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Abstract: The sliding window dictionary-based algorithms of the Lempel-Ziv (LZ) 77 family are widely used for uni-
versal lossless data compression. The encoding component of these algorithms performs repeated substring
search. Data structures, such as hash tables, binary search trees, and suffix trees have been used to speedup
these searches, at the expense of memory usage. Previous work has shawiffir@raysSA) can be used
for dictionary representation and LZ77 decomposition. In this paper, we improve over that work by proposing
a new efficient algorithm to update the sliding window each time a token is produced at the output. The pro-
posed algorithm toggles between two SA on consecutive tokens. The resulting SA-based encoder requires less
memory than the conventional tree-based encoders. In comparing our SA-based technique against tree-based
encoders, on a large set of benchmark files, we find that, in some compression settings, our encoder is also
faster than tree-based encoders.

1 INTRODUCTION dictionaries [[4] and to find repeating sub-sequences
for data deduplicatior [1], among other applications.

The Lempel-Ziv 77 (LZ77)[[14, 19], and its vari-
ant Lempel-Ziv-Storer-Szymanski (LZSS) [14.] 16], Recently, algorithms for computing the LZ77 fac-
are lossless compression algorithms that are the basigorization of a string, based on SA and auxiliary ar-
of a wide variety of universal data compression appli- rays, have been proposed to replace tiges [2, 3]. These
cations, such as GZip, WinZip, PkZip, WinRar, and SA-based encoders have the two following memory-
7-Zip. Those algorithms are asymmetric in terms of related advantages over tree-based encoders: they re-
time and memory requirements, with encoding being quire less memory; the amount of allocated memory
much more demanding than decoding. The main rea-is constant ana priori known, being independent of
son for this difference is that the encoder part requires the dictionary contents. In contrast, encoders based
substring search over a dictionary, whereas decodingon hash tables or trees encoders, usually require al-
involves no search. locating a maximum amount of memory. The main

Most LZ-based encoders use efficient data struc- disadvantage of SA-based encoders is their encoding
tures, such abinary trees(BT) [6} [11], suffix trees  time, which is typically above that of tree-based en-
(ST) [6,07,[9,[18[17], and hash tables, thus allow- coders, attaining roughly the same compression ratio.
ing fast search at the expense of higher memory re-
quirement. The use of a Bayer-tree, along with spe- Regarding previous work on SA for LZ decompo-
cial binary searches on a sorted sliding window, has sition, it has been found that the main drawback of the
been proposed to speedup the encoding proceldure [6]method in[[2] is the absence of a strategy to update the
Suffix arrays(SA) [7,[10,[15], due to their simplic- SA as encoding proceeds: the entire SA is repeatedly
ity, space efficiency, and linear time construction al- rebuilt. The proposals ir [3] for LZ decomposition
gorithms [8,12] 18], have been a focus of research; with SA are memory efficient, but the encoding time
e.g., SA have been used in encoding data with anti- is above that of tree-based encoders.
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1.1 Our Contribution the token has the format (bit,code), with the structure
of codedepending on valubit as follows:

In this paper, we improve on previous approaches L _

[2, [3] by proposing an algorithm for sliding win- { E!::(l) = coge: (sym)l, 1)

dow update using SA and a fast technique for find- it=1 = code=(pos, len).

ing the tokens. The application of these techniques to |n the absence of a match, LZSS producess{in),
LZ77/LZSS encoding does not involve any changes otherwise (1,p0s, len). The idea is that, if a match
on the decoder side. Our SA-based encoder uses @xists, there is no need to explicitly encode the next
small amount of memory and can be faster than the symbol. Besides this modification, Storer and Szy-
tree-based ones, like 7-Zip, being close to GZip in en- manski [16] also proposed keeping the LAB in a cir-
coding time on several standard benchmark files, for cular queue and the dictionary in a binary search tree,
some compression settings. to optimize the search. LZSS is widely used in prac-
The rest of the paper is organized as follows. Sec- tice since it typically achieves higher compression ra-
tion 2 reviews basic concepts of LZ77/LZSS encoding tios than LZ77[[14]. The fundamental and most ex-
and decoding as well as the use of SA for this pur- pensive component of LZ77/LZSS encoding is the

pose. Section 3 describes the proposed algorithms.search for the longest match between LAB prefixes
The experimental results are presented and discussednd the dictionary.

