
   

101 
  

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (3) 2020 

 

  

 

 

The Continuous Classical Optimal Control Problems for Triple Nonlinear 
Elliptic Boundary Value Problem  

 
 

 

Department of Mathematics, College of Science, University of Mustansiriyah Baghdad, Iraq. 
 
 

 

 
 

 
 

Abstract 
     In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear 
elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove 
the existence and uniqueness theorem of the solution of the state vector for fixed control 
vector. The existence theorem for the triple continuous classical optimal control vector 
(TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique 
solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we 
derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the 
theorems of necessity conditions and the sufficient condition for optimality of the constraints 
problem are proved. 
 
Keywords: Triple nonlinear elliptic value problem, continuous classical optimal control 
vector, Mint-Browder theorem, triple adjoint equations, Fréchet derivative necessity and 
sufficient theorems. 
   
1. Introduction 
     The OCP is one of the most important subject not only in mathematics, but in all branches 
of science, for instance, in engineering such  as robotics [1]. And aeronautics [2]. In the 
medicine and mathematical biology, such as modeling and optimal controlling the infectious 
diseases [3]. In the life sciences, such as sustainable forest management [4].  
In the past few decades, there were many studies and papers published in OCPs for systems 
that related to nonlinear ordinary differential equations [5]. or systems related to nonlinear 
partial differential equation (NLPDEqs) either of: a hyperbolic type [6]. Or of a parabolic type 
[7]. Or of an elliptic type [8]. 
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 or OCP are related to couple of NLPDEqs of: a hyperbolic [9]. Or of hyperbolic but include a 
boundary control [10]. Or of a parabolic type [11].Or of a parabolic type but includes a 
boundary control [12]. Or of an elliptic type [13]. Of an elliptic type that includes a Numann 
boundary control [14]. While other papers deals with the optimal control problems that are 
related to triple linear partial differential equation of : an elliptic type [15]. Or of an parabolic 
type [16]. 
In this work, the Minty-Browder theorem is used to prove the existence theorem for a unique 
solution (continuous state vector) for the TNLEBVP for fixed TCCOCV, and to state and 
prove the theorem for the existence TCCOCV related to the TNLEBVP, so as the theorem of 
the existence of a unique solution of the TAEqs related to the TNLEBVP. The FD of the cost 
function is derived. At the end the theorem of necessity conditions is stated and proved so as 
is the sufficient condition theorem for optimality of the constrained problem. 

2. The Problem Description 
     Let Λ be an open (bounded) connected subset in ℝ ൈ ℝ with Lipschitz boundary ∂Λ. 
Consider the TCCOC of the TNLEBVP 
െ𝐵ଵ 𝜉ଵ  𝜉ଵ െ 𝜉ଶ െ 𝜉ଷ  𝑎ଵሺ𝑥, 𝜉ଵ, 𝑣ଵሻ ൌ 𝑎ଶሺ𝑥, 𝑣ଵሻ, 𝑖𝑛 𝛬 (1)  
െ𝐵ଶ 𝜉ଶ  𝜉ଵ  𝜉ଶ  𝜉ଷ  𝑝ଵሺ𝑥, 𝜉ଶ, 𝑣ଶሻ ൌ 𝑝ଶሺ𝑥, 𝑣ଶሻ, 𝑖𝑛 𝛬 (2)  
െ𝐵ଷ 𝜉ଷ  𝜉ଵ െ 𝜉ଶ  𝜉ଷ  𝑘ଵሺ𝑥, 𝜉ଷ, 𝑣ଷሻ ൌ 𝑘ଶሺ𝑥, 𝑣ଷሻ, 𝑖𝑛 𝛬 (3)  
with the Dirchlet boundary condition   
𝜉ଵ ൌ 𝜉ଶ ൌ 𝜉ଷ ൌ 0 ,  in ∂Λ   (4)  

Where B୰ξ୰ ൌ ∑ ப

ப୶
൬b୧୨

பஞ౨

ப୶ౠ
൰ଶ

୧,୨ ,  𝑟 ൌ 1,2,3  ,  b୧୨ ൌ b୧୨ሺxሻ ∈ LஶሺΛሻ, ∀i, j ൌ 1,2,  x ൌ ሺxଵ, xଶሻ  

ξ⃗ ൌ ൫ξଵሺxሻ, ξଶሺxሻ, ξଷሺxሻ൯ ∈ ൫H
ଶሺΛሻ൯

ଷ
 is the classical solution of the system (1)-(4), vሬ⃗ ൌ

൫vଵሺxሻ, vଶሺxሻ, vଷሺxሻ൯ ∈ ൫LଶሺΛሻ൯
ଷ
 is the CCV,  the functions aଵሺx, ξଵ, vଵሻ, pଵሺx, ξଶ, vଶሻ and 

 kଵሺx, ξଷ, vଷሻ are defined on Λ ൈ ℝ ൈ Vଵ,  Λ ൈ ℝ ൈ Vଶ and   Λ ൈ ℝ ൈ Vଷ  respectively, and 
the functions aଶሺx, vଵሻ, pଶሺx, vଶሻ and kଶሺx, vଷሻ  are defined on Λ ൈ Vଵ, Λ ൈ Vଶ  and  Λ ൈ Vଷ 
respectively with Vଵ, Vଶ , Vଷ ⊂ ℝ. 

The control constraint is (vଵ, vଶ, vଷሻ ∈ Uଵ ൈ Uଶ ൈ Uଷ ൌ Uሬሬ⃗ ,   Uሬሬ⃗ ⊂  ൫LଶሺΛሻ൯
ଷ

, where Uሬሬ⃗  is 

the control  set has the form    

𝑈ሬሬ⃗ ൌ ሼ𝑢ሬ⃗ ∈ ൫𝐿ଶሺ𝛬ሻ൯
ଷ

|𝑢ሬ⃗ ൌ ሺ𝑢ଵ, 𝑢ଶ, 𝑢ଷሻ ∈ 𝑉ଵ ൈ 𝑉ଶ ൈ 𝑉ଷ ൌ 𝑉ሬ⃗  𝑎. 𝑒. 𝑖𝑛 𝛬ሽ 

With Vሬሬ⃗ ⊂ ℝଷ that is convex and compact set. 
The cost function is  

𝑌ሺ�⃗�ሻ ൌ  𝑦ଵ
 

௸
ሺ𝑥, 𝜉ଵ, 𝑣ଵሻ𝑑𝑥   𝑦ଶ

 
௸

ሺ𝑥, 𝜉ଶ, 𝑣ଶሻ𝑑𝑥   𝑦ଷ
 

௸
ሺ𝑥, 𝜉ଷ, 𝑣ଷሻ𝑑𝑥  (5)   

The state –control constraints are  
𝑌ଵሺ�⃗�ሻ ൌ  𝑦ଵଵ

 
௸

ሺ𝑥, 𝜉ଵ, 𝑣ଵሻ𝑑𝑥   𝑦ଵଶ
 

௸
ሺ𝑥, 𝜉ଶ, 𝑣ଶሻ𝑑𝑥   𝑦ଵଷ

 
௸

ሺ𝑥, 𝜉ଷ, 𝑣ଷሻ𝑑𝑥 ൌ 0 (6)  

Yଶሺvሬ⃗ ሻ ൌ  yଶଵ
 

ஃ
ሺx, ξଵ, vଵሻdx   yଶଶ

 
ஃ

ሺx, ξଶ, vଶሻdx   yଶଷ
 

ஃ
ሺx, ξଷ, vଷሻdx  0 (7)   

The set of the admissible controls  is 𝑈ሬሬ⃗  ൌ ൛�⃗� ∈ 𝑈ሬሬ⃗ |𝑌ଵሺ�⃗�ሻ ൌ 0, 𝑌ଶሺ�⃗�ሻ  0ൟ 

The TCCOC problem is to minimize the cost function (5) subject to the state constraints of 

(6) and (7), i.e. to find vሬ⃗  such that vሬ⃗ ∈ Uሬሬ⃗  and Yሺvሬ⃗ ሻ ൌ min
୳ሬሬ⃗ ∈ሬሬ⃗ ఽ

 Yሺuሬ⃗ ሻ. 

Let 𝑊ሬሬሬ⃗ ൌ 𝑊ଵ ൈ 𝑊ଶ ൈ 𝑊ଷ ൌ 𝐻
ଵሺ𝛬ሻ ൈ 𝐻

ଵሺ𝛬ሻ ൈ 𝐻
ଵሺ𝛬ሻ, y  ‖w‖ଵ and  ‖𝑤ሬሬ⃗ ‖ଵare denoted by the 

norm in H 
ଵሺΛሻ and (൫HଵሺΛሻ൯

ଷ
respectively, y ‖𝑤‖ ( ‖𝑤ሬሬ⃗ ‖ሻ are denoted the norm in 𝐿ଶሺΛሻ 
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and in ሺ𝐿ଶሺΛሻሻଷ respectively and the inner product in 𝑊 is denoted by ሺ𝑤, 𝑤ሻ, with ‖𝑤ሬሬ⃗ ‖ ൌ

‖𝑤ଵ‖  ‖𝑤ଶ‖  ‖𝑤ଷ‖ , W∗ሬሬሬሬሬ⃗  is dual of Wሬሬሬ⃗ . 

