

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

λ - Algebra with Some of Their Properties

Hassan Hussien Ebrahim

Rusul Abd Al_salam Ali

Department of Mathematic /College of Computer science and Mathematics /Tikrit University/ Tikrit/Iraq.

hassan1962pl@tu.edu.iq

rusulsalam668@gmail.com

Article history: Received 23 June 2019, Accepted 19 August 2019, Published in April 2020.

Doi: 10.30526/33.2.2428

Abstract

The objective of this paper is, firstly, we study a new concept noted by λ -algebra and discuss the properties of this concept. Secondly, we introduce a new concept related to the λ -algebra such as smallest λ -algebra. Thirdly, we introduce the notion of the restriction of λ -algebra on a nonempty subset \mathfrak{D} of \mathfrak{P} and investigate some of its basic properties. Furthermore, we present the relationships between α - σ -field, monotone class, β - σ -field and λ -algebra. Finally, we introduce the concept of measure relative to the λ -algebra and prove that every measure relative to the λ - algebra is complete.

Keywords: σ -field, increasing sequence, α - σ -field, monotone class, β - σ -field.

1. Introduction

About forty seven year ago, Robert [1]. Studied the concept of σ -field, where a collection \mathcal{K} is called σ -field of a set \mathfrak{P} if $\mathfrak{P} \in \mathcal{K}$ and \mathcal{K} is closed under complementation and countable union. Many authors studied the concept of σ -field, for example see [2-4]. And [5]. The notion of increasing sequence and decreasing sequence studied by Robert, where D₁, D₂, ... are subsets of a set \mathfrak{P} , if $D_1 \subset D_2 \subset \cdots$ and $\bigcup_{i=1}^{\infty} D_i = D$. Then we say that D_i increase toD; we write $D_i \uparrow D$. If $D_1 \supset D_2 \supset \cdots$ and $\bigcap_{i=1}^{\infty} D_i = D$, we say that D_i decrease toD; we write $D_i \downarrow D$ [1]. Zhenyuan and George in 2009 studied the concept of monotone class which represents the generalization of σ -field, where a collection \mathcal{K} of subsets of a nonempty set \mathfrak{P} is said to be monotone class iff whenever $D_1, D_2, \dots \in \mathcal{K}$ such that $D_i \uparrow D$, then $D \in \mathcal{K}$ and if $D_i \downarrow D$, then De \mathcal{K} [6]. In 2019, Ibrahim and Hassan introduced some concepts such as α - σ -field and β - σ -field which represent the generalizations of σ -field, where a collection \mathcal{K} is said to be α - σ -field iff Φ , $\Re \in \mathcal{K}$ and \mathcal{K} is closed under countable union [7]. And a collection \mathcal{K} is said to be $\beta - \sigma$ -field if $\Phi, \mathfrak{P} \in \mathcal{K}$ and \mathcal{K} is closed under countable intersection [7]. Ibrahim and Hassan in 2019 also introduced the concept of δ -field as a stronger form of these concepts, where a collection \mathcal{K} is said to δ -field iff $\Phi \in \mathcal{K}$ and if $\Phi \neq A \in \mathcal{K}$ and $A \subset B \subseteq \mathfrak{P}$, then Be \mathcal{K} and \mathcal{K} is closed under countable intersection [8]. The concept of complete measure on

 σ -field was studied by Robert in 1972, but not necessarily that every measure defined on σ -field is complete. In this work, we prove that every measure defined on λ -algebra is complete.

The main aim of this paper is to introduce and study new concept such as λ -algebra as a stronger from of α - σ -field and monotone class. And we give basic properties and examples of this concept.

2. The main results:

Let $P(\mathfrak{P})$ denoted to the power set of a nonempty set \mathfrak{P} and we start this section by the definition of λ - algebra.

Definition 1

A nonempty collection \mathcal{K} of a set \mathfrak{P} , $\mathcal{K} \neq {\mathfrak{P}}$ is called λ - algebra or (λ - field) of a set \mathfrak{P} if:

1- $\mathfrak{P}\in\mathcal{K}$.