in Section 4, while Section 5 contains some conclud- In LZSS, the token uses either 9 bits, when it

ing remarks. has the form (0,sym), or -t log,(|dictionary|) +
log,(|LAB|) bits, when it has the form (1,(pos,len)).
Figure[d shows an example of LZ77 encoding for a

2 LEMPEL-ZIV BASICS dictionary of length 16 and LAB with 8 symbols.

The LZ77 and LZSS[[14, 16, 19] lossless com- 2.1 Decoding Procedures

pression techniques use a sliding window over the
sequence of symbols to be encoded with two sub- Assuming that the decoder and encoder are initialized
windows: with equal dictionaries, the decoding of each LZ77

¢ the dictionary which holds the symbols already token (pos,len,sym) proceeds as follows:
encoded; 1) lensymbols are copied from the dictionary to the

o thelook-ahead-buffe(LAB), containing the next output, starting at positioposof the dictionary;

symbols to be encoded. 2) the symbobkymis appended to the output;

As the string in the LAB is encoded, the window 3) the string just produced at the output is slid into
slides to include it in the dictionary (this string is said the dictionary.

to slide in); consequently, the symbols at the far end For LZSS decoding, we have:

of the dictionary are dropped (thslide out).

At each step of the LZ77/LZSS encoding algo-
rithm, the longest prefix of the LAB which can be
found anywhere in the dictionary is determined and
its position stored. For these two algorithms, encod- 2) the string just produced at the output is slid into
ing of a string consists in describing it by a token. The  the dictionary.

LZ77 token is a triplet of fields, (pos, len, sym), with  Both LZ77 and LZSS decoding are low complexity
the following meanings: procedures which do not involve any search, thus de-
e pos - location of the longest prefix of the LAB  coding is much faster than encoding.
found in the current dictionary;

e len- length of the matched string;

e sym- the first symbol in the LAB that does not o guffix array(SA) represents the lexicographically
belong to the matched string (i.e., that breaks the ¢ teq array of the suffixes of a string] [7.]10].
match). For a stringD of length m (with m suffixes), the

In the absence of a match, the LZ77 token is suffix array P is the set of integers from 1 to
(0,0,sym). Each LZ77 token uses J@glictionary|) + m, sorted by the lexicographic order of the suf-
log,(|LAB|) + 8 bits, wherd.| denotes length (hnum-  fixes of D. For instance, if we consider dictio-
ber of bytes); usuallydictionary > |[LAB]|. In LZSS, nary D=busi ness- machi ne (with m=16), we get

1) if the bit field is 1,len symbols, starting at posi-
tion posof the dictionary, are copied to the output;
otherwisesymis copied to the output;

2.2 Using a Suffix Array
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Dictionary LAB

...International-| Business-Machine |s-Makes- | Machinery-for-the-

O
8 T “s-Mak” encoded with (8,4,'’)

...International-Busin| ess-Machines-Mak | es-Machi |nery-for-the-.......

T .
" “es-Mac” encoded with (11,5,c)

sl reternationaI—Business—Ma‘ chines-Makes-Mac |inery-fo | r-the-.......

Figure 1: lllustration of LZ77 encoding with dictionary “business-machin@fe show the corresponding outputted LZ77
tokens for the encoding of the prefix of the LAB.

P

9. -machine
11. achine ..International- | business-machine | s-makes- | machinery-for-the-
1. business-machine
12. chine

16.e

6. ess-machine LZ77: “s-mak” encoded with (8,4,

13. hine
DIPH3]]='s 14.ine LZSS: “s-ma” encoded with (1,8,4)

D{P[14]]='s’" 4. iness-machine
D[P[15]]="'s" 10. machine

Dictionary D LAB

P={8,11,1,12, 16,6, 13, 14, 4,10, 15,5,8,3,7, 2}

15.ne
left =13 5. ness-machine
8. s-machine len=4
right =15 3. siness-machine len=1
—* 7. ss-machine len=1 pos =8 = Pleft]

2. usiness-machine

Figure 2: LZ77 and LZSS with dictionary “business-machine” and its sepriation with SAP. The encoding of the prefix
“s-mak” of the LAB can be done with substrings ranging fr@P[le ft]] to D[P[right]]. We choose the 4-symbol match at
P[13] producing the depicted LZ77/LZSS tokens.

