | i-ETC - CETC2011 Issue, Vol. 2, n. 1 (2013) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt/index.php/IAJETC

Figure 4: Illustration of our sliding window update algorithm with the R I U actions,after encoding “s-mak” withL=5: R)
suffixes 1 to 5 slide out ofPA; I) suffixes 12 to 16 are inserted in lexicographic order intoPB; U) suffixes 6 to 16 are updated
being subtracted by 5.

Figure 5: Sliding window update with pointerP set to PA initially; the first update is done usingPB as destination. Array
I holds the indexes where to insert the new suffixes intoPB. The update of the indexes is done overPB and there is no
modification onPA or integer displacement onPB.

4 EXPERIMENTAL RESULTS

Our experimental tests were carried out on a lap-
top with a 2 GHz Intel Core2Duo T7300 CPU and 2
GB of RAM, using a single core. The code was writ-
ten inC, using Microsoft Visual Studio 2008. The lin-
ear time SA construction algorithm SA-IS [12] (avail-
able at yuta.256.googlepages.com/sais) was
used. For comparison purposes, we also present the
results of Nelson’sbinary tree (BT) encoder [11],
GZip1, and theLZ Markov chain algorithm(LZMA 2).
These three encoders were chosen as benchmark,

1www.gzip.org/
2www.7-zip.org

since they represent the typical usage of tree and hash
tables data structures for LZ77 compression. The BT-
encoder represents the dictionary with a binary tree
data structure. The well-known GZip encoder uses
trees and hash tables. LZMA is the default compres-
sion technique employed by the 7z format in the 7-
ZIP program. Both the GZip and LZMA encoders
perform entropy encoding of the tokens produced by
the LZMA algorithm. This allows for these algo-
rithms to attain a higher compression ratio than our
algorithms and the BT-encoder (it does not perform
entropy encoding of the tokens).

The test files are from the standard corpora Cal-
gary (18 files, 3 MB) and Silesia (12 files, 211 MB),

A.Ferreira et al. | i-ETC - CETC2011 Issue, Vol. 2, n. 1 (2013) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt/index.php/IAJETC

yuta.256.googlepages.com/sais
www.gzip.org/
www.7-zip.org

available at www.data-compression.info. We
use the “best” compression option, by choosing the
longest match as discussed in section 3.1 and depicted
in Figure 2.

4.1 Experimental Setup

In our tests, we assess the following measures: en-
coding time (in seconds, measured by the C func-
tion clock); compression ratio (in bits per byte, bpb);
amount of memory for encoder data structures (in
bytes).

Nelson’s BT-encoder [11] uses 3 integers per tree
node with|dictionary|+1 nodes, occupying

MBT = 13×|dictionary|+12 (3)

bytes, using 4-byte integers. Lars-
son’s suffix tree encoder (available at

Algorithm 1 SA Sliding Window Algorithm

Input: PA,PB, m-length SA;
P, pointer toPA or PB;
Pdst, pointer toPB or PA;
LAB, look-ahead buffer;
LI, 256-position length LeftIndex array;
L ≤ |LAB |, number of symbols in the previously

produced token(s).
Output: PA or PB updated;

P pointing to the recently updated SA.

1: if P points toPA then
2: SetPdst to PB. {/*R action. Implicit removal.*/}
3: else
4: SetPdst to PA.
5: end if
6: Compute the SAPS for the encoded substring (withL

positions).
7: UsingLI andPS, fill the L-length arrayI with the in-

sertion indexes (slide insuffixes).
8: for i = 1 to L do
9: Pdst[I [i]] = PS[i]+ |dictionary|−L. {/*I action.*/}

10: end for
11: Do nUpdate =|dictionary|−L;
12: Do j=1. {/*Perform|dictionary|−L updates.*/}
13: for i = 1 to |dictionary|do
14: if (P[i]−L)> 0 then
15: while (j ∈ I) do
16: j = j + 1. {/*Make sure thatj is an update

position.*/}
17: end while
18: Pdst[j] = P[i]−L. {/*U action.*/}
19: j = j + 1.
20: nUpdate = nUpdate - 1.
21: if (nUpdate==0)then
22: break. {/*Destination SA is complete.*/}
23: end if
24: end if
25: end for
26: SetP to Pdst. {/*P points to recently updated SA.*/}

www.larsson.dogma.net/research.html) uses 3
integers and a symbol for each node, occupying 16
bytes, placed in a hash table [9], using the maximum
amount of memory