2- If $D \in \mathcal{K}$ and $E \subset D \subset \mathfrak{P}$, then $E \in \mathcal{K}$.

3- If $D_1, D_2, \dots \in \mathcal{K}$, then $\bigcup_{i=1}^{\infty} D_i \in \mathcal{K}$.

Definition 2

If \mathcal{K} is a λ -algebra of a set \mathfrak{P} . Then a pair ($\mathfrak{P}, \mathcal{K}$) is called measurable space relative to the λ -algebra \mathcal{K} and the elements of \mathcal{K} are called the measurable sets.

Example 3

Let $\mathfrak{P} = \{1,2,3,4\}$ and $\mathcal{K} = \{\Phi,\{1\},\{2\},\{4\},\{1,2\},\{1,4\},\{2,4\},\{1,2,4\},\mathfrak{P}\}$. Then $(\mathfrak{P}, \mathcal{K})$ is measurable space relative to the λ - algebra \mathcal{K} .

Proposition 4

For any λ - algebra \mathcal{K} of a set \mathfrak{P} , the following hold:

1- $\Phi \in \mathcal{K}$

2- If $D_1, D_2, ..., D_n \in \mathcal{K}$, then $\bigcup_{i=1}^n D_i \in \mathcal{K}$.

- 3- If $D_1, D_2, \dots \in \mathcal{K}$, then $\bigcap_{i=1}^{\infty} D_i \in \mathcal{K}$.
- 4- If $D_1, D_2, ..., D_n \in \mathcal{K}$, then $\bigcap_{i=1}^n D_i \in \mathcal{K}$.

Proof

The proof follows from definition of λ - algebra.

Lemma 5

Let $\{\mathcal{K}_{\alpha}\}_{\alpha \in I}$ be a collection of λ - algebra on \mathfrak{P} . Then $\bigcap_{\alpha \in I} \mathcal{K}_{\alpha}$ is a λ - algebra on \mathfrak{P} .

Proof

Since \mathcal{K}_{α} is λ -algebra $\forall \alpha \in I$, then $\mathfrak{P} \epsilon \mathcal{K}_{\alpha} \forall \alpha \in I$, hence $\mathcal{K}_{\alpha} \neq \Phi \forall \alpha \in I$ and $\bigcap_{\alpha \in I} \mathcal{K}_{\alpha} \neq \Phi$, therefore $\mathfrak{P} \epsilon \bigcap_{\alpha \in I} \mathcal{K}_{\alpha}$. Let $D \epsilon \bigcap_{\alpha \in I} \mathcal{K}_{\alpha}$ and $E \subset D \subset \mathfrak{P}$, then $D \epsilon \mathcal{K}_{\alpha} \forall \alpha \in I$, but \mathcal{K}_{α} is λ -algebra $\forall \alpha \in I$ and $E \subset D$. So, we get $E \epsilon \mathcal{K}_{\alpha} \forall \alpha \in I$, hence $E \epsilon \bigcap_{\alpha \in I} \mathcal{K}_{\alpha}$. Let $D_1, D_2, ... \epsilon \bigcap_{\alpha \in I} \mathcal{K}_{\alpha}$. Then, $D_1, D_2, ... \epsilon \mathcal{K}_{\alpha}, \forall \alpha \in I$, but \mathcal{K}_{α} is λ -algebra $\forall \alpha \in I$ which implies that $\bigcup_{n=1}^{\infty} D_n \epsilon \mathcal{K}_{\alpha}, \forall \alpha \in I$, hence $\bigcup_{n=1}^{\infty} D_n \epsilon \bigcap_{\alpha \in I} \mathcal{K}_{\alpha}$. Therefore, $\bigcap_{\alpha \in I} \mathcal{K}_{\alpha}$ is a λ -algebra.