P={9,11,1,12,16,6,13,14,4,10,15,5,8,3,7,2}, as work addresses only the encoder side data structures
shown in FiguréR. and algorithms, with no effect in the decoder. De-
Each integer irP is the suffix number correspond- coding does not need any special data structure and

ing to its position inD. Finding a substring ob, as follows standard LZ77/LZSS decoding, as described

required by LZ77/LZSS, can be done by searching ar- in subsectiof 2]1.

ray P; for instance, the set of substringsi»that start

with ‘s’, can be found at indexes 3, 7, and 8 df 3.1 Accelerated Encoder

ranging from index 13 to 15 oR. In this work, we

use thesuffix array induced sortin(SA-1S) algorithm The LZ77/LZSS tokens can be found faster if we use

to build the SA[[12]. an auxiliary array of 256 integers (named LLeft-
IndeX. This array holds, for each ASCII symbol,
the first index of the suffix array where we can find

the first suffix that starts with that symbol (theft
3 SLIDING WINDOW UPDATE index for each symbol, as shown in Figlie 3). For
ALGORITHM symbols that are not the start of any suffix, the corre-

sponding entry is labeled with -1, meaning that we

In this section we present the proposed algorithm have an empty match for those symbols. Fidure 3
for sliding window update as well as an accelerated shows the LI array for the dictionary of Figurk 2. The
technique to obtain the tokens over a dictionary. This left value, as depicted in Figufé 2, is computed by
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P={9,611,1,12,16,6, 13, 14,4,10,15,5,8,3,7, 2}

9. -machine
11. achine

1. business-machine
12. chine
16. e

6. ess-machine
13. hine
14, ine

4. iness-machine
10. machine
15. ne
ness-machine
s-machine
siness-machine
ss-machine
usiness-machine

Yyvyy

A

left=Li['s]=13
Plleft]=8

....... left=13 ——»

LI
( Leftindex )

RN

right=15

0 O 4 3 .0 0 . .
B 256

Tz 38 % ab'cde hNT  mwn s U

Dictionary D LAB
s-makes- ‘ LZSS: “s-ma” encoded with (1, P[LI['s]], 4 )

business-machine

Figure 3: The LI (leftindey auxiliary array: for each symbol that starts a suffix it holds the index of thé& $Awhich that
suffix starts. For the symbols that are not the start of any suffix, the corresponding entry is marked with -1, meaning that we
have an empty match for substrings that start with that symbol.

left «+ P[LI[LABI[1]]]. Theright indicator is found U. Update suffixes {L + 1,...,|dictionary|}; these
by iteratingP starting on indexeft and performing a are subtracted bly.

single symbol comparison. If we want LZ77/LZSS

“fast” compression, we choogms= left; for “best”

compression, we chooseft < pos< right, such that ~ Figure[4 shows these R, |, and U actions, for the dic-
we have the longest match between substrings startingtionary in Figs[2 and]3, after encodisgnak with

atD[pos]andLABI[1]. L=5 symbols. The removal action (slid gus im-
plicit by toggling from SAP, to Pg; the updated suf-
3.2 Proposed Algorithm fixes keep the order between them; the inserted (slid