3. Weak Formulation of the TNLEBVP  
The weak form (WF) of (1)-(4) is obtained through multiplying both sides of Equations (1)-
(3) bywଵ ∈ Wଵ, wଶ ∈ Wଶ and wଷ ∈ Wଷ respectively, then integrating the obtained equations. 
Finally, using the generalize Green's theorem for the 1st term in left hand side (L.H.S) of the 
three obtained equations, once get ∀𝑤ଵ, 𝑤ଶ, 𝑤ଷ ∈ 𝑊ଶ 
𝑏ଵሺ𝜉ଵ, 𝑤ଵሻ  ሺ𝜉ଵ, 𝑤ଵሻ െ ሺ𝜉ଶ, 𝑤ଵሻ െ ሺ𝜉ଷ, 𝑤ଵሻ  ሺ𝑎ଵሺ𝜉ଵ, 𝑣ଵሻ, 𝑤ଵሻ ൌ ሺ 𝑎ଶሺ𝑣ଵሻ, 𝑤ଵሻ (8) 
𝑏ଶሺ𝜉ଶ, 𝑤ଶሻ  ሺ𝜉ଵ, 𝑤ଶሻ  ሺ𝜉ଶ, 𝑤ଶሻ  ሺ𝜉ଷ, 𝑤ଶሻ  ሺ𝑝ଵሺ𝜉ଶ, 𝑣ଶሻ, 𝑤ଶሻ ൌ ሺ𝑝ଶሺ𝑣ଶሻ, 𝑤ଶሻ   (9) 
𝑏ଷሺ𝜉ଷ, 𝑤ଷሻ  ሺ𝜉ଵ, 𝑤ଷሻ െ ሺ𝜉ଶ, 𝑤ଷሻ  ሺ𝜉ଷ, 𝑤ଷሻ  ሺ𝑘ଵሺ𝜉ଷ, 𝑣ଷሻ, 𝑤ଷሻ ൌ ሺ𝑘ଶሺ𝑣ଷሻ, 𝑤ଷሻ (10)  

where     b୰ሺξ୰, w୰ሻ ൌ  ∑ b୧୨
ଶ
୧,୨ୀଵ

பஞ౨

ப୶
. ப୵౨

ப୶ౠ

 
ஃ  dx,  ൫ξ୰, w୮൯ ൌ  ξ୰

 
ஃ w୮dx,  ሺΘ, w୰ሻ ൌ  Θ w୰dx

 
ஃ , 

with 𝛩 ൌ 𝑎ప 𝑜𝑟 𝑝ప 𝑜𝑟 𝑘ప , 𝑟, 𝑝 ൌ 1,2,3 , 𝚤 ൌ 1,2. 
By blending to gather equations (8), (9) and (10), once get 

B൫ξ⃗, wሬሬሬ⃗ ൯  ሺaଵሺξଵ, vଵሻ, wଵሻ  ሺpଵሺξଶ, vଶሻ, wଶሻ  ሺkଵሺξଷ, vଷሻ, wଷሻ  ൌ ሺ aଶሺvଵሻ, wଵሻ 
ሺpଶሺvଶሻ, wଶሻ  ሺkଶሺvଷሻ, wଷሻ (11) 

where 𝐵൫𝜉, 𝑤ሬሬ⃗ ൯ ൌ 𝑏ଵሺ𝜉ଵ, 𝑤ଵሻ  ሺ𝜉ଵ, 𝑤ଵሻ െ ሺ𝜉ଶ, 𝑤ଵሻ െ ሺ𝜉ଷ, 𝑤ଵሻ  𝑏ଶሺ𝜉ଶ, 𝑤ଶሻ  ሺ𝜉ଵ, 𝑤ଶሻ 
                                   ሺ𝜉ଶ, 𝑤ଶሻ   ሺ𝜉ଷ, 𝑤ଶሻ  𝑏ଷሺ𝜉ଷ, 𝑤ଷሻ  ሺ𝜉ଵ, 𝑤ଷሻ െ ሺ𝜉ଶ, 𝑤ଷሻ  ሺ𝜉ଷ, 𝑤ଷሻ 
Hypotheses A: 

a)B൫ξ⃗, wሬሬሬ⃗ ൯ is coercive, i .e.  
ቀஞሬ⃗ ,ஞሬ⃗ ቁ

ቛஞሬ⃗ ቛ
భ

 ϵฮξ⃗ฮ
ଵ

 0 , ξ⃗ ∈ Wሬሬሬ⃗  

b)หB൫ξ⃗, wሬሬሬ⃗ ൯ห  ϵଵฮξ⃗ฮ
ଵ

‖wሬሬሬ⃗ ‖ଵ,  ϵଵ  0 

c) the functions aଵሺx, ξଵ, vଵሻ , pଵሺx, ξଶ, vଶሻ and kଵሺx, ξଷ, vଷሻ are of Carathéodory type on 
Λ× ℝ ×Vଵ,  Λ× ℝ ×Vଶ  and   Λ ൈ ℝ ൈ Vଷ respectively and satisfy the following sublinearity 
conditions with respect to (w.r.t.)ሺξଵ, vଵሻ, ሺξଶ, vଶሻ and ሺξଷ, vଷሻ respectively. 

|aଵሺx, ξଵ, vଵሻ|≤ϑଵሺxሻ  𝒸ଵ|ξଵ|  �̅�ଵ|vଵ|  ,  |pଵሺx, ξଶ, vଶሻ|≤ϑଶሺxሻ  𝔠ଶ|ξଶ|  �̅�ଶ|vଶ| ,  
|kଵሺx, ξଷ, vଷሻ|≤ϑଷሺxሻ  𝔠ଷ|ξଷ|  �̅�ଷ|vଷ|  

∀(x,ξ୧, v୧ሻ ∈ Λ ൈ ℝ ൈ U୧   with ϑ୧ ∈ LଶሺΛሻ,     𝔠୧, �̅�୧  0 , i ൌ 1,2,3.  
d)  aଵሺx, ξଵ, vଵሻ,  pଵሺx, ξଶ, vଶሻ and kଵሺx, ξଷ, vଷሻ are monotone w.r.t. ξଵ, ξଶ, ξଷ       
    respectively for  each x ∈ Λ  , vଵ ∈ Vଵ,  vଶ ∈ Vଶ, vଷ ∈ Vଷ. 
e) aଵሺx, 0, vଵሻ ൌ 0, ∀x ∈ Λ, vଵ ∈ Vଵ,   pଵሺx, 0, vଶሻ ൌ 0, ∀x ∈ Λ, vଶ ∈ Vଶ, 
      kଵሺx, 0, vଷሻ ൌ 0, ∀x ∈ Λ, vଷ ∈ Vଷ. 
f) the functions aଶሺx, vଵሻ , pଶሺx, vଶሻ and kଶሺx, vଷሻ are of Carathéodory type on     
    Λ×Vଵ, Λ×Vଶ and Λ ൈ Vଷ respectively and satisfy the following conditions 
 |aଶሺx, vଵሻ|≤ϑସሺxሻ  𝔠ସ|vଵ| ,    |pଶሺx, vଶሻ|≤ϑହሺxሻ  𝔠ହ|vଶ| ,   |kଶሺx, vଷሻ|≤ϑሺxሻ  𝔠|vଷ| 
  ∀(x,v୧ሻ ∈ Λ ൈ U୧ , 𝑖 ൌ 1,2,3  with ϑ୰ ∈ LଶሺΛሻ,  𝔠  0 , 𝑟 ൌ 4,5,6. 
Theorem 3.1 (The Minty-Browder theorem)[17] .   let W be a reflexive Banach 
space and  D: W → W∗ be a nonlinear continuous map such that  

ሺ𝐷𝑤ଵ െ 𝐷𝑤ଶ, 𝑤ଵ െ 𝑤ଶሻ  0, ∀𝑤ଵ, 𝑤ଶ ∈ 𝑊, 𝑤ଵ ് 𝑤ଶ      𝑎𝑛𝑑           𝑙𝑖𝑚
‖௪‖→ஶ

ሺ௪,௪ሻ

‖௪‖
ൌ ∞ 

Then the equation  Dξ ൌ a has a unique (solution) ξ ∈ W for every a ∈ W∗.  
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Proposition 3.1 [18].  Let 𝑎: Λ ൈ ℝ ⟶ ℝ is of Carathéodory type, and the functional 𝐴 
is defined by 𝐴ሺ𝜉ሻ ൌ  𝑎ሺ𝑥, 𝜉ሺ𝑥ሻሻ 

ஃ 𝑑𝑥, where Λ is a measurable subset of ℝ, and suppose 

that  
‖𝑎ሺ𝑥, 𝜉ሻ‖  𝜗ሺ𝑥ሻ  𝜂ሺ𝑥ሻ‖𝜉‖ఈ,∀ሺ𝑥, 𝜉ሻ ∈ Λ ൈ ℝ, 𝜉 ∈ 𝐿ሺΛ ൈ ℝሻ 

where 𝜗 ∈ 𝐿ଵሺΛ ൈ ℝ ሻ, 𝜂 ∈ 𝐿
ು

ುషഀሺΛ ൈ ℝ ሻ , and 𝛼 ∈ ሾ0, 𝑃ሿ, if 𝑃 ∈ ሾ1, ∞ሻ , and 𝜂 ≡ 0, if 𝑃 ൌ ∞. 
Then 𝐴 is continuous on 𝐿ሺΛ ൈ ℝሻ. 
Theorem 3.2:  In addition to the hypo.(A-a&d), If at least one of the functions aଵ, pଵ or kଵ 

in hypo.(A-d) is strictly monotone. Then for any fixed controlvሬ⃗ ∈ Uሬሬ⃗  , the WF (11) has a 

unique solution ξ⃗ ∈ Wሬሬሬ⃗ . 

 Proof: let Dഥ: Wሬሬሬ⃗ → Wሬሬሬ⃗ ∗, then the WF (11) is rewriting as          

 ൫𝐷ഥ൫𝜉൯, 𝑤ሬሬ⃗ ൯ ൌ ሺaଶሺvଵሻ, wଵሻ  ሺpଶሺvଶሻ, wଶሻ  ሺkଶሺvଷሻ, wଷሻ         (12) 

where൫𝐷ഥ൫𝜉൯, 𝑤ሬሬ⃗ ൯ ൌ 𝐵൫𝜉, 𝑤ሬሬ⃗ ൯  ሺ𝑎ଵሺ𝜉ଵ, 𝑣ଵሻ , 𝑤ଵሻ  ሺ𝑝ଵሺ𝜉ଶ, 𝑣ଶሻ, 𝑤ଶሻ  ሺ 𝑘ଵሺ𝜉ଷ, 𝑣ଷሻ, 𝑤ଷሻ  (13) 

Then Dഥ satisfies the following:  
i) Dഥ is coercive from hypo. (A-a&e&d) 

ii) from hypotheses (A-a&c) and using proposition3.1 the maping ξ⃗ ⟼ ൫Dഥ൫ξ⃗൯, wሬሬሬ⃗ ൯ is 

continuous w.r.t. ξ⃗. 

iii)  from hypotheses (A-a&b) and (i) Dഥ is strictly monotone w.r.t. ξ⃗. 