Definition 6

Let $\mathcal{J} \subseteq P(\mathfrak{P})$. Then the intersection of all λ - algebra of \mathfrak{P} which includes \mathcal{J} is called the λ - algebra generated by \mathcal{J} and denoted by $\lambda(\mathcal{J})$, that is, $\lambda(\mathcal{J}) = \bigcap \{ \mathcal{K}_{\alpha} : \mathcal{K}_{\alpha} \text{ is a } \lambda \text{ - algebra of } \mathfrak{P} \text{ and } \subseteq \mathcal{K}_{\alpha} , \forall \alpha \in I \}.$

Proposition 7

Let $\mathcal{J} \subseteq P(\mathfrak{P})$. Then $\lambda(\mathcal{J})$ is the smallest λ - algebra of \mathfrak{P} which includes \mathcal{J} .

Proof

Since $\lambda(\mathcal{J}) = \bigcap \{\mathcal{K}_{\alpha} : \mathcal{K}_{\alpha} \text{ is a } \lambda - \text{algebra of } \mathfrak{P} \text{ and } \mathcal{J} \subseteq \mathcal{K}_{\alpha}, \forall \alpha \in I \}$. Then $\lambda(\mathcal{J})$ is λ - algebra of \mathfrak{P} by Lemma 5. To prove $\lambda(\mathcal{J}) \supseteq \mathcal{J}$, let each of \mathcal{K}_{α} is a λ - algebra of \mathfrak{P} and $\mathcal{J} \subseteq \mathcal{K}_{\alpha}, \forall \alpha \in I$. Then $\mathcal{J} \subseteq \bigcap_{\alpha \in I} \mathcal{K}_{\alpha}$, therefore $\mathcal{J} \subseteq \lambda(\mathcal{J})$. Now, let \mathcal{K}^* is a λ - algebra of \mathfrak{P} such that $\mathcal{K}^* \supseteq \mathcal{J}$. Then $\bigcap \{\mathcal{K}_{\alpha} : \mathcal{K}_{\alpha} \text{ is a } \lambda$ - algebra of \mathfrak{P} and $\mathcal{J} \subseteq \mathcal{K}_{\alpha}, \forall \alpha \in I \} \subseteq \mathcal{K}^*$, hence $\lambda(\mathcal{J}) \subseteq \mathcal{K}^*$. Therefore, $\lambda(\mathcal{J})$ is the smallest λ - algebra of \mathfrak{P} which includes \mathcal{J} .

If we take Example 3 and if we assume $\mathcal{J} = \{\{1\}, \{2\}\}, \text{ then } \lambda(\mathcal{J}) = \{\Phi, \{1\}, \{2\}, \{1,2\}, \mathfrak{P}\}$ is the smallest λ - algebra of a set \mathfrak{P} which includes \mathcal{J} .

Theorem 8

Let $\mathcal{J} \subseteq P(\mathfrak{P})$. Then $(\mathfrak{P}, \mathcal{J})$ is measurable space relative to the λ - algebra \mathcal{J} . if and only if $\mathcal{J} = \lambda(\mathcal{J})$.

Proof

Suppose that $(\mathfrak{P}, \mathcal{J})$ is (a) measurable space relative to the λ - algebra \mathcal{J} . From Proposition 7, we have $\lambda(\mathcal{J})$ is the smallest λ -algebra of a set \mathfrak{P} which includes \mathcal{J} implies that $\mathcal{J} \subseteq \lambda(\mathcal{J})$. By hypothesis, we have \mathcal{J} is a λ - algebra of a set \mathfrak{P} , but $\mathcal{J} \subseteq \mathcal{J}$ and $\lambda(\mathcal{J})$ is the smallest λ -algebra of a set \mathfrak{P} which includes \mathcal{J} , then $\lambda(\mathcal{J}) \subseteq \mathcal{J}$, hence $\mathcal{J} = \lambda(\mathcal{J})$. Conversely) Let $\mathcal{J} \subseteq P(\mathfrak{P})$ and let $\mathcal{J} = \lambda(\mathcal{J})$. Since $\lambda(\mathcal{J})$ is a λ - algebra of a set \mathfrak{P} , then \mathcal{J} is λ - algebra of a set \mathfrak{P} .

If we take Example 3 and if we assume $\mathcal{J} = \{\Phi, \{1\}, \mathfrak{P}\}$, then we conclude that $\lambda(\mathcal{J}) = \mathcal{J}$.