in) suffixes are placed in the destination SA, in lexico-
The key idea of our sliding window technique is to graphic order. Algorithm 1 details the set of actions
use two SA of lengthdictionaryl, namedPa andPs, taken by our proposed algorithm. Algorithm 1 runs
and a pointeP (to Pa or Pg) to represent the dictio- each time we produce a LZ77/LZSS token; in the case
nary. At each substring match, that is, each time we of LZ77, we setL = len—+ 1; for LZSSL = len. We
produce atoken, we toggle poinfebetweenthetwo  can also update the SA with the entire LAB contents
SA and we also update the LI array. If the previous usingL = |LAB|, after we produce the set of tokens
token was encoded witha, the steps next described encoding the entire LAB. This algorithm also works
are carried out usin@s, and vice-versa. This idea in the “no match” case of LZSS, in which the token
somewhat resembles the double buffering technique,is (0, sym), withL=1. Notice that we use two aux-
since we are switching from one SA to the other, ev- iliary arrays with length up tdLAB|; we thus have
ery time a token is produced. If we used a single SA, a memory-efficient sliding window algorithm. The
we would have a slow encoder, because we would amount of memory for the encoder data structures is
have to perform several displacements of the integers
on the unique large SA. These integer displacements
would leads to us to a situation in which the encoder Msa= 2|P|+ |LI| + |Ps| + 1] 2)
would be slow. For both LZ77/LZSS encoding, each
time we output a token encodirigsymbols, the dic-

tionary is updat_ed as follows: ) bytes. FiguréD illustrates Algorithm 1 using the dic-
R. Removesuffixes{1,...,L} (theyslide ou); tionary shown in Figs]3 anl 4, after encodingrak
I. Insert in a lexicographic order the suffixes rang- with L =5. We see the SRy as origin and?s as des-
ing from |dictionary| —L + 1 to |dictionary|(they tination; we also show the contentsRfandl with 5
slide in); positions each.
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Dictionary LAB
5 Removals business-machine ||s-makes- ‘ machinery....
Pa={9,11,1,12 16,6, 13,14, 4,10,15,5,8, 3,7, 2}
o Vot I \ 11 Updates
Window slides ! oA | ! S

: | |
i | ] i
5 positions o N vy
: i Vg g g ; Vv \ ( subtract 5 )
A Al TYYYY v v A
Pe={4,13,6,157,11,1,8,9, 16,5, 14 10,3,12 2} 5 Insertions
iy W K mak s-mak (sorted suffixes)
I 13. -mak
/__\l:»usm ess—machinesi‘—rlnak |es—machi )nery. 15. ak
Jid - Dictionary LAB 16. k
slide oul sufxes 14. mak
12. s-mak

Figure 4: lllustration of our sliding window update algorithm with the R | U actiaifger encoding “s-mak” with.=5: R)
suffixes 1 to 5 slide out dPa; I) suffixes 12 to 16 are inserted in lexicographic order iRgpU) suffixes 6 to 16 are updated
being subtracted by 5.

LZ77 token (8.4,'k') for “s-mak”

Dictionary LAB Window slides 5 positions Dictianary LAB
business-machine | s-makes- | machinery.... busin| ess-machines-mak |es-machi ‘
Pa Update Ps

9. -maching — = =TT TN T T s s s - 4. -machines-mak

11. achine R s = R 13. -mak

1. business-machine 6. achines-mak
12. chine Ps 15. ak
16. e 7. chines-mak

6. ess-machine i ;n;ak 11. es-mak
13. hine ; 1. ess-machines-mak
14. ine g 'r‘nak I1={2, 4,10, 12,15} 8. hines-mak

4. iness-machine 1‘ s-mak | 9. ines-mak
10. machine : s 16. k
15 ne 5. machines-mak

5. ness-machine 23 14. mak

8. s-machine 10. nes-mak

3. siness-machine 3. s-machines-mak
7.ss-machine -+ —..— . _. . _ _ - 12. s-mak

2. usiness-machine B T omr— == - 2, ss-machines-mak

Ps=(16-5)+{2 4,5,3,1}
b =11+{2,4,531} P->Pe

The 5 underlined suffixes ={13,15,16,14,12} The 5 bold suffixes

(1,2,3.4,5} siide out of the {12,13, 14, 15, 16} slide in

5 Insertions ———»

into the wil - Thi
11 Updates — - — » into the window. They are

sorted and inserted

Figure 5: Sliding window update with point& set to Pa initially; the first update is done usings as destination. Array
| holds the indexes where to insert the new suffixes Pgo The update of the indexes is done oWgrand there is no
modification onPp or integer displacement d#s.

window. They are removed.