Hence by Theorem3.1, there exists a unique weak solution ξ⃗ ∈ Wሬሬሬ⃗  of (11).  
4. Existence of the TCCOC 
Lemma 4.1:   If the functionsሺaଵ& aଶሻ, ሺpଵ& pଶሻ and (kଵ&kଶሻ are Lipschitz w.r.t. vଵ, vଶ 

and vଷ respectively, moreover the hypothesis (A). Then the transformation vሬ⃗ ⟼ ξ⃗୴ሬሬ⃗   from Uሬሬ⃗  to 

൫L²ሺΩሻ൯
ଷ
is Lipschitz continuous. 

Proof: let Vෙሬሬ⃗ ൌ ሺvුଵ, vුଶ, vුଷሻ ∈ Uሬሬ⃗  be a given control of WF(8)-(10) with its corresponding state 

solution൫ξሙଵ, ξሙଶ, ξሙଷ൯, then by subtracting (8)-(10) from the equations which are obtained from 

substituting δξ ൌ ξሙ െ ξ , δv ൌ vු െ v ሺ𝑖 ൌ 1,2,3ሻ in (8)-(10)  respectively, setting wଵ ൌ
δξଵ , wଶ ൌ δξଶ and wଷ ൌ δξଷ and blending together the obtained equation, to give 
𝑏ଵሺ𝛿𝜉ଵ, 𝛿𝜉ଵሻ  ሺ𝛿𝜉ଵ, 𝛿𝜉ଵሻ  𝑏ଶሺ𝛿𝜉ଶ, 𝛿𝜉ଶሻ  ሺ𝛿𝜉ଵ, 𝛿𝜉ଶሻ  𝑏ଷሺ𝛿𝜉ଷ, 𝛿𝜉ଷሻ  ሺ𝛿𝜉ଵ, 𝛿𝜉ଷሻ 
ሺ𝑎ଵሺ𝜉ଵ  𝛿𝜉ଵ, 𝑣ଵ  𝛿𝑣ଵሻ െ 𝑎ଵሺ𝜉ଵ, 𝑣ଵ  𝛿𝑣ଵ, 𝛿𝜉ଵሻ 
ሺ𝑝ଵሺ𝜉ଶ  𝛿𝜉ଶ, 𝑣ଶ  𝛿𝑣ଶሻ െ 𝑝ଵሺ𝜉ଶ, 𝑣ଶ  𝛿𝑣ଶሻ, 𝛿𝜉ଶሻ 
ሺ𝑘ଵሺ𝜉ଷ  𝛿𝜉ଷ, 𝑣ଷ  𝛿𝑣ଷሻ െ 𝑘ଵሺ𝜉ଷ, 𝑣ଷ  𝛿𝑣ଷሻ, 𝛿𝜉ଷሻ 
ൌ െሺ𝑎ଵሺ𝜉ଵ, 𝑣ଵ  𝛿𝑣ଵሻ െ 𝑎ଵሺ𝜉ଵ, 𝑣ଵሻ, 𝛿𝜉ଵሻ െ ሺ𝑝ଵሺ𝜉ଶ, 𝑣ଶ  𝛿𝑣ଶሻ െ 𝑝ଵሺ𝜉ଶ, 𝑣ଶሻ, 𝛿𝜉ଶሻ 
െሺ𝑘ଵሺ𝜉ଷ, 𝑣ଷ  𝛿𝑣ଷሻ െ 𝑘ଵሺ𝜉ଷ, 𝑣ଷሻ, 𝛿𝜉ଷሻ  ሺ 𝑎ଶሺ𝑣ଵ  𝛿𝑣ଵሻ, 𝛿𝜉ଵሻ െ ሺ𝑎ଶሺ𝑣ଵሻ, 𝛿𝜉ଵሻ 
ሺ𝑝ଶሺ𝑣ଶ  𝛿𝑣ଶሻ, 𝛿𝜉ଶሻ െ ሺ𝑝ଶሺ𝑣ଶሻ, 𝛿𝜉ଶሻ  ሺ𝑘ଶሺ𝑣ଷ  𝛿𝑣ଷሻ, 𝛿𝜉ଷሻ െ ሺ𝑘ଶሺ𝑣ଷሻ, 𝛿𝜉ଷሻ  (14) 
By hypotheses (A-a&d), one has: 

𝜖 ∥ 𝛿𝜉ሬሬሬሬ⃗ ∥ଵ
ଶ   ห ൫𝑎ଵሺ𝑥, 𝜉ଵ, 𝑣ଵ  𝛿𝑣ଵሻ െ 𝑎ଵሺ𝑥, 𝜉ଵ, 𝑣ଵሻ൯𝛿𝜉ଵ

  
௸ 𝑑𝑥ห  ห ሺ𝑝ଵሺ𝑥, 𝜉ଶ, 𝑣ଶ  𝛿𝑣ଶሻ െ

 
௸

𝑝ଵሺ𝑥, 𝜉ଶ, 𝑣ଶሻሻ𝛿𝜉ଶ𝑑𝑥ห    ห ൫𝑘ଵሺ𝑥, 𝜉ଷ, 𝑣ଷ  𝛿𝑣ଷሻ െ 𝑘ଵሺ𝑥, 𝜉ଷ, 𝑣ଷሻ൯𝛿𝜉ଷ𝑑𝑥
 

௸ ห  ห ൫𝑎ଶሺ𝑥, 𝑣ଵ 
 

௸

𝛿𝑣ଵሻ െ 𝑎ଶሺ𝑥, 𝑣ଵሻ൯ 𝛿𝜉ଵ𝑑𝑥ห  ห ൫𝑝ଶሺ𝑥, 𝑣ଶ  𝛿𝑣ଶሻ െ 𝑝ଶሺ𝑥, 𝑣ଶሻ൯𝛿𝜉ଶ𝑑𝑥
 

௸ ห  ห ൫𝑘ଶሺ𝑥, 𝑣ଷ 
 

௸

𝛿𝑣ଷሻ െ 𝑘ଶሺ𝑥, 𝑣ଷሻ൯𝛿𝜉ଷ𝑑𝑥ห 
By using Lipchitz condition on ሺ𝑎ଵ& 𝑎ଶሻ, ሺ𝑝ଵ& 𝑝ଶሻ and (𝑘ଵ&𝑘ଶሻ w.r.t. 𝑣ଵ, 𝑣ଶ ,𝑣ଷ respectively 
and  Cauch-Schwarz Inequality (C-S-I) of the obtained inequality, to get:  
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ฮ𝛿𝜉ሬሬሬሬ⃗ ฮ
ଵ

ଶ
 𝐿ସ‖𝛿𝑣ଵ‖‖𝛿𝜉ଵ‖  𝐿ହ‖𝛿𝑣ଶ‖‖𝛿𝜉ଶ‖  𝐿‖𝛿𝑣ଷ‖‖𝛿𝜉ଷ‖  

        
ሳሰ 

‖ 𝛿𝜉 ሬሬሬሬሬ⃗ ฮ


 𝐿ෘฮ𝛿𝑣ሬሬሬሬ⃗ ฮ

,  with  Lସ ൌ 𝑚𝑎x ቀ

భ


, ഥభ


ቁ , 𝐿ହ ൌ 𝑚𝑎𝑥 ቀ

మ

ఢ
, തమ

ఢ
ቁ , 𝐿 ൌ 𝑚𝑎𝑥 ሺయ

ఢ
, തయ

ఢ
ሻ  (15) 

Hypotheses B: 
Suppose that yℓ ሺ∀ ℓ ൌ 0,1,2 & 𝑖 ൌ 1,2,3ሻ is of Carathéodory type on Λ ൈ ℝ ൈ V, satisfies 
the following condition w.r.t.ሺξ, vሻ, i.e.  
|𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ|  𝜗ℓሺ𝑥ሻ  𝔠ℓ𝜉

ଶ  �̆�ℓ𝑣
ଶ, whereሺξ, vሻ ∈ ℝ ൈ v,ϑℓ ∈ LଵሺΛሻ and 𝔠ℓ, �̆�ℓ  0. 

Lemma 4.2:  With hypotheses (B), the functional �⃗� ⟼ 𝑌ℓሺ�⃗�ሻ,(∀ℓ ൌ 0,1,2,) defines on 

൫𝐿²ሺΛሻ൯
ଷ
is continuous. 

Proof:  hypotheses (B) and proposition 3.1, gives that  𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ
 

ஃ 𝑑𝑥ሺ∀ℓ ൌ 0,1,2, & 𝑖 ൌ

1,2,3ሻ, is continuous on 𝐿²ሺΛሻ. Hence 𝑌ℓሺ�⃗�ሻ is continuous on൫𝐿²ሺΛሻ൯
ଷ
. 

Lemma 4.3[18] .  Let 𝑦 ∶ Λ ൈ ℝଶ ⟶ ℝ  is of Carathéodory type on Λ ൈ ℝଶ, with  

│𝑦ሺ𝑥, 𝜉, 𝑣ሻ│  𝜂ሺ𝑥ሻ  ℂ𝑦ଶ  ℂ′𝑢ଶ, where 𝜂 ∈ 𝐿ଵሺΛ, ℝ ሻ, ℂ, ℂ′  0. 
Then  𝑦ሺ𝑥, 𝜉, 𝑣ሻ𝑑𝑥

 
ஃ  is continuous on 𝐿ଶሺΛ, ℝଶ ሻ , with 𝑣 ∈ 𝑉, 𝑉 ⊂ ℝ is compact. 