Now, we introduce the notion of restriction and study the basic properties of this notion.

Definition 9

Let $\mathcal{K} \subseteq P(\mathfrak{P})$ and $\Phi \neq \mathfrak{D} \subseteq \mathfrak{P}$. Then, the restriction of \mathcal{K} over the set \mathfrak{D} is denoted by $\mathcal{K}|_{\mathfrak{D}}$ and defined as follows:

 $\mathcal{K}|_{\mathfrak{D}} = \{ B: B = E \cap \mathfrak{D}, \text{ for some } E \in \mathcal{K} \}.$

Proposition10

Let $(\mathfrak{P}, \mathcal{K})$ is measurable space relative to the λ -algebra \mathcal{K} and $\Phi \neq \mathfrak{D} \subseteq \mathfrak{P}$. Then $\mathcal{K}|_{\mathfrak{D}} = \{ E \subseteq \mathfrak{D} : E \in \mathcal{K} \}.$

Proof

Let $B \in \mathcal{K}|_{\mathfrak{D}}$. Then $B=E \cap \mathfrak{D}$, for some $E \in \mathcal{K}$. Since $E \cap \mathfrak{D} \subseteq E$ and \mathcal{K} is λ -algebra of a set \mathfrak{P} , then $E \cap \mathfrak{D} \in \mathcal{K}$, hence $B \in \mathcal{K}$. Since, $E \cap \mathfrak{D} \subseteq \mathfrak{D}$, then $B \subseteq \mathfrak{D}$. Therefore $B \in \{E \subseteq \mathfrak{D}: E \in \mathcal{K}\}$ and $\mathcal{K}|_{\mathfrak{D}} \subseteq \{A \subseteq \mathfrak{D}: A \in \mathcal{K}\}$. Let $C \in \{E \subseteq \mathfrak{D} : E \in \mathcal{K}\}$. Then, $C \subseteq \mathfrak{D}$, and $C \in \mathcal{K}$, hence,

 $C=C\cap \mathfrak{D}$, but $C\in \mathcal{K}$, then $C\in \mathcal{K}|_{\mathfrak{D}}$ which implies that $\{E \subseteq \mathfrak{D}: E\in \mathcal{K}\}\subseteq \mathcal{K}|_{\mathfrak{D}}$, therefore $\mathcal{K}|_{\mathfrak{D}} = \{A \subseteq \mathfrak{D}: A\in \mathcal{K}\}$.

Corollary 11

Let $(\mathfrak{P}, \mathcal{K})$ is measurable space relative to the λ - algebra \mathcal{K} and $\Phi \neq \mathfrak{D} \subseteq \mathfrak{P}$. Then $\mathcal{K}|_{\mathfrak{D}} \subseteq \mathcal{K}$.

Proof

The result follows from Proposition10

Proposition 12

Let $(\mathfrak{P}, \mathcal{K})$ is measurable space relative to the λ -algebra \mathcal{K} , and $\neq \mathfrak{D} \subseteq \mathfrak{P}$. Then $(\mathfrak{D}, \mathcal{K}|_{\mathfrak{D}})$ is measurable space relative to the λ - algebra $\mathcal{K}_{\mathfrak{D}}$

