

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

On SAH – Ideal of BH – Algebra

Alaa Saleh Abed

Department of Mathematics, Faculty of Education for Girls, University of kufa, Najaf, Iraq

<u>Alaas.abed@uokufa.edu.iq</u>

Article history: Received 23 June 2019, Accepted 8 September 2019, Published in April

2020.

Doi: 10.30526/33.2.2433

Abstract

The aim of this investigation is to present the idea of SAH – ideal, closed SAH – ideal and closed SAH – ideal with respect to an element, \overline{SAH} – ideal and s- \overline{SAH} – ideal of BH – algebra.

We detail and show theorems which regulate the relationship between these ideas and provide some examples in BH – algebra.

Keywords: BH – algebra, SAH – ideal of BH – algebra, closed SAH – ideal with respect to an element of BH – algebra, \overline{SAH} – ideal.

1. Introduction

After founding of fuzzy subset by Zadeh L. A [1]. Several researchers presented the generalizations of the idea of fuzzy subsets. Imai and Iseki K. established two classes BCK algebra and BCI – algebra [2, 3]. Jun Y. B., Rogh E. H. And Kin H. S. produced a new concept, named a BH – algebra [4]. In this paper, we will recall some basic definitions. A BH – algebra is a nonempty set Ψ with a binary operation * satisfies the conditions: $\pi * \pi = 0$, for all $\pi \in \Psi$, $\pi * \mu = 0$ and $\mu * \pi = 0 \rightarrow \pi = \mu$ for all π , $\mu \in \Psi$ and $\pi * 0 = \pi$, for all $\pi \in \Psi$ [4]. we will use Ψ for representing a BH – algebra (Ψ ; *, 0). Let \mathfrak{S} a nonempty subset of Ψ . then \mathfrak{S} is named an ideal of Ψ if it holds: $0 \in \mathfrak{S}$; $\pi * \mu \in \mathfrak{S}$ and $\mu \in \mathfrak{S} \rightarrow \pi \in \mathfrak{S}$ [4]. Let Ψ and Φ be BH – algebras.

A mapping $\delta: \Psi \to \Phi$ is named ahomomorphism if: $\delta(\mathfrak{m} * \mathfrak{q}) = \delta(\mathfrak{m}) * \delta(\mathfrak{q}), \forall \mathfrak{m}, \mathfrak{q} \in \Psi$. A homomorphism δ is titled a monomerphism (resp. epimorphism) if it injective (resp., surjective). A bijective homomorphism is titled an isomorphism. Two BH – algebras Ψ and Φ are said to be isomorphic, written $\Psi \cong \Phi$, if there exists an isomorphism $\delta: \Psi \to \Phi$. For any homomorphism : $\Psi \to \Phi$, the set { $\mathfrak{m} \in \Psi : \delta(\mathfrak{m}) = 0'$ } is titled the kernel of δ , symbolized by ker(δ), and the set { $\delta(\mathfrak{m}): \mathfrak{m} \in \Psi$ } is named the image of δ , represented by Im(δ). Sign that $\delta(0) = 0'$, \forall homomorphism δ [5]. An ideal \mathfrak{S} of Ψ is known as closed ideal of Ψ if: for each $\mathfrak{m} \in \mathfrak{S}$.

We requisite $0 * \mathfrak{K} \in \mathfrak{S}$ [6]. Let \mathfrak{S} be an ideal of Ψ . It is named a closed ideal with respect to an element $s \in \Psi$ (symbolized by s – closed ideal) if $s * (0 * \mathfrak{K}) \in \mathfrak{S}$, $\forall \mathfrak{K} \in \mathfrak{S}$ [7]. An ideal \mathfrak{S} of Ψ is known as completely closed ideal if $\mathfrak{K} * \mathfrak{U} \in \mathfrak{S}$, $\forall, \mathfrak{U} \in \mathfrak{S}$ [7]. Let \mathfrak{S} be an ideal of Ψ and $s \in \mathfrak{S}$. It is named a completely closed with respect to an element s (know by s – completely closed ideal) if: $s * (\mathfrak{K} * \mathfrak{U}) \in \mathfrak{S}$, $\forall \mathfrak{K}, \mathfrak{U} \in \mathfrak{S}$ [7]. In the next parts of our research, we will symbolize to BH- algebra (\mathfrak{E} ; *, 0) $by \mathfrak{E}$.