4 EXPERIMENTAL RESULTS since they represent the typical usage of tree and hash
tables data structures for LZ77 compression. The BT-
Our experimental tests were carried out on a lap- encoder represents the dictionary with a binary tree

top with a 2 GHz Intel Core2Duo T7300 CPU and 2 data structure. The well-known GZip encoder uses
GB of RAM, using a single core. The code was writ- trees and hash tables. LZMA is the default compres-

ten inC, using Microsoft Visual Studio 2008. The lin- ~ Sion technique employed by the 7z format in the 7-
ear time SA construction algorithm SA-IS]12] (avail- ZIP program. Both the GZip and LZMA encoders
able at yuta. 256. googl epages. conf sai s) was perform entropy encoding of the tokens produced by
used. For comparison purposes, we also present théhe LZMA algorithm. This allows for these algo-
results of Ne'son’g)inary tree (BT) encoder [1]_]’ rithms to attain a hlghel’ Compression ratio than our
GZi;ﬂ and the_Z Markov chain aIgoritthLZMAE). algorithms and the BT-encoder (it does not perform
These three encoders were chosen as benchmarkentropy encoding of the tokens).

Twwwv. gzi p. org/ The test files are from the standard corpora Cal-
2w, 7- zi p. or g gary (18 files, 3 MB) and Silesia (12 files, 211 MB),
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available atww. data- conpression.info. We www. I ar sson. dogna. net/research. htnm)) uses 3
use the “best” compression option, by choosing the integers and a symbol for each node, occupying 16
longest match as discussed in secfiof 3.1 and depictedytes, placed in a hash table [9], using the maximum

in Figure[2.

4.1 Experimental Setup

amount of memory
MsT = 25x |dictionary|[+ 4 x hashsz- 16  (4)

bytes, wherédnashsis the hash table size. The GZip

In our tests, we assess the following measures: en-ancoder occupieMgzp=313408 bytes, as measured
coding time (in seconds, measured by the C func- by sj zeof C operator. The LZMA encoder data

tion cl ock); compression ratio (in bits per byte, bpb);
amount of memory for encoder data structures (in

structures occupy

bytes). 9.5|dict.|, ifMF=BT2
Nelson's BT-encodef [11] uses 3 integers per tree , _ 4194 11.5[dict}, if MF=BT3
node with|dictionary|+ 1 nodes, occupying LZMA 94304+ 11.5[dict|, if MF=BT4
Mgt = 13 x |dictionary|+ 12 3) 7.5|dict.|, ifMF = HC4(5)
bytes, using 4-byte integers. =~ Llars- pytes, depending on theatch finder(MF) used
son's suffix tree encoder (available at as well as on|dictionary with BT# denoting bi-

Algorithm 1 SA Sliding Window Algorithm

Input:

Pa, Ps, mdength SA;

P, pointer toPa or Pg;

Pyst, pointer toPs or Pa;

LAB, look-ahead buffer;

LI, 256-position length Leftindex array;

L < |LAB|, number of symbols in the previously

produced token(s).

Output: Pa or Pg updated;

P pointing to the recently updated SA.

~

. UsingLl andPs, fill the L-length arrayl with the in-

sertion indexes (slide isuffixes).

nary tree with # bytes hashing and HC4 denoting
hash chain with 4 bytes hashing. For instance,
with (|dictionary||LAB|) = (655364096), we have

in increasing ordeMsa =627712, Mgt =851980,
Mst =1900560, andV zma=4816896 bytes. If we
consider an application in which we only have a low
fixed amount of memory, such as the internal mem-
ory of an embedded device, it may not be possible to
instantiate a tree or a hash table based encoder.

The Gzip and LZMAl encoders are built upon the

deflate algorithm, and perform entropy encoding of

1. if P points toPa then . . . the tokens achieving better compression ratio than our
gf | SetPysttoPs.  {/*R action. Implicitremoval*/} | 753 encoding algorithms. These encoders are use-
- €ise ful as a benchmark comparison, regarding encoding
4:  SetPyg; to Pa. . .
5: end if time a_md amount of memory. For b_oth compression
6: Compute the SAs for the encoded substring (with ~ techniques, we have compiled their C/C++ sources
positions). using the same compiler settings as for our encoders.