Proof

Since $(\mathfrak{P}, \mathcal{K})$ is measurable space relative to the λ - algebra \mathcal{K} , then $\mathfrak{P} \in \mathcal{K}$. Since $\subseteq \mathfrak{P}$, then $\mathfrak{D} = \mathfrak{P} \cap \mathfrak{D}$ and $\mathfrak{D} \in \mathcal{K}|_{\mathfrak{D}}$. Let $B \in \mathcal{K}|_{\mathfrak{D}}$ and $F \subset B \subset \mathfrak{D}$. Then by Corollary 11, we get $B \in \mathcal{K}$. But $F \subset B \subset \mathfrak{D} \subset \mathfrak{P}$ and $(\mathfrak{P}, \mathcal{K})$ is measurable space relative to the λ - algebra \mathcal{K} , then $F \in \mathcal{K}$. Now, $F \subset \mathfrak{D}$, and $F \in \mathcal{K}$, then by Proposition 10, we have $F \in \mathcal{K}|_{\mathfrak{D}}$. Let $B_1, B_2, ... \in \mathcal{K}|_{\mathfrak{D}}$. Then there exist $E_1, E_2, ... \in \mathcal{K}$ such that $B_i = E_i \cap \mathfrak{D}$ where i = 1, 2, ...,hence $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} (E_i \cap \mathfrak{D}) = (\bigcup_{i=1}^{\infty} E_i \cap \mathfrak{D}$. But $(\mathfrak{P}, \mathcal{K})$ is measurable space relative to the λ - algebra \mathcal{K} and $E_1, E_2, ... \in \mathcal{K}$, then, $\bigcup_{i=1}^{\infty} E_i \in \mathcal{K}$. Hence, $\bigcup_{i=1}^{\infty} B_i \in \mathcal{K}|_{\mathfrak{D}}$. Therefore, $(\mathfrak{D}, \mathcal{K}|_{\mathfrak{D}})$ is measurable space relative to the λ - algebra $\mathcal{K}|_{\mathfrak{D}}$.

Example 13

Let $\mathfrak{P} = \{1,2,3,4,5\}$ and $\mathcal{K} = \{\Phi,\{1\},\{3\},\{5\},\{1,3\},\{1,5\},\{3,5\},\{1,3,5\},\mathfrak{P}\}$. Then $(\mathfrak{P},\mathcal{K})$ is measurable space relative to the λ - algebra \mathcal{K} . If $\mathfrak{D} = \{1,2,4\}$, then $\mathcal{K}|_{\mathfrak{D}} = \{\Phi,\{1\},\mathfrak{D}\}$, hence $(\mathfrak{D},\mathcal{K}|_{\mathfrak{D}})$ is measurable space relative to the λ - algebra $\mathcal{K}|_{\mathfrak{D}}$ and $\mathcal{K}|_{\mathfrak{D}} \subseteq \mathcal{K}$.

Proposition 14

Let $\mathcal{J} \subseteq P(\mathfrak{P})$ and $\Phi \neq \mathfrak{D} \subseteq \mathfrak{P}$. If \mathcal{K} is a λ -algebra of \mathfrak{P} which includes \mathcal{J} , then $\lambda(\mathcal{J})|_{\mathfrak{D}}$ is a λ - algebra of a set \mathfrak{D} .

Proof

The result follows from Proposition 7 and Proposition 12.

Proposition 15

Let $\mathcal{J} \subseteq P(\mathfrak{P})$ and $\Phi \neq \mathfrak{D} \subseteq \mathfrak{P}$ and $\mathcal{J}|\mathfrak{D}$ is the restriction of \mathcal{J} over the set \mathfrak{D} . Then $\lambda(\mathcal{J}|\mathfrak{D})$ is the smallest λ - algebra of a set \mathfrak{D} , which includes $\mathcal{J}|\mathfrak{D}$, where $\lambda(\mathcal{J}|\mathfrak{D}) = \bigcap \{\mathcal{K}_i|_{\mathfrak{D}} : \mathcal{K}_i|_{\mathfrak{D}} \text{ is a } \lambda \text{ -algebra of } \mathfrak{D} \text{ , and } \mathcal{K}_i|_{\mathfrak{D}} \supseteq \mathcal{J}|_{\mathfrak{D}}, \forall i \in I\}.$