Theorem 4.1: In addition to hypotheses (A & B), we suppose that the set of controls 𝑈ሬሬ⃗ , 

with 𝑉ሬ⃗  is convex and compact, 𝑈ሬሬ⃗  ് 𝜙, where 𝑎ଵ, 𝑝ଵ and 𝑘ଵ are independent of 𝑣ଵ, 𝑣ଶ and 𝑣ଷ 
respectively, and 𝑎ଶ, 𝑝ଶ and 𝑘ଶ are linear w.r.t. 𝑣ଵ, 𝑣ଶ and 𝑣ଷ respectively, i.e. 
𝑎ଵሺ𝑥, 𝜉ଵ, 𝑣ଵሻ ൌ 𝑎ଵሺ𝑥, 𝜉ଵሻ   ,    𝑝ଵሺ𝑥, 𝜉ଶ, 𝑣ଶሻ ൌ 𝑝ଵሺ𝑥, 𝜉ଶሻ   ,    𝑘ଵሺ𝑥, 𝜉ଷ, 𝑣ଷሻ ൌ 𝑘ଵሺ𝑥, 𝜉ଷሻ           
𝑎ଶሺ𝑥, 𝑣ଵሻ ൌ 𝑎ଶሺ𝑥ሻ𝑣ଵ        ,      𝑝ଶሺ𝑥, 𝑣ଶሻ ൌ 𝑝ଶሺ𝑥ሻ𝑣ଶ         ,    𝑘ଶሺ𝑥, 𝑣ଷሻ ൌ 𝑘ଶሺ𝑥ሻ𝑣ଷ, such that 
|𝑎ଵሺ𝑥, 𝜉ଵሻ|  𝜗ଵሺ𝑥ሻ  �̂�ଵ|𝜉ଵ|,  |𝑝ଵሺ𝑥, 𝜉ଶሻ|  𝜗ଶሺ𝑥ሻ  �̂�ଶ|𝜉ଶ|,    |𝑘ଵሺ𝑥, 𝜉ଷሻ|  𝜗ଷሺ𝑥ሻ  �̂�ଵ|𝜉ଷ| 
where 𝜗ଵ, 𝜗ଶ, 𝜗ଷ ∈ 𝐿²ሺΛሻ and  �̂�ଵ, �̂�ଶ, �̂�ଷ  0 ,|𝑎ଶሺ𝑥ሻ|  𝑛ଵ , |𝑝ଶሺ𝑥ሻ|  𝑛ଶ ,     |𝑘ଶሺ𝑥ሻ|  𝑛ଷ 
𝑦ଵ is independent of𝑣  and 𝑦ℓ(for 𝑙 ൌ 0,2  and  𝑖 ൌ 1,2,3) is convex w.r.t. 𝑣 for fixed 𝜉,  
then there exists TCCOCV. 

Proof:  Since 𝑉ሬ⃗  is convex and compact, then 𝑈ሬሬ⃗  is weakly compact. 

Since 𝑈ሬሬ⃗  ് ∅ then there exists 𝑢ሬ⃗ ∈ 𝑈ሬሬ⃗  and a minimum sequenceሼ�⃗�ሽ ൌ ሼሺ𝑣ଵ, 𝑣ଶ, 𝑣ଷሻሽ ∈

𝑈ሬሬ⃗ , such that∀ �⃗� ∈ 𝑈ሬሬ⃗ ,∀𝑛 :  lim
→ஶ

𝑌ሺ�⃗�ሻ ൌ  inf
௨ሬሬ⃗ ∈ሬሬ⃗ ಲ

𝑌ሺ𝑢ሬ⃗ ሻ. 

Since 𝑈ሬሬ⃗  is weakly compact, then there exists a subsequence of ሼ�⃗�ሽ, (let it be again ሼ�⃗�ሽ) 

which converges weakly to some  �⃗� ∈ 𝑈ሬሬ⃗ , i.e. �⃗� ⟶
 

 
�⃗� weakly in൫𝐿ଶሺΛሻ൯

ଷ
and  ‖�⃗�‖  �̃� , ∀𝑛. 

Now, by using (12), hypotheses  and C-S-I, give  

   𝜖ฮ𝜉ฮ
ଵ

ଶ
 ሺ𝐷ഥ൫𝜉൯, 𝜉ሻ ൌ ሺ𝑎ଶሺ𝑥, 𝑣ଵሻ, 𝜉ଵሻ  ሺ𝑝ଶሺ𝑥, 𝑣ଶሻ, 𝜉ଶሻ  ሺ𝑘ଶሺ𝑥, 𝑣ଷሻ, 𝜉ଷሻ 

              |ሺ𝑎ଶሺ𝑥ሻ𝑣ଵ, 𝜉ଵሻ|  |𝑝ଶሺ𝑥ሻ𝑣ଶ, 𝜉ଶ|  |ሺ𝑘ଶሺ𝑥ሻ𝑣ଷ, 𝜉ଷሻ| 
              𝑛ଵ𝔠ଵ‖𝜉ଵ‖  𝑛ଶ𝔠ଶ‖𝜉ଶ‖  𝑛ଷ𝔠ଷ‖𝜉ଷ‖                         

              ሺ𝑛ଵ𝔠ଵ  𝑛ଶ𝔠ଶ  𝑛ଷ𝔠ଷሻฮ𝜉ฮ
ଵ

ൌ 𝜔ฮ𝜉ฮ
ଵ
,  where  ω ൌ maxሺ𝑛ଵ𝔠ଵ, 𝑛ଶ𝔠ଶ, 𝑛ଷ𝔠ଷሻ  0 

Then ฮ𝜉ฮ
ଵ

 𝜇 , for each 𝑛 with  𝜇 ൌ
ఠ

ఢ
 0 ( i.e.  𝜉 is bounded ∀n) 

By Alaoglu theorem(Al.Th.) [19]. there exists a subsequence of ൛𝜉ൟ , (let it be again 

൛𝜉ൟ ሻsuch that 𝜉
    
→ 𝜉 weakly in 𝑊ሬሬሬ⃗ , which mean that 𝜉 ⟶

 

  
𝜉 weakly in ሺ𝐿ଶሺΛሻሻଷ, then by 

compactness theorem(Rellich–Kondrachov [20].)𝜉 ⟶
 

  
𝜉 strongly inሺ 𝐿ଶሺΛሻሻଷ.Since for each 

n, 𝜉 ൌ ሺ𝜉ଵ, 𝜉ଶ, 𝜉ଷሻ satisfies (11),i.e. 
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B൫𝜉, 𝑤ሬሬ⃗ ൯  ሺ𝑎ଵሺ𝜉ଵሻ, 𝑤ଵሻ   ሺ𝑝ଵሺ𝜉ଶሻ, 𝑤ଶሻ  ሺ𝑘ଵሺ𝜉ଷሻ, 𝑤ଷሻ   ൌ ሺ𝑎ଶሺ𝑥ሻ𝑣ଵ, 𝑤ଵሻ 
ሺ𝑝ଶሺ𝑥ሻ𝑣ଶ, 𝑤ଶሻ   ሺ𝑘ଶሺ𝑥ሻ𝑣ଷ, 𝑤ଷሻ (16) 

Let ሺ𝑤ଵ, 𝑤ଶ, 𝑤ଷሻ ∈ ൫𝐶ሺΛഥሻ൯
ଷ
,  to show that (16) converges to (17),such that  

𝐵൫𝜉, 𝑤ሬሬ⃗ ൯  ሺ𝑎ଵሺ𝜉ଵ, 𝑣ଵሻ, 𝑤ଵሻ  ሺ𝑝ଵሺ𝜉ଶ, 𝑣ଶሻ, 𝑤ଶሻ  ሺ𝑘ଵሺ𝜉ଷ, 𝑣ଷሻ, 𝑤ଷሻ  ൌ ሺ 𝑎ଶሺ𝑣ଵሻ, 𝑤ଵሻ 
ሺ𝑝ଶሺ𝑣ଶሻ, 𝑤ଶሻ  ሺ𝑘ଶሺ𝑣ଷሻ, 𝑤ଷሻ (17)  

i . Since 𝜉
          
ሱ⎯ሮ 𝜉 𝑤𝑒𝑎𝑘𝑙𝑦 𝑖𝑛 𝑊

∀ୀଵ,ଶ,ଷ
ሳልልልልሰ 𝜉

          
ሱ⎯ሮ 𝜉weakly in 𝐿ଶሺΛሻ   and   

డక

డ௫

          
ሱ⎯ሮ డక

డ௫
 weakly in 𝐿ଶሺΛሻ  

ii.  from the hypotheses on 𝑎ଶሺ𝑥, 𝜉ଵሻ, 𝑝ଶሺ𝑥, 𝜉ଶሻ 𝑎𝑛𝑑 𝑘ଶሺ𝑥, 𝜉ଷሻ and by using the result of 
lemma4.2, give that  𝑎ଵሺ𝑥, 𝜉ଵሻ

 
Ω 𝑤ଵ𝑑𝑥,  𝑝ଵሺ𝑥, 𝜉ଶሻ𝑤ଶ 𝑑𝑥

 
ஃ   and  𝑘ଵሺ𝑥, 𝜉ଷሻ𝑤ଷ𝑑𝑥

 
ஃ  are 

continuous w.r.t. 𝜉ଵ, 𝜉ଶ  and  𝜉ଷrespectively since 𝜉 ⟶
 

  
𝜉 strongly in ሺ 𝐿ଶሺΛሻሻଷ,  

then the L.H.S of (16) →L.H.S of (17). 
Also the convergence for the R.H.S of (16) to the R.H.S of (17) is obtained through (𝑣      
ሱሮ 𝑣ሻ 𝑤𝑒𝑎𝑘𝑙𝑦 𝑖𝑛 𝐿ଶሺΛሻ, (𝑖 ൌ 1,2,3ሻ. 

But ሺ𝐶ሺΛഥሻሻଷ is dense in 𝑊ሬሬሬ⃗ ,  which gives 𝜉 ⟶ 𝜉 ൌ 𝜉௩ሬ⃗   is a solution of the state equations in 

𝑊ሬሬሬ⃗ .  

From lemma4.2, 𝑌ℓ൫𝑉ሬ⃗ ൯ is continuous on ൫𝐿ଶሺΛሻ൯
ଷ
, for each ℓ ൌ 0,1,2. 

From the hypotheses on 𝑦ℓሺ𝑓𝑜𝑟 ℓ ൌ 0,1,2  𝑎𝑛𝑑 𝑖 ൌ 1,2,3ሻ, and 𝜉 ⟶
 

  
𝜉 strongly in 𝐿ଶሺΛሻ, 

then 𝑌ଵሺ�⃗�ሻ ൌ lim
→ஶ

𝑌ଵሺ�⃗�ሻ, hence 𝑌ଵሺ�⃗�ሻ ൌ 0. 

Now, to prove 𝑌ℓሺ�⃗�ሻ, ሺℓ ൌ 0,2 ሻ is W.L.Sc. w.r.t. (𝜉, 𝑣ሻ , ሺ𝑖 ൌ 1,2,3ሻ. 

From hypotheses B, ሺ𝑣ଵ, 𝑣ଶ, 𝑣ଷሻ ∈ 𝑉ሬ⃗  almost everywhere (a.e.) in Λ and 𝑉ሬ⃗  is compact, 
hence 𝑌ℓሺ�⃗�ሻ is satisfied the hypotheses of lemma4.3, and gets that  

 𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ𝑑𝑥
          
ሱ⎯ሮ  𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ𝑑𝑥

 
ஃ

 
ஃ   

Since𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ  is convex w.r.t. 𝑣, then 𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ𝑑𝑥
 

ஃ  is W.L.S. w.r.t.𝑣, i.e. 

 𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ𝑑𝑥
 

ஃ lim
 

→ಮ
 𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ𝑑𝑥

 
ஃ   

                     ൌlim
 

→ಮ
 ሺ𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ െ 𝑦ℓሺ𝑥, 𝜉, 𝑣ሻሻ𝑑𝑥 lim

 

→ಮ
 𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ𝑑𝑥

 
ஃ

 
ஃ         

                     ൌlim
 

→ಮ
 ሺ𝑦ℓሺ𝑥, 𝜉, 𝑣ሻ𝑑𝑥

 
ஃ  

Hence 𝑌ሺ�⃗�ሻ lim
 

→ಮ

𝑌ሺ�⃗�ሻ ൌ  lim
→ஶ

𝑌ሺ�⃗�ሻ ൌ  inf
௨ሬሬ⃗ ∈ሬሬ⃗ ಲ

𝑌ሺ𝑢ሬ⃗ ሻ ⟹ �⃗�  is an optimal control 

 
5. The Necessary and the Sufficient Conditions for Optimality Hypotheses C: 

a) The functions 𝑎ଵకభ
, 𝑎ଵ௩భ

, 𝑝ଵకమ
, 𝑝ଵ௩మ

, 𝑘ଵకయ
, 𝑘ଵ௩య

 are of the Carathéodory type on   

    Λ×ℝ ൈ ℝ and satisfy for 𝑥 ∈ Λ and 𝑑, 𝑗  0 ,  ሺ𝑖 ൌ 1,2,3ሻ: 

ห𝑎ଵకభ
ሺ𝑥, 𝜉ଵ, 𝑣ଵሻห  𝑑ଵ,   ห𝑝ଵకమ

ሺ𝑥, 𝜉ଶ, 𝑣ଶሻห  𝑑ଶ,    ห𝑘ଵకయ
ሺ𝑥, 𝜉ଷ, 𝑣ଷሻห  𝑑ଷ ,   

         ห𝑎ଵ௩భ
ሺ𝑥, 𝜉ଵ, 𝑣ଵሻห  𝑗ଵ,    ห𝑝ଵ௩మ

ሺ𝑥, 𝜉ଶ, 𝑣ଶሻห  𝑗ଶ ,     ห𝑘ଵ௩య
ሺ𝑥, 𝜉ଷ, 𝑣ଷሻห  𝑗ଷ   

b) The functions 𝑎ଶ௩భ
, 𝑝ଶ௩మ

, 𝑘ଶ௩య
 are of the Carathéodory type on Λ×ℝ,with      

ห𝑎ଶ௩భ
ሺ𝑥, 𝑣ଵሻห  𝑞ଵ,   ห𝑝ଶ௩మ

ሺ𝑥, 𝑣ଶሻห  𝑞ଶ,   ห𝑘ଶ௩య
ሺ𝑥, 𝑣ଷሻห  𝑞ଷ  

 where 𝑥 ∈ Λ and 𝑞  0 , ሺ𝑖 ൌ 1,2,3ሻ.  
c) The functions 𝑦ℓక

 ,  𝑦ℓ௩
ሺ∀ℓ ൌ 0,1,2 & 𝑖 ൌ 1,2,3ሻ are of the Carathéodory     
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    type    on 𝛬 ൈ ℝ ൈ ℝ and satisfy the following conditions for  𝜂ℓ, �̂�ℓ  ∈ 𝐿ଶሺΛሻ: 

     ห𝑦ℓకห  𝜂ℓ  Υℓ|𝜉|  Υℓ|𝑣| And ห𝑦ℓ௩ห  �̂�ℓ  Υℓ|𝜉|  Υℓ|𝑣|, with Υℓ, Υℓ 

0 , 
        

Theorem 5.1:  With hypotheses A, B and C, the Hamiltonian is: 

𝐻൫𝑥, 𝜉, 𝜁, �⃗�൯ ൌ 𝜁ଵ൫𝑎ଶሺ𝑥, 𝑣ଵሻ െ 𝑎ଵሺ𝑥, 𝜉ଵ, 𝑣ଵሻ൯  𝑦ଵሺ𝑥, 𝜉ଵ, 𝑣ଵሻ  𝜁ଶ൫𝑝ଶሺ𝑥, 𝑣ଶሻ െ 𝑝ଵሺ𝑥, 𝜉ଶ, 𝑣ଶሻ൯ 

                    𝑦ଶሺ𝑥, 𝜉ଶ, 𝑣ଶሻ  𝜁ଷ൫𝑘ଶሺ𝑥, 𝑣ଷሻ െ 𝑘ଵሺ𝑥, 𝜉ଷ, 𝑣ଷሻ൯  𝑦ଷሺ𝑥, 𝜉ଷ, 𝑣ଷሻ 

The adjoint vector ሺ𝜁ଵ, 𝜁ଶ, 𝜁ଷሻ ൌ ൫𝜁ଵ௩భ
, 𝜁ଶ௩మ

, 𝜁ଷ௩య൯ "equations "of (3.1- 3.4) are: 

െ𝐵ଵ𝜁ଵ  𝜁ଵ  𝜁ଶ  𝜁ଷ  𝜁ଵ𝑎ଵకభ
ሺ𝑥, 𝜉ଵ, 𝑣ଵሻ ൌ 𝑦ଵకభ

ሺ𝑥, 𝜉ଵ, 𝑣ଵሻ  , 𝑖𝑛 𝛬  (18) 

െ𝐵ଶ𝜁ଶ െ 𝜁ଵ  𝜁ଶ െ 𝜁ଷ  𝜁ଶ𝑝ଵకమ
ሺ𝑥, 𝜉ଶ, 𝑣ଶሻ ൌ 𝑦ଶకమ

ሺ𝑥, 𝜉ଶ, 𝑣ଶሻ  , 𝑖𝑛 𝛬   (19) 

െ𝐵ଷ𝜁ଷ െ 𝜁ଵ  𝜁ଶ  𝜁ଷ  𝜁ଷ𝑘ଵకయ
ሺ𝑥, 𝜉ଷ, 𝑣ଷሻ ൌ 𝑦ଷకయ

ሺ𝑥, 𝜉ଷ, 𝑣ଷሻ  , 𝑖𝑛 𝛬  (20)  

𝜁ଵ ൌ 𝜁ଶ ൌ 𝜁ଷ ൌ 0    𝑜𝑛  𝜕Λ   (21) 
Then the FD of 𝑌 is given by:  

𝑌ሬ⃗
ሖ ሺ�⃗�ሻ 𝛿𝑣ሬሬሬሬ⃗ ൌ  𝐻௩ሬ⃗

் 
ஃ . 𝛿𝑣ሬሬሬሬ⃗  𝑑𝑥,     𝐻௩ሬ⃗ ൌ ൮

𝐻௩భ൫𝑥, 𝜉, 𝜁, �⃗�൯

 𝐻௩మ൫𝑥, 𝜉, 𝜁, �⃗�൯

𝐻௩య൫𝑥, 𝜉, 𝜁, �⃗�൯

൲ ൌ ൮

𝜁ଵ൫𝑎ଶ௩భ
െ 𝑎ଵ௩భ൯  𝑦ଵ௩భ

𝜁ଶ൫𝑝ଶ௩మ
െ 𝑝ଵ௩మ൯  𝑦ଶ௩మ

𝜁ଷ൫𝑘ଶ௩య
െ 𝑘ଵ௩య൯  𝑦ଷ௩య

൲ 

Proof: Rewriting the TAEqs (18)-(20) by their WF and then blending them together: 

𝐵ധሺ𝜁, 𝑤ሬሬ⃗ ሻ  ൫𝜁ଵ𝑎ଵకభ
ሺ𝜉ଵ, 𝑣ଵሻ, 𝑤ଵ൯  ൫𝜁ଶ𝑝ଵకమ

ሺ𝜉ଶ, 𝑣ଶሻ, 𝑤ଶ൯  ൫𝜁ଷ𝑘ଵకయ
ሺ𝜉ଷ, 𝑣ଷሻ, 𝑤ଷ൯ 

ൌ ൫𝑦ଵకభ
ሺ𝜉ଵ, 𝑣ଵሻ, 𝑤ଵ൯  ൫𝑦ଶకమ

ሺ𝜉ଶ, 𝑣ଶሻ, 𝑤ଶ൯𝑦ଷకయ
ሺ𝜉ଷ, 𝑣ଷሻ, 𝑤ଷሻ (22) 

where 𝐵ധ൫𝜁, 𝑤ሬሬ⃗ ൯ ൌ 𝑏ଵሺ𝜁ଵ, 𝑤ଵሻ  ሺ𝜁ଵ, 𝑤ଵሻ  ሺ𝜁ଶ, 𝑤ଵሻ  ሺ𝜁ଷ, 𝑤ଵሻ  𝑏ଶሺ𝜁ଶ, 𝑤ଶሻ െ ሺ𝜁ଵ, 𝑤ଶሻ 
ሺ𝜁ଶ, 𝑤ଶሻ െ ሺ𝜁ଷ, 𝑤ଶሻ  𝑏ଷሺ𝜁ଷ, 𝑤ଷሻ െ ሺ𝜁ଵ, 𝑤ଷሻ  ሺ𝜁ଶ, 𝑤ଷሻ  ሺ𝜁ଷ, 𝑤ଷሻ 
   The WF of the TAEqs (22) has a unique solution; this can be proved using the same way 
which is used to prove the WF of the state equation (11). 