2. Closed SAH - Ideal with Respect to an Element of BH - Algebra

Definition (1)

An ideal \mathfrak{Y} of \in is named a SAH – ideal of \in if it fillfulls the requirement:

 $\forall \varsigma, \zeta \in \mathfrak{Y}$, if $(\varsigma^* * \zeta) \in \mathfrak{Y}, \zeta^* \in \mathfrak{Y} \to (\zeta^* * \varsigma) \in \mathfrak{Y}$, where $\varsigma^* = e * \varsigma$, and e is unit number, i.e: $\varsigma * e = 0$

Example (2)

Assume $\in = \{0, w, v\}$ with the binary operation * symbolized by the subsequent table:

Table 1.

*	0	w	v
0	0	0	0
w	w	0	0
v	v	v	0

Then the ideal $\mathfrak{Y} = \{0, \mathfrak{v}\}$ is a SAH – ideal of \in .

Definition (3)

Assume \mathfrak{Y} is SAH – ideal of \in , then \mathfrak{Y} is known as closed SAH – ideal if it fulfills the requirement:

 $\forall \varsigma, \zeta \in \mathfrak{Y} \text{ if } 0 * (\varsigma^* * \zeta) \in \mathfrak{Y} \land 0 * \zeta^* \in \mathfrak{Y} \to 0 * (\zeta^* * \varsigma) \in \mathfrak{Y}$

Example (4)

Assume $\notin = \{0,1,2,3\}$ with the binary operation * definition by the ensuing table:

Table 2

*	0	1	2	3
0	0	1	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	3	0

Then, the ideal $\mathfrak{Y} = \{0,3\}$ is a closed SAH – ideal of \in .

Remark (5)

We know that every SAH – ideal in € is closed SAH – ideal. But the converse not correct.

Example (6)

Consider $\in = \{0,1,2,3\}$ with a binary operation * connoted by the ensuing table:

Ta	bl	e	3.

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	0
3	3	2	2	0

 $\mathfrak{Y} = \{0,3\}$ is a closed SAH – ideal of \in but \mathfrak{Y} doesn't SAH – ideal, because:

when $\varsigma = 2, \zeta = 1 \rightarrow \varsigma^* = 2, \zeta^* = 2$ $(0 * 2 = 0) \in \mathfrak{Y}, 0 * 2 = 0 \in \mathfrak{Y} \rightarrow (0 * 0 = 0) \in \mathfrak{Y}$, while $(2 * 1 = 2) \notin \mathfrak{Y}, 2 \notin \mathfrak{Y} \rightarrow (2 * 2 = 0) \in \mathfrak{Y}$

Theorem (7)

Assume $\{\mathfrak{Y}_{\lambda}, \lambda \in \Lambda\}$ is a collocation of closed SAH – ideal of \in . Then $\left(\bigcap_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right)$ is a closed SAH – ideal of \in .

Proof

$$\forall \varsigma, \zeta \in \left(\bigcap_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right)$$

$$\therefore \varsigma, \zeta \in \mathfrak{Y}_{\lambda}, \forall \lambda \in \Lambda$$

$$\Rightarrow 0 * (\varsigma^{*} * \zeta) \in \mathfrak{Y}_{\lambda} \text{ and } 0 * \zeta^{*} \in \mathfrak{Y} \text{ then } 0 * (\zeta^{*} * \varsigma) \in \mathfrak{Y}_{\lambda}, \forall \lambda \in \Lambda$$

Since each \mathfrak{Y} is closed SAH – ideal $\forall \lambda \in \Lambda$
$$\Rightarrow 0 * (\varsigma^{*} * \zeta) \in \left(\bigcap_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right) \text{ and } 0 * \zeta^{*} \in \left(\bigcap_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right) \text{ then } 0 * (\zeta^{*} * \varsigma) \in \left(\bigcap_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right)$$

$$\therefore \left(\bigcap_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right) \text{ is closed SAH - ideal of BH - algebra } \in . \blacksquare$$

Theorem (8)

Assume $\{\mathfrak{Y}_{\lambda}, \lambda \in \Lambda\}$ is a collocation of closed SAH – ideals of \in . Then $\left(\bigcup_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right)$ is a closed