Proof

From Lemma 5, we get $\lambda(\mathcal{J}|_{\mathfrak{D}})$ is a λ -algebra of a set \mathfrak{D} . To prove that $\lambda(\mathcal{J}|_{\mathfrak{D}}) \supseteq \mathcal{J}|_{\mathfrak{D}}$, suppose that each of $\mathcal{K}_i|_{\mathfrak{D}}$ is a λ -algebra of a set \mathfrak{D} and $\mathcal{K}_i|_{\mathfrak{D}} \supseteq \mathcal{J}|_{\mathfrak{D}}$, $\forall i \in I$, then $\mathcal{J}|_{\mathfrak{D}} \subseteq \bigcap_{i \in I} \mathcal{K}_i|_{\mathfrak{D}}$, hence $\mathcal{J}|_{\mathfrak{D}} \subseteq \lambda(\mathcal{J}|_{\mathfrak{D}})$. Now, let $\mathcal{K}^*|_{\mathfrak{D}}$ is a λ -algebra of a set \mathfrak{D} such that $\mathcal{K}^*|_{\mathfrak{D}} \supseteq \mathcal{J}|_{\mathfrak{D}}$. Then $\mathcal{K}^*|_{\mathfrak{D}} \supseteq \lambda(\mathcal{J}|_{\mathfrak{D}})$. Therefore, $\lambda(\mathcal{J}|_{\mathfrak{D}})$ is the smallest λ -algebra of a set \mathfrak{D} includes $\mathcal{J}|_{\mathfrak{D}}$.

Proposition 16

Let $\mathcal{J} \subseteq P(\mathfrak{P})$ and $\Phi \neq \mathfrak{D} \subseteq \mathfrak{P}$, define the collection \mathcal{K} as: $\mathcal{K} = \{E \subseteq \mathfrak{P}: (E \cap \mathfrak{D}) \in \lambda(\mathcal{J}|_{\mathfrak{D}}) \}$. Then $(\mathfrak{P}, \mathcal{K})$ is measurable space relative to the λ - algebra \mathcal{K} .

Proof

Since $\lambda(\mathcal{J}|_{\mathfrak{D}})$ is a λ - algebra of a set \mathfrak{D} , then $\Phi, \mathfrak{D} \in \lambda(\mathcal{J}|_{\mathfrak{D}})$. Since $\mathfrak{D} \subseteq \mathfrak{P}$, then $\mathfrak{D} = \mathfrak{P} \cap \mathfrak{D}$ and $\mathfrak{P} \in \mathcal{K}$. Let $E \in \mathcal{K}$ and $F \subset E \subset \mathfrak{P}$. Then, $(E \cap \mathfrak{D}) \in \lambda(\mathcal{J}|_{\mathfrak{D}})$. Since, $F \subset E$, then $(F \cap \mathfrak{D}) \subset (E \cap \mathfrak{D})$. But $\lambda(\mathcal{J}|_{\mathfrak{D}})$ is a λ - algebra of a set \mathfrak{D} , which implies that $(F \cap \mathfrak{D}) \in \lambda(\mathcal{J}|_{\mathfrak{D}})$ and $F \in \mathcal{K}$. Let $E_1, E_2, ..., \in \mathcal{K}$. Then $(E_i \cap \mathfrak{D}) \in \lambda(\mathcal{J}|_{\mathfrak{D}})$, for all i=1,2,..., hence $\bigcup_{i=1}^{\infty} (E_i \cap \mathfrak{D}) \in \lambda(\mathcal{J}|_{\mathfrak{D}})$ and $((\bigcup_{i=1}^{\infty} E_i) \cap \mathfrak{D}) \in \lambda(\mathcal{J}|_{\mathfrak{D}})$ implies that $\bigcup_{i=1}^{\infty} E_i \in \mathcal{K}$. Therefore \mathcal{K} is λ -algebra of a set \mathfrak{P} .

Theorem 17

Let $\mathcal{J} \subseteq P(\mathfrak{P})$ and $\Phi \neq \mathfrak{D} \subseteq \mathfrak{P}$. Then $\lambda(\mathcal{J}|_{\mathfrak{D}}) = \lambda(\mathcal{J})|_{\mathfrak{D}}$.