The compression ratio of our encoders as well as
that of the BT-encoder can be easily improved by

g; forlgd;[}[?]o}l_:dlgs[i]+ dictionany| — L. (/"1 action*/} entropy-encoding the tokens. Our purpose is to fo-
10: end for cus only on the construction and update of the dic-
11: Do nUpdate =dictionary — L: tionary and _searchlng_over it, using less memory than
12: Doj=1. {I*Perform|dictionary — L updates.*/} the conventional solutions with trees and hash tables.
13: for i = 1 to|dictionary|do

14:if (P] —L) > Othen 4.2 Comparison with other encoders

15: while (j € 1) do

16: j=j+1. {/*Make sure thaf is an update . .
position.*/} We encode each file of the two corpora using LZSS

17: end while and compute the total encoding time as well as the av-

18: Past[j] = Pli] — L. {I*U action.*/} erage compression ratio, for different configurations

19: j=j+1. of (|dictionary||LAB|), with “best” compression op-

20: nUpdate = nUpdate - 1. tion andL = |LAB|for Algorithm 1. Tabléll shows the

g% i (g%ﬁfte‘f{(ﬁgigtm ation SA is complete.*/} results of_ these tests on the Calgary Corpus. Our.SA—

23 end if encoder is faster than BT, except on tests 5to 7; on

24:  endif test 6 (the GZip-like scenario), BT-encoder is about

25: end for B ——— _ .

26: SetPtoPyg.  {/*P points to recently updated SA.*/} LZMA SDK, version 4.65, 3 Feb. 2009, available at

WWw. 7- zi p. or g/ sdk. ht ni
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Table 1: Amount of memory, total encoding time (in seconds), and ave@ygpression ratio (in bpb), for several lengths of
(|dictionaryl, |LAB|) on the Calgary Corpus, using “best” compression. GZip “fast” leads to Time=0.5 and bpb=3.20 while
GZip “best” yields Time=1.2 and bpb=2.79. The best encoding time is underlined.

Calgary Corpus SA (proposed) BT LZMA

|Dict.| |LAB| Msa | Time bpb MgT Time bpb Mizm A Time bpb
2048 1024 25600 22 | 577 26636 392 | 565 | 4217856 47 | 299
4096 1024 41984 25 | 540 53260 43 | 498 | 4241408 48 | 282
4096 2048 50176 24 | 575 53260 111 | 548 | 4241408 48 | 282
8192 2048 82944 3.8 | 549 | 106508 | 117 | 488 | 4288512 51| 269

16384 256 | 134144 91 | 436 | 213004 45 | 412 | 4382720 52 | 261

32768 256 | 265216 184 | 431 | 425996 55 | 408 | 4571136 49 | 254

32768 1024 | 271360 111 | 486 | 425996 75 | 440 | 4571136 49 | 254

32768 2048 | 279552 95| 516 | 425996 | 158 | 457 | 4571136 49 | 254

OIN|O|UO|R|W[N|FP|H

Table 2: Amount of memory, total encoding time (in seconds) and avex@geression ratio (in bpb), for several lengths of
(|dictionary},|LAB|) on the Silesia Corpus, using “best” compression. GZip “fast” obtains Time=19.5 and bpb=3.32 while
GZip “best” does Time=74.4 and bpb=2.98. The best encoding time is underlined.