SAH – ideal of € . **Proof**

To prove that
$$\left(\bigcup_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right)$$
 is closed SAH – ideal
 $\forall \varsigma, \zeta \in \left(\bigcup_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right)$
 $\Rightarrow \exists \mathfrak{Y}_{j} \in \{\mathfrak{Y}_{\lambda}\}_{\lambda \in \Lambda}$ is a c – SAH – ideal
Such that $\forall \varsigma, \zeta \in \mathfrak{Y}_{j}$
 $\Rightarrow 0 * (\varsigma^{*} * \zeta) \in \mathfrak{Y}_{j}$ and $0 * \zeta^{*} \in \mathfrak{Y}$ so $0 * (\zeta^{*} * \varsigma) \in \mathfrak{Y}_{j}$
 $\Rightarrow 0 * (\zeta^{*} * \varsigma) \in \left(\bigcup_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right)$
 $\Rightarrow \left(\bigcup_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}\right)$ is closed SAH – ideal of $\in .$

Theorem (9)

Assume $\{ \in_{\lambda} \}_{\lambda \in \Lambda}$ is a collocation of \in and \mathfrak{Y}_{λ} be a closed SAH – ideal of \in , $\forall \lambda \in \Lambda$. Then ($\prod_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}$) is a closed SAH – ideal of the direct product of \in .

Proof

$$\forall (\varsigma_{\lambda}), (\zeta_{\lambda}) \in \mathfrak{Y}_{\lambda} (0)(\varsigma_{\lambda}^{*})(\zeta_{\lambda}) \in \prod_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda} \land (0)(\zeta_{\lambda}^{*}) \in \prod_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda} \Rightarrow (0 * \varsigma^{*} * \zeta) \in \prod_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda} \land (0 * \zeta^{*}) \in \prod_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda} 0 * \varsigma^{*} * \zeta \in \mathfrak{Y}_{\lambda} \land 0 * \zeta^{*} \in \mathfrak{Y}_{\lambda} and Since \mathfrak{Y} is closed SAH - ideal $\forall \lambda \in \Lambda$, then
 $\therefore 0 * \zeta^{*} * \varsigma \in \mathfrak{Y}_{\lambda}, \forall \lambda \in \Lambda$
 $\Rightarrow (0 * \zeta^{*} * \varsigma) \in \prod_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda}$
 $\Rightarrow \prod_{\lambda \in \Lambda} \mathfrak{Y}_{\lambda} is closed SAH - ideal of $\in . \blacksquare$$$$

Definition (10)

Assume \mathfrak{Y} is a closed SAH – ideal of \mathfrak{E} . Then \mathfrak{Y} is named closed SAH – ideal with respect to an element $s \in \mathfrak{E}$ (represented by s – closed SAH – ideal) if:

$$s * (0 * (\varsigma^* * \zeta)) \in \mathfrak{Y} \land s * (0 * \zeta^*) \in \mathfrak{Y}$$
. Then $s * (0 * (\zeta^* * \varsigma)) \in \mathfrak{Y}$

Example (11)

Consider $\notin = \{0,1,2,3\}$ with binary operation * defined by the ensuing table:

Table 4.

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	3	0	3
3	3	0	0	0

 $\mathfrak{Y} = \{0,2\}$, s = 3 and \mathfrak{Y} is 3 – closed SAH – ideal of \in .

3. Completely Closed SAH - Ideal with Respect to an Element of BH - Algebra

Definition (12)

A SAH – ideal 𝔄 of € is known as completely closed SAH – ideal if

 $\varsigma * \zeta \in \mathfrak{Y}$, $\forall \varsigma, \zeta \in \mathfrak{Y}$ (represented by \overline{SAH} -ideal).