MST = 25×|dictionary|+4×hashsz+16 (4)

bytes, wherehashszis the hash table size. The GZip
encoder occupiesMGZIP=313408 bytes, as measured
by sizeof C operator. The LZMA encoder data
structures occupy

MLZMA= 4194304+











9.5|dict.|, if MF = BT2
11.5|dict.|, if MF = BT3
11.5|dict.|, if MF = BT4
7.5|dict.|, if MF = HC4

,

(5)
bytes, depending on thematch finder (MF) used
as well as on|dictionary| with BT# denoting bi-
nary tree with # bytes hashing and HC4 denoting
hash chain with 4 bytes hashing. For instance,
with (|dictionary|,|LAB |) = (65536,4096), we have
in increasing orderMSA =627712, MBT =851980,
MST =1900560, andMLZMA=4816896 bytes. If we
consider an application in which we only have a low
fixed amount of memory, such as the internal mem-
ory of an embedded device, it may not be possible to
instantiate a tree or a hash table based encoder.

The GZip and LZMA3 encoders are built upon the
deflate algorithm, and perform entropy encoding of
the tokens achieving better compression ratio than our
LZSS encoding algorithms. These encoders are use-
ful as a benchmark comparison, regarding encoding
time and amount of memory. For both compression
techniques, we have compiled their C/C++ sources
using the same compiler settings as for our encoders.

The compression ratio of our encoders as well as
that of the BT-encoder can be easily improved by
entropy-encoding the tokens. Our purpose is to fo-
cus only on the construction and update of the dic-
tionary and searching over it, using less memory than
the conventional solutions with trees and hash tables.

4.2 Comparison with other encoders

We encode each file of the two corpora using LZSS
and compute the total encoding time as well as the av-
erage compression ratio, for different configurations
of (|dictionary|,|LAB|), with “best” compression op-
tion andL= |LAB| for Algorithm 1. Table 1 shows the
results of these tests on the Calgary Corpus. Our SA-
encoder is faster than BT, except on tests 5 to 7; on
test 6 (the GZip-like scenario), BT-encoder is about

3LZMA SDK, version 4.65, 3 Feb. 2009, available at
www.7-zip.org/sdk.html

A.Ferreira et al. | i-ETC - CETC2011 Issue, Vol. 2, n. 1 (2013) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt/index.php/IAJETC

www.data-compression.info
www.larsson.dogma.net/research.html
www.7-zip.org/sdk.html

Table 1: Amount of memory, total encoding time (in seconds), and averagecompression ratio (in bpb), for several lengths of
(|dictionary|, |LAB |) on the Calgary Corpus, using “best” compression. GZip “fast” leads to Time=0.5 and bpb=3.20 while
GZip “best” yields Time=1.2 and bpb=2.79. The best encoding time is underlined.

Calgary Corpus SA (proposed) BT LZMA

|Dict.| |LAB| MSA Time bpb MBT Time bpb MLZM A Time bpb

1 2048 1024 25600 2.2 5 77 26636 3 92 5 65 4217856 4 7 2 99

2 4096 1024 41984 2.5 5 40 53260 4 3 4 98 4241408 4 8 2 82

3 4096 2048 50176 2.4 5 75 53260 11 1 5 48 4241408 4 8 2 82

4 8192 2048 82944 3.8 5 49 106508 11 7 4 88 4288512 5 1 2 69

5 16384 256 134144 9 1 4 36 213004 4 5 4 12 4382720 5 2 2 61

6 32768 256 265216 18 4 4 31 425996 5 5 4 08 4571136 4 9 2 54

7 32768 1024 271360 11 1 4 86 425996 7 5 4 40 4571136 4 9 2 54

8 32768 2048 279552 9.5 5 16 425996 15 8 4 57 4571136 4 9 2 54

Table 2: Amount of memory, total encoding time (in seconds) and averagecompression ratio (in bpb), for several lengths of
(|dictionary|, |LAB |) on the Silesia Corpus, using “best” compression. GZip “fast” obtains Time=19.5 and bpb=3.32 while
GZip “best” does Time=74.4 and bpb=2.98. The best encoding time is underlined.