Now by substituting 𝑤ሬሬ⃗ ൌ 𝛿𝜁ሬሬሬሬ⃗  in (22), once has: 

𝐵ധ൫𝜁, 𝛿𝜁ሬሬሬሬ⃗ ൯  ൫𝜁ଵ𝑎ଵకభ
ሺ𝜉ଵ, 𝑣ଵሻ, 𝛿𝜁ଵ൯  ൫𝜁ଶ𝑝ଵకమ

ሺ𝜉ଶ, 𝑣ଶሻ, 𝛿𝜁ଶ൯  ൫𝜁ଷ𝑘ଵకయ
ሺ𝜉ଷ, 𝑣ଷሻ, 𝛿𝜁ଷ൯ 

ൌ ൫𝑦ଵకభ
ሺ𝜉ଵ, 𝑣ଵሻ, 𝛿𝜁ଵ൯  ൫𝑦ଶకమ

ሺ𝜉ଶ, 𝑣ଶሻ, 𝛿𝜁ଶ൯  ൫𝑦ଷకయ
ሺ𝜉ଷ, 𝑣ଷሻ, 𝛿𝜁ଷ൯                         (23) 

Setting the solution 𝜉  𝛿𝜉ሬሬሬሬ⃗  in (8)-(10) then subtracting (8)-(10) from those equations which 

are obtained by settingሺ𝜉  𝛿𝜉ሬሬሬሬ⃗ ሻ, then setting 𝑤ଵ ൌ 𝜁ଵ, 𝑤ଶ ൌ 𝜁ଶ,  𝑤ଷ ൌ 𝜁ଷ and then blending 
them together, to get: 

𝐵ሺ𝛿𝜉ሬሬሬሬ⃗ , 𝜁ሻ  ሺ𝑎ଵሺ𝜉ଵ  𝛿𝜉ଵ, 𝑣ଵ  𝛿𝑣ଵሻ െ 𝑎ଵሺ𝜉ଵ, 𝑣ଵሻ, 𝜁ଵሻ  ሺ𝑝ଵሺ𝜉ଶ  𝛿𝜉ଶ, 𝑣ଶ  𝛿𝑣ଶሻ െ
𝑝ଵሺ𝜉ଶ, 𝑣ଶሻ, 𝜁ଶሻ  ሺ𝑘ଵሺ𝜉ଷ  𝛿𝜉ଷ, 𝑣ଷ  𝛿𝑣ଷሻ െ 𝑘ଵሺ𝜉ଷ, 𝑣ଷሻ, 𝜁ଷሻ ൌ ሺ𝑎ଶሺ𝑣ଵ  𝛿𝑣ଵሻ െ 𝑎ଶሺ𝑣ଵሻ, 𝜁ଵሻ 
 ሺ𝑝ଶሺ𝑣ଶ  𝛿𝑣ଶሻ െ 𝑝ଶሺ𝑣ଶሻ, 𝜁ଶሻ  ሺ𝑘ଶሺ𝑣ଷ  𝛿𝑣ଷሻ െ 𝑘ଶሺ𝑣ଷሻ, 𝜁ଷሻ  (24)  

Now, from hypo. on 𝑎ଵ, 𝑝ଵ, 𝑘ଵ, 𝑎ଶ, 𝑝ଶ 𝑎𝑛𝑑 𝑘ଶ, using proposition 3.1 and the Mean value 
theorem,  the FD of 𝑎ଵ, 𝑝ଵ, 𝑘ଵ, 𝑎ଶ, 𝑝ଶ 𝑎𝑛𝑑 𝑘ଶ are exist, once get that:   

 𝐵ሺ𝛿𝜉ሬሬሬሬ⃗ , 𝜁ሻ  ൫𝑎ଵకభ
𝛿𝜉ଵ  𝑎ଵ௩భ

𝛿𝑣ଵ, 𝜁ଵ൯  ൫𝑝ଵకమ
𝛿𝜉ଶ  𝑝ଵ௩మ

𝛿𝑣ଶ, 𝜁ଶ൯  ൫𝑘ଵకయ
𝛿𝜉ଷ  𝑘ଵ௩య

𝛿𝑣ଷ, 𝜁ଷ൯ 

 ൌ ൫𝑎ଶ௩భ
𝛿𝑣ଵ, 𝜁ଵ൯  ൫𝑝ଶ௩మ

𝛿𝑣ଶ, 𝜁ଶ൯  ൫𝑘ଶ௩య
𝛿𝑣ଷ, 𝜁ଷ൯  𝜀̃൫𝛿Ξሬሬሬሬ⃗ ൯ฮ𝛿Ξሬሬሬሬ⃗ ฮ


   (25a) 

where 𝜀̃൫𝛿Ξሬሬሬሬ⃗ ൯ฮ𝛿Ξሬሬሬሬ⃗ ฮ


ൌ 𝜀̃ሺ𝛿𝜉ሬሬሬሬ⃗ , 𝛿𝑣ሬሬሬሬ⃗ )ብ
𝛿𝜉

𝛿𝑣ሬሬሬሬ⃗

ሬሬሬሬ⃗
ብ,   

From the Minkowiski inequality and lemma 4.1, once obtain that: 
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𝜀̃൫𝛿Ξሬሬሬሬ⃗ ൯ ൌ 𝜀̃൫𝛿𝜉ሬሬሬሬ⃗ , 𝛿𝑣ሬሬሬሬ⃗ ൯ ൌ 𝜀ଵ̅൫𝛿𝑣ሬሬሬሬ⃗ ൯,     ฮ𝛿Ξሬሬሬሬ⃗ ฮ


ൌ ฯ
𝛿𝜉ଵ
𝛿𝑣ଵ

ฯ  𝒸ฮ𝛿𝑣ሬሬሬሬ⃗ ฮ    
                 
ሳልልልልሰ  

𝜀̃൫𝛿Ξሬሬሬሬ⃗ ൯ฮ𝛿Ξሬሬሬሬ⃗ ฮ


ൌ 𝜀ଵ̃൫𝛿𝑣ሬሬሬሬ⃗ ൯ฮ𝛿𝑣ሬሬሬሬ⃗ ฮ

  ,   where 𝜀ଵ̃൫𝛿𝑣ሬሬሬሬ⃗ ൯

        
ሱሮ 0 , 𝑎𝑛𝑑 ฮ𝛿𝑣ሬሬሬሬ⃗ ฮ

         
ሱሮ 0  𝑎𝑠  𝛿𝑣ሬሬሬሬ⃗

        
ሱሮ 0 

Hence 

 𝐵ሺ𝛿𝜉ሬሬሬሬ⃗ , 𝜁ሻ  ൫𝑎ଵకభ
𝛿𝜉ଵ  𝑎ଵ௩భ

𝛿𝑣ଵ, 𝜁ଵ൯  ൫𝑝ଵకమ
𝛿𝜉ଶ  𝑝ଵ௩మ

𝛿𝑣ଶ, 𝜁ଶ൯  ൫𝑘ଵకయ
𝛿𝜉ଷ  𝑘ଵ௩య

𝛿𝑣ଷ, 𝜁ଷ൯ ൌ

൫𝑎ଶ௩భ
𝛿𝑣ଵ, 𝜁ଵ൯  ൫𝑝ଶ௩మ

𝛿𝑣ଶ, 𝜁ଶ൯  ൫𝑘ଶ௩య
𝛿𝑣ଷ, 𝜁ଷ൯  𝜀ଵ̃൫𝛿𝑣ሬሬሬሬ⃗ ൯ฮ𝛿𝑣ሬሬሬሬ⃗ ฮ


     (25b) 

Now, from definition of the FD, hypotheses on 𝑦ℓሺℓ ൌ 0,2  , 𝑖 ൌ 1,2,3ሻ and by using the 
result of lemma 4.1, once obtain that: 

𝑌൫�⃗�  𝛿𝑣ሬሬሬሬ⃗ ൯ െ 𝑌ሺ�⃗�ሻ ൌ  ൫𝑦ଵకభ
ሺ𝜉ଵ, 𝑣ଵሻ𝛿𝜉ଵ  𝑦ଵ௩భ

ሺ𝜉ଵ, 𝑣ଵሻ𝛿𝑣ଵ൯𝑑𝑥   ൫𝑦ଶకమ
ሺ𝜉ଶ, 𝑣ଶሻ𝛿𝜉ଶ 

 
ஃ

 
ஃ

𝑦ଶ௩మ
ሺ𝜉ଶ, 𝑣ଶሻ𝛿𝑣ଶ൯𝑑𝑥   ൫𝑦ଷకయ

ሺ𝜉ଷ, 𝑣ଷሻ𝛿𝜉ଷ  𝑦ଷ௩య
ሺ𝜉ଷ, 𝑣ଷሻ𝛿𝑣ଷ൯𝑑𝑥

 
ஃ  𝜀̃൫𝛿𝑣ሬሬሬሬ⃗ ൯ฮ𝛿𝑣ሬሬሬሬ⃗ ฮ


     (26)    

where 𝜀̃൫𝛿𝑣ሬሬሬሬ⃗ ൯ → 0, 𝑎𝑛𝑑 ฮ𝛿𝑣ሬሬሬሬ⃗ ฮ
         

ሱሮ 0  𝑎𝑠  𝛿𝑣ሬሬሬሬ⃗
        
ሱሮ 0 

By subtracting (23) from (25b), and substituting the rustle in (26), once get  

𝑌൫�⃗�  𝛿𝑣ሬሬሬሬ⃗ ൯ െ 𝑌ሺ�⃗�ሻ ൌ  ൫𝜁ଵ൫𝑎ଶ௩భ
െ 𝑎ଵ௩భ൯  𝑦ଵ௩మ൯𝛿𝑣ଵ

 
ஃ 𝑑𝑥   ൫𝜁ଶ൫𝑝ଶ௩మ

െ 𝑝ଵ௩మ൯ 
 

ஃ

𝑦ଶ௩మ൯𝛿𝑣ଶ   ൫𝜁ଷ൫𝑘ଶ௩య
െ 𝑘ଵ௩య൯  𝑦ଷ௩య൯𝛿𝑣ଷ

 
ஃ 𝑑𝑥  𝜀̃൫𝛿𝑣ሬሬሬሬ⃗ ൯ฮ𝛿𝑣ሬሬሬሬ⃗ ฮ


  (27) 

 Then from FD, we have that  𝑌ሬ⃗
ሖ ሺ�⃗�ሻ 𝛿𝑣ሬሬሬሬ⃗ ൌ  𝐻௩ሬ⃗

் 
ஃ . 𝛿𝑣ሬሬሬሬ⃗  𝑑𝑥.                   