Example (13)

In example (11), we have \mathfrak{Y} is \overline{SAH} – ideal of \in since:

 $0*0=0\in\mathfrak{Y}$, $0*2=0\in\mathfrak{Y}$

 $2*0=2\in\mathfrak{Y}$, $2*2=0\in\mathfrak{Y}$

Definition (14)

A SAH – ideal \mathfrak{Y} of \in and $s \in \in$, then \mathfrak{Y} is named a completely closed SAH – ideal with respect to an element $s \in \in$ (represented by $s - \overline{SAH}$ – ideal)

If $s * 0 * (\varsigma * \zeta) \in \mathfrak{Y}$, $\forall \varsigma, \zeta \in \mathfrak{Y}$

Example (15)

In example (11), we have:

 $\mathfrak{Y} = \{0,2\}$ and s = 2, then \mathfrak{Y} is $2 - \overline{SAH}$ – ideal since:

 $2 * 0 * (0 * 0) = 2 \in \mathfrak{Y}$, $2 * 0 * (0 * 2) = 2 \in \mathfrak{Y}$

 $2 * 0 * (2 * 0) = 2 \in \mathfrak{Y}$, $2 * 2 * (2 * 2) = 2 \in \mathfrak{Y}$

Remark (16)

In \in every $s - \overline{SAH}$ – ideal is a s – closed SAH – ideal.

Proposition (17)

Assume \mathfrak{Y} is a \overline{SAH} – ideal of \mathfrak{C} . Then \mathfrak{Y} is a $s - \overline{SAH}$ – ideal, $\forall s \in \mathfrak{Y}$.

Proof

Assume $\forall \varsigma, \zeta \in \mathfrak{Y}$

Mean while \mathfrak{Y} is \overline{SAH} – ideal and $s \in \mathfrak{Y}$

Then $s * 0 * (\varsigma * \zeta) \in \mathfrak{Y}$.

Theorem (18)

Assume $(\notin; *, 0)$ and $(\emptyset; (*), 0')$ are BH – algebras and $\mathfrak{h} : \notin \to \emptyset$ is a BH – epimorphism and \mathfrak{Y} is a SAH – ideal in \notin , then $\mathfrak{h}(\mathfrak{Y})$ is a SAH – ideal in \emptyset . **Proof**

Assume $(\varsigma^* \circledast \zeta) \in \mathfrak{h}(\mathfrak{Y}) \land \zeta^* \in \mathfrak{h}(\mathfrak{Y})$ to prove $(\zeta^* \circledast \varsigma) \in \mathfrak{h}(\mathfrak{Y}), \forall \varsigma, \zeta \in \mathfrak{Y}$ $\Rightarrow \exists a, b \in \mathfrak{Y}$ such that $\mathfrak{h}(a) = \varsigma, \mathfrak{h}(b) = \zeta,$ $((\mathfrak{h}(a))^* \circledast \mathfrak{h}(b)) \in \mathfrak{h}(\mathfrak{Y}) \land (\mathfrak{h}(b))^* \in \mathfrak{h}(\mathfrak{Y})$ $((\mathfrak{h}(a)^* \circledast \mathfrak{h}(b)) \in \mathfrak{h}(\mathfrak{Y}) \land \mathfrak{h}(b)^* \in \mathfrak{h}(\mathfrak{Y}))$ $\mathfrak{h}(a^* * b) \in \mathfrak{h}(\mathfrak{Y}) \land \mathfrak{h}(b^*) \in \mathfrak{h}(\mathfrak{Y})$ $\Rightarrow a^* * b \in \mathfrak{Y} \land b^* \in \mathfrak{Y}$ $\Rightarrow b^* * a \in \mathfrak{Y}$ $\Rightarrow \mathfrak{h}(b^* * a) \in \mathfrak{h}(\mathfrak{Y})$ $\therefore \mathfrak{h}$ is epimorphism $\Rightarrow \mathfrak{h}(b^*) \circledast \mathfrak{h}(a) \in \mathfrak{h}(\mathfrak{Y})$ $(\zeta^* \circledast \varsigma) \in \mathfrak{h}(\mathfrak{Y})$

 $hightarrow \mathfrak{h}(\mathfrak{Y})$ is SAH – ideal in \mathscr{Q} .

Theorem (19)

Assume $(\notin; *, 0)$ and $(\emptyset; (\circledast, 0')$ are BH – algebras and $\mathfrak{h} : \mathfrak{E} \to \emptyset$ an epimorphism and \mathfrak{Y} is a SAH – ideal in \mathfrak{E} . Then $\mathfrak{h}(\mathfrak{Y})$ is a closed SAH – ideal in \emptyset .