Silesia Corpus SA (proposed) BT LZMA

|Dict.| |LAB | MSA Time bpb MBT Time bpb MLZM A Time bpb

1 2048 1024 25600 118.7 5 66 26636 249 5 5 65 4217856 333 53 3 05

2 4096 1024 41984 116.9 5 41 53260 303 4 5 25 4241408 349 05 2 90

3 4096 2048 50176 112.9 5 68 53260 694 9 5 63 4241408 349 05 2 90

4 8192 2048 82944 143.4 5 44 106508 668 9 5 27 4288512 356 77 2 76

5 16384 256 134144 319 1 4 55 213004 254.6 4 44 4382720 366 47 2 62

6 32768 256 265216 542 7 4 41 425996 318.1 4 31 4571136 356 34 2 52

7 32768 1024 271360 322.2 4 80 425996 382 6 4 64 4571136 356 34 2 52

8 32768 2048 279552 302.3 5 02 425996 979 8 4 81 4571136 356 34 2 52

3.5 times faster than SA. Table 2 shows the results for
the Silesia Corpus. In these tests, the SA-encoder is
the fastest except on tests 5 and 6. On test 3, the SA-
encoder is about 5 times faster than the BT-encoder,
achieving about the same compression ratio. Notice
that that for the BT and LZMA encoders, the amount
of memory only depends on the length of the dictio-
nary. For our SA-encoder the amount of memory for
the encoder data structures also depends on the length
of the LAB, due to the use of thePS andI arrays, as
given by (2).

Figure 6 shows the performance measureTime×
Memoryon the encoding of the Calgary and Silesia
corpora, on the tests shown on Tables 1 and 2, for SA
and BT-encoders, including GZip “best” test results
for comparison. Regarding the Calgary Corpus test
results, the SA-encoder has better performance than
BT-encoder on tests 1 to 4 and 8; on Silesia Corpus,
this happens on all tests except on test 6.

For all these encoders searching and updating the
dictionary are the most time-consuming tasks. A high
compression ratio like those of LZMA and GZip can
be attained only when we use entropy encoding with
appropriate models for the tokens. The SA encoder
is faster than the BT encoder, when the LAB is not

too small. Our algorithms (without entropy encod-
ing) are thus positioned in a trade-off between time
and memory, that can make them suitable to replace
binary trees on LZMA or in substring search. The us-
age of the LI array over the SA allows to quickly find
the set of substrings that start with a given symbol
acting as an accelerator of the encoding process.

5 CONCLUSIONS

In this paper, we have proposed a sliding window
update algorithm for Lempel-Ziv compression based
on suffix arrays, improving on earlier work in terms
of encoding time, with similar low memory require-
ments. The proposed algorithm uses an auxiliary ar-
ray as an accelerator to the encoding procedure, as
well as a fast update of the dictionary based on two
suffix arrays. It allowsa priori computing the ex-
act amount of memory necessary for the encoder data
structures without any waste of memory; usually this
may not be the case when using (binary/suffix) trees.

We have compared our algorithm on standard cor-
pora against tree-based encoders, including GZip and
LZMA. The experimental tests showed that our en-

A.Ferreira et al. | i-ETC - CETC2011 Issue, Vol. 2, n. 1 (2013) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt/index.php/IAJETC

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x 10
6

 GZIP best

 # Test

 Time x Memory on Calgary Corpus

SA
BT

1 2 3 4 5 6 7 8
0

0 5

1

1 5

2

2 5

3

3 5

4

x 10
8

 GZIP best

 # Test

 Time x Memory on Silesia Corpus

SA
BT

Figure 6: Time× Memoryperformance measure for SA and BT on the Calgary and Silesia Corpus, on the 8 encoding tests
of Tables 1 and 2. We include GZip “best” performance for comparison.

codersalwaysoccupy less memory than tree-based
encoders; moreover, in some (typical) compression
settings the SA-encoders are also faster than tree-
based encoders. The position of the proposed algo-
rithm in the time-memory tradeoff makes it suitable
as a replacement of trees and hash tables, for some
compression settings. These compression settings in-
clude all the situations in which the length of the look-
ahead-buffer window is not too small, as compared to
the length of the dictionary.