Silesia Corpus SA (proposed) BT LZMA
‘DIC'[‘ ‘LAB ‘ Msa Time bpb Mgr Time bpb Mizma Time bpb
2048 1024 25600 | 118.7 | 566 26636 | 2495 | 565 | 4217856 | 33353 | 305
4096 1024 41984 | 1169 | 541 53260 | 3034 | 525 | 4241408 | 34905 | 290
4096 2048 50176 | 112.9 | 568 53260 | 6949 | 563 | 4241408 | 34905 | 290
8192 2048 82944 | 143.4 | 544 | 106508 | 6689 | 527 | 4288512 | 35677 | 276
16384 256 | 134144 | 3191 | 455 | 213004 | 254.6 | 444 | 4382720 | 36647 | 262
32768 256 | 265216 | 5427 | 441 | 425996 | 318.1 | 431 | 4571136 | 35634 | 252
32768 1024 | 271360 | 322.2 | 480 | 425996 | 3826 | 464 | 4571136 | 35634 | 252
32768 2048 | 279552 | 302.3 | 502 | 425996 | 9798 | 481 | 4571136 | 35634 | 252

(N[O |W[N|F-|H

3.5 times faster than SA. Talile 2 shows the results for too small. Our algorithms (without entropy encod-
the Silesia Corpus. In these tests, the SA-encoder ising) are thus positioned in a trade-off between time
the fastest except on tests 5 and 6. On test 3, the SA-and memory, that can make them suitable to replace
encoder is about 5 times faster than the BT-encoder, binary trees on LZMA or in substring search. The us-
achieving about the same compression ratio. Notice age of the LI array over the SA allows to quickly find
that that for the BT and LZMA encoders, the amount the set of substrings that start with a given symbol
of memory only depends on the length of the dictio- acting as an accelerator of the encoding process.
nary. For our SA-encoder the amount of memory for

the encoder data structures also depends on the length

of the LAB, due to the use of thes and| arrays, as

given by [2). 5 CONCLUSIONS

Figurel® shows the performance meashi@ex
Memoryon the encoding of the Calgary and Silesia
corpora, on the tests shown on Talfles 1[dnd 2, for SA 5, gffix arrays, improving on earlier work in terms
and BT-encoders, including GZip “best” test results encoding time, with similar low memory require-
for comparison. Regarding the Calgary Corpus test mants The proposed algorithm uses an auxiliary ar-
results, the SA-encoder has better performance thanray as an accelerator to the encoding procedure, as
BT-encoder on tests 1 to 4 and 8; on Silesia Corpus, \ye|| a5 a fast update of the dictionary based on two
this happens on all tests except on test 6. suffix arrays. It allowsa priori computing the ex-

For all these encoders searching and updating theact amount of memory necessary for the encoder data
dictionary are the most time-consuming tasks. A high structures without any waste of memory; usually this
compression ratio like those of LZMA and GZip can may not be the case when using (binary/suffix) trees.
be attained only when we use entropy encoding with We have compared our algorithm on standard cor-
appropriate models for the tokens. The SA encoder pora against tree-based encoders, including GZip and
is faster than the BT encoder, when the LAB is not LZMA. The experimental tests showed that our en-

In this paper, we have proposed a sliding window
update algorithm for Lempel-Ziv compression based
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Figure 6: Timex Memory performance measure for SA and BT on the Calgary and Silesia Corpus, on the 8 encoding tests
of Tabled1 anfll2. We include GZip “best” performance for comparison.

codersalwaysoccupy less memory than tree-based [7] D. Gusfield. Algorithms on Strings, Trees and Se-

encoders; moreover, in some (typical) compression quences. Cambridge University Press, 1997.
settings the SA-encoders are also faster than tree- [8] J. Karkainen, P. Sanders, and S. Burkhardt. Linear
based encoders. The position of the proposed algo- ~ work suffix array constructionJournal of the ACM,
rithm in the time-memory tradeoff makes it suitable 53(6):918-936, 2006.

as a replacement of trees and hash tables, for some[9] N. Larsson. Structures of String Matching and Data
compression settings. These compression settings in- ~ Compression. PhD thesis, Department of Computer

clude all the situations in which the length of the look- Science, Lund University, Sweden, September 1999.
ahead-buffer window is not too small, as compared to [10] U. Manber and G. Myers. Suffix Arrays: a new
the length of the dictionary. method for on-line string searcheSIAM Journal on

Computing, 22(5):935-948, October 1993.

[11] M. Nelson and J. GaillyThe Data Compression Book.
M & T Books, New York, 2nd edition, 1995.
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