Proof

Assume 𝔅 is a SAH – ideal in €

 $\mathfrak{h}(\mathfrak{Y})$ is SAH – ideal (theorem (18))

And by using remark (5)

 $\mathfrak{h}(\mathfrak{Y})$ is a closed SAH – ideal in \mathscr{Q} .

Remark (20)

Now each SAH – ideal of \in is a s – \overline{SAH} – ideal of \in , $\forall s \in \mathfrak{Y}$.

Theorem (21)

Assume (\notin ; *, 0) and (\notin ; \circledast , 0') are BH – algebras and : $\notin \to \notin$ is a epimorphism, if \mathfrak{Y} is a $s - \overline{SAH}$ – ideal in \notin , then $\mathfrak{h}(\mathfrak{Y})$ is a $\mathfrak{h}(s) \overline{SAH}$ – ideal in \notin .

Proof

Assume \mathfrak{Y} is a s – \overline{SAH} – ideal in \mathfrak{E} , then s * (a * c) $\in \mathfrak{Y}$, \forall a, c $\in \mathfrak{Y}$

Since \mathfrak{Y} is SAH – ideal, then $\mathfrak{h}(\mathfrak{Y})$ is a SAH – ideal (theorem 18)

Assume ς , $\zeta \in \mathfrak{h}(\mathfrak{Y})$

 $\Rightarrow \exists m, n \in \mathfrak{Y}$ such that $\mathfrak{h}(m) = \varsigma$, $\mathfrak{h}(n) = \zeta$

 $\mathfrak{h}(s) \circledast (\varsigma \circledast \zeta) = \mathfrak{h}(s) \circledast (\mathfrak{h}(m) \circledast \mathfrak{h}(n))$

 $= \mathfrak{h}(s) \circledast \mathfrak{h}(m * n)$

 $= \mathfrak{h}(s * (m * n)) \in \mathfrak{h}(\mathfrak{Y}) [since s * (m * n) \in \mathfrak{Y}]$

 $\therefore \mathfrak{h}(\mathfrak{Y})$ is a $\mathfrak{h}(s) \overline{SAH}$ – ideal.

Proposition (22)

Assume \mathfrak{Y} is a SAH – ideal of \in such that $\mathfrak{Y} \subseteq \mathfrak{E}_+$. Then \mathfrak{Y} is s – closed SAH – ideal $\forall s \in \mathfrak{Y}$. Where $\mathfrak{E}_+ = \{\varsigma \in \mathfrak{E}: 0 * \varsigma = 0\}$.

Proof

Assume $s \in \mathfrak{Y}$ and $\subseteq \mathfrak{E}_+$.

Then $s * (0 * \varsigma) = s * 0$ [since $\mathfrak{Y} \subseteq \mathfrak{E}_+$] = $s \in \mathfrak{Y}$

 $\therefore \mathfrak{Y}$ is s – closed SAH – ideal .

4. Conclusion

In this paper, we constructed the idea of SAH – ideal, closed SAH – ideal, s- closed SAH – ideal, \overline{SAH} – ideal and s- \overline{SAH} – ideal of BH – algebra which are presented with some of their properties, examples and theorems. In our future work, we introduce the concept of fuzzy SAH – ideal of BH – algebra. It is our optimism that this effort grows into other fundamentals for further study of ideas of BH-algebra.

References

- 1. Zadah, L. A. Fuzzy Sets. In form. Control. 1965, 8, 338-353.
- 2. Iseki, K. On BCI-algebras. Mathematics Seminar Notes. 1980, 8, 125-130.
- 3. Iseki, K.; Tanaka, S. An introduction to theory of BCK –algebras. *Math. Japonica*. **1978**, *23*, *1*, 1-8.
- 4. Jun, Y. B.; Roh, E.H. On BH-algebra. scientiae Mathematica.1998, 1, 1, 347-354.

- 5. Jun, Y.B.; Kim, H.S.; Kondo, M. On BH-relations in BH algebras. Scientiae
- 6. Baik, H.G. On Vague BH –subalgebra of BH- algebras. *International Mathematical Forum*.2009, 4, 17, 823-829.
- 7. Abass, H.H.; Dahham, H. A. On Completely Closed Ideal With Respect To An Element Of A BH-Algebra. *Journal of Karbala university*.**2012**, *10*, *3*, 302-312.