Note: In the proof of the theorem 5.1, we find the FD for the functional 𝑌, so the same 
technique is used to find the FD for 𝑌ଵ and 𝑌ଶ. 
Theorem 5.2: Optimality Necessary Conditions  

(a) With hypotheses  A, B and C, assume 𝑈ሬሬ⃗  is convex, if �⃗� ∈ 𝑈ሬሬ⃗  is optimal, then there exist 

multipliers 𝜆ℓ ∈ ℝ,( ℓ ൌ0,1,2 with 𝜆, 𝜆ଶ  0, ∑
ℓୀ

ଶ
|𝜆ℓ|ൌ 1), such that the following The 

Kuhn- Tucker- Lagrange's Multipliers (K.T.L)  are satisfied: 

 𝐻௩ሬ⃗
் ⋅ 𝛿𝑣ሬሬሬሬ⃗  𝑑𝑥

 
ஃ  0, ∀𝑢ሬ⃗ ∈ 𝑈ሬሬ⃗ , 𝛿𝑣ሬሬሬሬ⃗ ൌ 𝑢ሬ⃗ െ �⃗�   (28a) 

where  𝑦 ൌ ∑
ℓୀ

ଶ
𝜆ℓ𝑦ℓ and 𝜁 ൌ ∑

ℓୀ

ଶ
𝜆ℓ𝜁ℓ, (𝑖 ൌ 1,2,3) in the definition of 𝐻, and also  

𝜆ଶ𝑌ଶሺ�⃗�ሻ ൌ 0, (Transversality condition)  (28b) 

(b) If 𝑈ሬሬ⃗  is of the form 

𝑈ሬሬ⃗ ൌ ሼ𝑢ሬ⃗ ∈ ൫𝐿ଶሺΛ, ℝሻ൯
ଷ

│𝑢ሺ𝑥ሻ ∈ 𝑉, a. e. on Λሽ, with 𝑉 ⊂ ℝ,𝑖 ൌ 1,2,3. 

Then (28a) is equivalent to the minimum element wise (29), where:  

𝐻௩ሬ⃗
். �⃗� ൌ min

௨ሬሬ⃗ ∈ሬሬ⃗
 𝐻௩ሬ⃗

். 𝑢ሬ⃗    a.e. on Λ   (29) 

Proof : (a) From theorem 4.2, the functional 𝑌ℓሺ�⃗�ሻ has a continuous FD at each �⃗� ∈ 𝑈ሬሬ⃗ , since 

the control �⃗� ∈ 𝑈ሬሬ⃗  is optimal, then by K.T.L theorem there exist  multipliers  𝜆ℓ ∈ ℝ , 

ℓ ൌ0,1,2, with  𝜆,𝜆ଶ  0, ∑
ℓୀ

ଶ
|𝜆ℓ|ൌ 1, such that ሺ𝜆𝑌ሬ⃗ሖ௩ሬ⃗ ሺ�⃗�ሻ  𝜆ଵ

 𝑌ሬ⃗ሖଵ௩ሬ⃗ ሺ�⃗�ሻ  𝜆ଶ𝑌ሬ⃗ሖଶ௩ሬ⃗ ሺ�⃗�ሻሻ. ሺ𝑢ሬ⃗ െ

�⃗�ሻ  0, ∀𝑢ሬ⃗ ∈ 𝑈ሬሬ⃗  and  𝜆ଶ𝑌ଶሺ�⃗�ሻ ൌ 0, substituting the FD of 𝑌ℓሺ�⃗�ሻ ሺ∀ℓ ൌ 0,1,2ሻ in the above 
inequality, to get 

 ሺሺ𝜁ଵ൫𝑎ଶ௩భ
െ 𝑎ଵ௩భ൯  𝑦ଵ௩భ

ሻ
 

௸ 𝛿𝑣ଵ  ൫𝜁ଶ൫𝑝ଶ௩మ
െ 𝑝ଵ௩మ൯  𝑦ଶ௩మ൯𝛿𝑣ଶ  ሺ𝜁ଷ൫𝑘ଶ௩య

െ 𝑘ଵ௩య൯ 

𝑦ଷ௩య
ሻ𝛿𝑣ଷሻ𝑑𝑥  0  
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where 𝜁 ൌ ∑
ℓୀ

ଶ
𝜆ℓ𝜁ℓ,  𝑦௩

ൌ ∑
ℓୀ

ଶ
𝜆ℓ𝑦ℓ௩

 , for 𝑖 ൌ 1,2,3, 

⟹  𝐻௩ሬ⃗
். 𝛿𝑣ሬሬሬሬ⃗  𝑑𝑥

 
ஃ  0, ∀𝑢ሬ⃗ ∈ 𝑈ሬሬ⃗   𝛿𝑣ሬሬሬሬ⃗ ൌ 𝑢ሬ⃗ െ �⃗�. 

(b)  Let 𝑈ሬሬ⃗ ൌ ሼ𝑢 ∈ ൫𝐿ଶሺΛ, ℝሻ൯
ଷ

│𝑢ሺ𝑥ሻ ∈ 𝑉, a. e. on Λሽ,  with 𝑉 ⊂ ℝ,  𝑖 ൌ 1,2,3 , 𝜇 is a 

"Lebesgue" measure on Λ, ሼ𝑣ሽ be a sequence in 𝑈ሬሬ⃗ ሬሬ⃗  and assume 𝑆 ⊂ Λ be a measurable set 

such that  𝑢ሬ⃗ ሺ𝑥ሻ ൌ ൜
𝑢ሬ⃗ ሺ𝑥ሻ, if 𝑥 ∈ 𝑆
�⃗�ሺ𝑥ሻ, if 𝑥 ∉ 𝑆

   .  Hence (28a), becomes 

 𝐻௩ሬ⃗  
். ሺ𝑢ሬ⃗  െ �⃗�ሻ𝑑𝑥

 
ௌ  0, for each such set 𝑆

         
ሳልሰ 𝐻୴ሬሬ⃗  

். ሺ𝑢ሬ⃗  െ �⃗�ሻ  0, a.e. on Λ  

That is it satisfies in 𝜑  with  𝜑 ൌ ⋂


𝜑, 𝑤ℎ𝑒𝑟𝑒 𝜑 ൌ Λ െ Λ, with 𝜇ሺΛሻ ൌ 0, but 𝜑 is 

independent of 𝑛,with 𝜇൫Λ 𝜑ൗ ൯ ൌ 0 and sinceሼ�⃗�ሽ is dense in 𝑈ሬሬ⃗ ሬሬ⃗ , then 

 𝐻௨ሬሬ⃗  
். ሺ𝑢ሬ⃗  െ �⃗�ሻ  0, a.e. on Λ

        
ሳሰ 𝐻௩ሬ⃗  

். �⃗� ൌ min
௨ሬሬ⃗ ∈ሬሬ⃗

 𝐻௩ሬ⃗  
். 𝑢ሬ⃗  a.e. on Λ. 

Theorem 5.3:  Optimality Sufficient Conditions: 

In addition to the hypotheses A,B&C, with 𝑈ሬሬ⃗  is convex ,ሺ𝑎ଵ&𝑦ଵଵሻ, ሺ𝑝ଵ&𝑦ଵଶሻ, , ሺ𝑘ଵ&𝑦ଵଷሻ are 
affine w.r.t (𝜉ଵ, 𝑣ଵሻ,(𝜉ଶ, 𝑣ଶሻ, ሺ𝜉ଷ,𝑣ଷሻ, resp  𝑎ଶ, 𝑝ଶ, 𝑘ଶ are affine w.r.t 𝑣ଵ, 𝑣ଶ, 𝑣ଷ resp for each 𝑥 
,and 𝑦ℓ, ሺℓ ൌ 0,2, 𝑖 ൌ 1,2,3ሻ is convex w.r.t. (𝜉, 𝑣ሻ for each 𝑥. Then the necessary 
conditions in theorem5.2, with 𝜆  0, are also sufficient. 
Proof: suppose 
  𝑎ଵሺ𝑥, 𝜉ଵ, 𝑣ଵሻ ൌ 𝑎ଵଵሺ𝑥ሻ𝜉ଵ  𝑎ଵଶሺ𝑥ሻ𝑣ଵ  𝑎ଵଷሺ𝑥ሻ,     𝑎ଶሺ𝑥, , 𝑣ଵሻ ൌ 𝑎ଶଵሺ𝑥ሻ𝑣ଵ  𝑎ଶଶሺ𝑥ሻ,  
  𝑝ଵሺ𝑥, 𝜉ଶ, 𝑣ଶሻ ൌ 𝑝ଵଵሺ𝑥ሻ𝜉ଶ  𝑝ଵଶሺ𝑥ሻ𝑣ଶ  𝑝ଵଷሺ𝑥ሻ ,     𝑝ଶሺ𝑥, , 𝑣ଶሻ ൌ 𝑝ଶଵሺ𝑥ሻ𝑣ଶ  𝑝ଶଶሺ𝑥ሻ,  
  𝑘ଵሺ𝑥, 𝜉ଷ, 𝑣ଷሻ ൌ 𝑘ଵଵሺ𝑥ሻ𝜉ଷ  𝑘ଵଶሺ𝑥ሻ𝑣ଷ  𝑘ଵଷሺ𝑥ሻ ,    𝑘ଶሺ𝑥, , 𝑣ଷሻ ൌ 𝑘ଶଵሺ𝑥ሻ𝑣ଷ  𝑘ଶଶሺ𝑥ሻ ,  

And that�⃗� ∈ 𝑈ሬሬ⃗ , �⃗� is satisfied the K.T.L. and the Transversality condition i.e.  