REFERENCES

[1] C. Constantinescu, J. Pieper, and T. Li. Block size
optimization in deduplication systems. InDCC ’09:
Proc. of the IEEE Conference on Data Compression,
page 442, Washington, DC, USA, 2009.

[2] M. Crochemore, L. Ilie, and W. Smyth. A simple al-
gorithm for computing the Lempel-Ziv factorization.
In DCC ’08: Proc. of the IEEE Conference on Data
Compression, pages 482–488, Washington, DC, USA,
March 2008. IEEE Computer Society.

[3] A. Ferreira, A. Oliveira, and M. Figueiredo. On the
use of suffix arrays for memory-efficient Lempel-Ziv
data compression. InDCC ’09: Proc. of the IEEE
Conference on Data Compression, page 444, Wash-
ington, DC, USA, March 2009. IEEE Computer Soci-
ety.

[4] M. Fiala and J. Holub. DCA using suffix arrays.
In DCC ’08: Proc. of the IEEE Conference on
Data Compression, page 516, Washington, DC, USA,
March 2008. IEEE Computer Society.

[5] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim
Snider. New indices for text: PAT trees and PAT ar-
rays. Information retrieval: data structures and algo-
rithms, pages 66–82, 1992.

[6] Ulrich Gräf. Sorted sliding window compression. In
DCC ’99: Proc. of the IEEE Conference on Data
Compression, page 527, Washington, DC, USA, 1999.

[7] D. Gusfield. Algorithms on Strings, Trees and Se-
quences. Cambridge University Press, 1997.

[8] J. Karkainen, P. Sanders, and S. Burkhardt. Linear
work suffix array construction.Journal of the ACM,
53(6):918–936, 2006.

[9] N. Larsson. Structures of String Matching and Data
Compression. PhD thesis, Department of Computer
Science, Lund University, Sweden, September 1999.

[10] U. Manber and G. Myers. Suffix Arrays: a new
method for on-line string searches.SIAM Journal on
Computing, 22(5):935–948, October 1993.

[11] M. Nelson and J. Gailly.The Data Compression Book.
M & T Books, New York, 2nd edition, 1995.

[12] G. Nong, S. Zhang, and W. Chan. Linear suffix array
construction by almost pure induced-sorting. InDCC
’09: Proc. of the IEEE Conference on Data Compres-
sion, pages 193–202, March 2009.

[13] Michael Rodeh, Vaughan Pratt, and Shimon Even.
Linear algorithm for data compression via string
matching.J. ACM, 28(1):16–24, 1981.

[14] D. Salomon. Data Compression - The complete ref-
erence. Springer-Verlag London Ltd, London, fourth
edition, Januray 2007.

[15] M. Salson, T. Lecroq, M. Ĺeonard, and L. Mouchard.
Dynamic extended suffix arrays.Journal of Discrete
Algorithms, In Press, Corrected Proof, 2009.

[16] J. Storer and T. Szymanski. Data compression via
textual substitution.Journal of ACM, 29(4):928–951,
October 1982.

[17] E. Ukkonen. On-line construction of suffix trees.Al-
gorithmica, 14(3):249–260, 1995.

[18] S. Zhang and G. Nong. Fast and space efficient lin-
ear suffix array construction. InDCC ’08: Proc. of
the IEEE Conference on Data Compression, page 553,
Washington, DC, USA, March 2008. IEEE Computer
Society.

[19] J. Ziv and A. Lempel. A universal algorithm for se-
quential data compression.IEEE Transactions on In-
formation Theory, IT-23(3):337–343, May 1977.

A.Ferreira et al. | i-ETC - CETC2011 Issue, Vol. 2, n. 1 (2013) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt/index.php/IAJETC

	Introduction
	Our Contribution

	Lempel-Ziv Basics
	Decoding Procedures
	Using a Suffix Array

	Sliding Window Update Algorithm
	Accelerated Encoder
	Proposed Algorithm

	Experimental Results
	Experimental Setup
	Comparison with other encoders

	Conclusions