 𝐻௩ሬ⃗ ൫𝑥, 𝜉, 𝜁, �⃗�൯ ⋅ 𝛿𝑣ሬሬሬሬ⃗ 𝑑𝑥
 

ஃ  0, ∀𝑢ሬ⃗ ∈ 𝑈ሬሬ⃗          and        𝜆ଶ𝑦ଶሺ�⃗�ሻ ൌ 0 

Let 𝑌ሺ�⃗�ሻ ൌ ∑  
ℓୀ

ଶ
𝜆ℓ𝑦ℓሺ�⃗�ሻ, then𝑌ሬ⃗ሖ ሺ�⃗�ሻ𝛿𝑣ሬሬሬሬ⃗ ൌ ∑  

ℓୀ

ଶ
𝜆ℓ𝑌ሬ⃗ሖℓሺ�⃗�ሻ𝛿𝑣ሬሬሬሬ⃗  

                 ൌ ∑ 𝜆ℓ
ଶ
ℓୀ  ሾ

 
ஃ ൫𝜁ଵℓ൫𝑎ଶ௩భ

െ 𝑎ଵ௩భ൯  𝑦ଵℓ௩భ൯𝛿𝑣ଵ  ൫𝜁ଶℓ൫𝑝ଶ௩మ
െ 𝑝ଵ௩మ൯  𝑦ଶℓ௩మ൯𝛿𝑣ଶ  

                      ሺ𝜁ଷℓ൫𝑘ଶ௩య
െ 𝑘ଵ௩య൯  𝑦ଷℓ௩య

ሻ𝛿𝑣ଷሻ𝑑𝑥  ൌ  𝐻௩ሬ⃗ ൫𝑥, 𝜉, 𝜁, �⃗�൯ ⋅ 𝛿𝑣ሬሬሬሬ⃗ 𝑑𝑥
 

ஃ  0  

Let ሺ𝑣ଵ, 𝑣ଶ, 𝑣ଷሻ and ሺ�̅�ଵ, �̅�ଶ, �̅�ଷሻ are two given controls, then ൫𝜉ଵ ൌ 𝜉ଵ௩భ
,  𝜉ଶ ൌ 𝜉ଶ௩మ

, 𝜉ଷ ൌ

𝜉ଷ௩య൯ and ሺ𝜉ଵ̅ ൌ 𝜉ଵ̅௩భ
, 𝜉ଶ̅ ൌ 𝜉ଶ̅௩మ

, 𝜉ଷ̅ ൌ 𝜉ଷ̅௩య
) are their  corresponding solutions, substituting 

the pair (�⃗�, 𝜉ሻ in (1)-(4) and multiplying the obtained equation by  𝜅 ∈ ሾ0,1ሿ once and once 

again the pair (�⃗̅�, 𝜉̅⃗ሻ in (1)-(4) multiplying the obtained equation by ሺ1 െ 𝜅ሻ, finally then 
blending together the obtained equations from each corresponding equations once  get: 

െ𝐵ଵ൫𝜅𝜉ଵ  ሺ1 െ 𝜅ሻ𝜉ଵ̅൯  ൫𝜅𝜉ଵ  ሺ1 െ 𝜅ሻ𝜉ଵ̅൯ െ ൫𝜅𝜉ଶ  ሺ1 െ 𝜅ሻ𝜉ଶ̅൯ െ ൫𝜅𝜉ଷ  ሺ1 െ 𝜅ሻ𝜉ଷ̅൯ 

𝑎ଵଵሺ𝑥ሻ൫𝜅𝜉ଵ  ሺ1 െ 𝜅ሻ𝜉ଵ̅൯  𝑎ଵଶሺ𝑥ሻሺ𝜅𝑣ଵ  ሺ1 െ 𝜅ሻ�̅�ଵሻ  𝑎ଵଷሺ𝑥ሻ ൌ 𝑎ଶଵሺ𝑥ሻሺ𝜅𝑣ଵ 
ሺ1 െ 𝜅ሻ�̅�ଵሻ  𝑎ଶଶሺ𝑥ሻ    (30a) 

𝜅𝜉ଵ  ሺ1 െ 𝜅ሻ𝜉ଵ̅ ൌ 0  (30b)  

െ𝐵ଶ൫𝜅𝜉ଶ  ሺ1 െ 𝜅ሻ𝜉ଶ̅൯  ൫𝜅𝜉ଵ  ሺ1 െ 𝜅ሻ𝜉ଵ̅൯  ൫𝜅𝜉ଶ  ሺ1 െ 𝜅ሻ𝜉ଶ̅൯  ሺ𝜅𝜉ଷ  ሺ1 െ 𝜅ሻ𝜉ଷ̅ሻ 

𝑝ଵଵሺ𝑥ሻ൫𝜅𝜉ଶ  ሺ1 െ 𝜅ሻ𝜉ଶ̅൯  𝑝ଵଶሺ𝑥ሻሺ𝜅𝑣ଶ  ሺ1 െ 𝜅ሻ�̅�ଶሻ  𝑝ଵଷሺ𝑥ሻ ൌ 𝑝ଶଵሺ𝑥ሻሺ𝜅𝑣ଶ 
ሺ1 െ 𝜅ሻ�̅�ଶሻ  𝑝ଶଶሺ𝑥ሻ    (31a)  

𝜅𝜉ଶ  ሺ1 െ 𝜅ሻ𝜉ଶ̅ ൌ 0  (31b)  
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െ𝐵ଷ൫𝜅𝜉ଷ  ሺ1 െ 𝜅ሻ 𝜉ଷ̅൯  ൫𝜅𝜉ଵ  ሺ1 െ 𝜅ሻ𝜉ଵ̅൯ െ ൫𝜅𝜉ଶ  ሺ1 െ 𝜅ሻ𝜉ଶ̅൯  ൫𝜅𝜉ଷ  ሺ1 െ 𝜅ሻ𝜉ଷ̅൯ 

𝑘ଵଵሺ𝑥ሻ൫𝜅𝜉ଷ  ሺ1 െ 𝜅ሻ𝜉ଷ̅൯  𝑘ଵଶሺ𝑥ሻሺ𝜅𝑣ଷ  ሺ1 െ 𝜅ሻ�̅�ଷሻ  𝑘ଵଷሺ𝑥ሻ ൌ 𝑘ଶଵሺ𝑥ሻሺ𝜅𝑣ଷ 
ሺ1 െ 𝜅ሻ�̅�ଷሻ  𝑘ଶଶሺ𝑥ሻ   (32a) 

𝜅𝜉ଷ  ሺ1 െ 𝜅ሻ𝜉ଷ̅ ൌ 0  (32b) 

Now, if we have the control vector �⃗̿� ൌ ሺ�̿�ଵ, �̿�ଶ, �̿�ଷሻ,  with �̿�ଵ ൌ 𝜅𝑣ଵ  ሺ1 െ  𝜅ሻ�̅�ଵ,  
  �̿�ଶ ൌ 𝜅𝑣ଶ  ሺ1 െ  𝜅ሻ�̅�ଶ,  �̿�ଷ ൌ 𝜅𝑣ଷ  ሺ1 െ  𝜅ሻ�̅�ଷ.  Then from (30 a&b), (31 a&b), (32 
a&b), once get that  

𝜉ଵ̿ ൌ 𝜉ଵ௩ധభ
ൌ 𝜉ଵሺ௩భାሺଵି ሻ௩തభሻ ൌ 𝜅𝜉ଵ  ሺ1 െ  𝜅ሻ𝜉ଵ̅ ,   

𝜉ଶ̿ ൌ 𝜉ଶ௩ധమ
ൌ 𝜉ଶሺ௩మାሺଵି ሻ௩തమሻ ൌ 𝜅𝜉ଶ  ሺ1 െ  𝜅ሻ𝜉ଶ̅ ,  

𝜉ଷ̿ ൌ 𝜉ଷ௩ധయ
ൌ 𝜉ଷሺ௩యାሺଵି ሻ௩തయሻ ൌ 𝜅𝜉ଷ  ሺ1 െ  𝜅ሻ𝜉ଷ̅ 

are their corresponding solutions, i.e. ሺ𝜉ଵ̿, 𝜉ଶ̿, 𝜉ଷ̿ሻ is satisfied (1-4). So, the operator 𝑣 ⟼ 𝜉௩
 

is convex- linear w.r.t (𝜉, 𝑣ሻ(𝑖 ൌ 1,2,3 ), for each 𝑥 ∈ Λ. 
Now, since 𝑦ଵሺ𝑥, 𝜉, 𝑣ሻ is affine w.r.t. (𝜉, 𝑣ሻ, for each 𝑥 ∈ Λ and from the convex –linear 

property of operators 𝑣 ⟼ 𝜉௩
, once gets that 𝑌ଵሺ�⃗�ሻ is convex-linear w.r.t ൫𝜉, �⃗�൯, ∀𝑥 ∈ Λ. 

The convexity of 𝑌ℓሺ�⃗�ሻ  (for ℓ= 0,2) w.r.t.൫𝜉, �⃗�൯, for each 𝑥 ∈ Λ  is obtained from the 

hypotheses at each of 𝑦ℓ is convex w.r.t. ሺ𝜉, 𝑣ሻ∀𝑥 ∈ Λ, ሺ∀ℓ ൌ 0,2 , &𝑖 ൌ 1,2,3ሻ . Hence 

𝑌ሺ�⃗�ሻ is convex w.r.t (𝜉, �⃗�ሻ in the convex set 𝑈ሬሬ⃗ ൌ 𝑈ሬሬ⃗ ሬሬ⃗   and it has a continuous FD satisfied 

𝑌ሬ⃗ሖ ሺ�⃗�ሻ𝛿𝑣ሬሬሬሬ⃗  0 
       
ሳሰ 𝑌ሺ�⃗�ሻ has a minimum at �⃗� ⟹ 𝑌ሺ�⃗�ሻ  𝑌ሺ𝑢ሬ⃗ ሻ, ∀𝑢ሬ⃗ ∈ 𝑈ሬሬ⃗  

       
ሳሰ 

𝜆𝑌ሺ�⃗�ሻ  𝜆ଵ𝑌ଵሺ�⃗�ሻ  𝜆ଶ𝑌ଶሺ�⃗�ሻ  𝜆𝑌ሺ𝑢ሬ⃗ ሻ  𝜆ଵ𝑌ଵሺ𝑢ሬ⃗ ሻ  𝜆ଶ𝑌ଶሺ𝑢ሬ⃗ ሻ       (33) 
Now, let 𝑢ሬ⃗  be an admissible control and since �⃗� is also admissible and satisfies the 

Transversality condition, then (33) becomes𝑌ሺ�⃗�ሻ  𝑌ሺ𝑢ሬ⃗ ሻ, ∀𝑢ሬ⃗ ∈ 𝑈ሬሬ⃗   i.e. �⃗� is an optimal 
control for the problem. 
6. Conclusion 
     The existence and uniqueness theorem for the solution (continuous state vector) of the 
TNLEBVP is stated and proved successfully using the Mint-Browder theorem when the 
TCCOCV is given. Also, the existence theorem of a TCCOCV governing by the TNLEBVP 
is proved. The existence and uniqueness solution of the TAEqs related with the TNLEBVP is 
studied. The derivation of the FD of the Hamiltonian is obtained. Finally, the theorem of 
necessary conditions so as the sufficient condition theorem for optimality of the constrained 
problem are stated and proved.  
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