Proof

Let $B \in \mathcal{J}|_{\mathfrak{D}}$, then $B=E \cap \mathfrak{D}$, for some $E \in \mathcal{J}$. But $\mathcal{J} \subseteq \lambda(\mathcal{J})$, then $E \in \lambda(\mathcal{J})$, thus $B \in \lambda(\mathcal{J})|_{\mathfrak{D}}$, hence $\mathcal{J}|_{\mathfrak{D}} \subseteq \lambda(\mathcal{J})|_{\mathfrak{D}}$, but $\lambda(\mathcal{J}|_{\mathfrak{D}})$ is smallest λ -algebra of a set \mathfrak{D} , which include $\mathcal{J}|_{\mathfrak{D}}$ and $\lambda(\mathcal{J})|_{\mathfrak{D}}$ is a λ -algebra of a set \mathfrak{D} which include $\mathcal{J}|_{\mathfrak{D}}$, then $\lambda(\mathcal{J}|_{\mathfrak{D}}) \subseteq \lambda(\mathcal{J})|_{\mathfrak{D}}$. Now, define collection \mathcal{K} as: $\mathcal{K} = \{E \subseteq \mathfrak{P} : E \cap \mathfrak{D} \in \lambda(\mathcal{J}|_{\mathfrak{D}})\}$, then from Proposition 16, we obtain \mathcal{K} is a λ -algebra of a set \mathfrak{P} . Let $C \in \mathcal{J}$, then $(C \cap \mathfrak{D}) \in \mathcal{J}|_{\mathfrak{D}}$, but $\mathcal{J}|_{\mathfrak{D}} \subseteq \lambda(\mathcal{J}|_{\mathfrak{D}})$ implies that $(C \cap \mathfrak{D}) \in \lambda(\mathcal{J}|_{\mathfrak{D}})$, hence $C \in \mathcal{K}$ and $\mathcal{J} \subseteq \mathcal{K}$. Let $B \in \lambda(\mathcal{J})|_{\mathfrak{D}}$, then $B = F \cap \mathfrak{D}$, for some $F \in \lambda(\mathcal{J})$. But $\lambda(\mathcal{J}) \subseteq \mathcal{K}$, then $F \in \mathcal{K}$, hence $B \in \lambda(\mathcal{J}|_{\mathfrak{D}})$ and $\lambda(\mathcal{J})|_{\mathfrak{D}} \subseteq \lambda(\mathcal{J}|_{\mathfrak{D}})$, consequently $\lambda(\mathcal{J}|_{\mathfrak{D}}) =$ $\lambda(\mathcal{J})|_{\mathfrak{D}}$.

We end this section by introduce the relationships between α - σ -field, monotone class, β - σ -field and λ - algebra.

Proposition 18

Every λ - algebra is a α - σ -field.

Proof

Let \mathcal{K} be a λ -algebra of a set \mathfrak{P} . Then by definition of λ - algebra, we have $\Phi, \mathfrak{P} \in \mathcal{K}$. Let $D_1, D_2, \dots \in \mathcal{K}$. Since \mathcal{K} is a λ - algebra, then by definition of \mathcal{K} , we have $\bigcup_{i=1}^{\infty} D_i \in \mathcal{K}$. Therefore \mathcal{K} is a α - σ -field.

In general, the converse of above proposition is not true. For example, if $\mathfrak{P} = \{1,2,3\}$ and $\mathcal{K} = \{\Phi, \{1\}, \{1,3\}, \mathfrak{P}\}$, then \mathcal{K} is $\alpha - \sigma$ - field but not λ -algebra, because $\{1,3\} \in \mathcal{K}$ and $\{3\} \subset \{1,3\}$, but $\{3\} \notin \mathcal{K}$.

Proposition 19

Every λ - algebra is a β - σ -field.

Proof

The proof follows from Proposition 4 and definition of λ - algebra.

In general, the converse of above proposition is not true as shown in following example.

Example 20

Let $\mathfrak{P} = \{1, 2, 3, 4\}$ and $\mathcal{K} = \{\Phi, \{1\}, \{1, 3, 4\}, \{3, 4\}, \mathfrak{P}\}$. Then, \mathcal{K} is $\beta - \sigma$ -field but not λ -algebra, because $\{1, 3, 4\} \in \mathcal{K}$ and $\{3, 4\} \subset \{1, 3, 4\}$, but $\{3, 4\} \notin \mathcal{K}$.

Proposition 21

Every λ - algebra is a monotone class.

Proof

Let \mathcal{K} be a λ -algebra of a set \mathfrak{P} and $D_1, D_2, ... \in \mathcal{K}$ such that $D_i \uparrow D$. Then $\bigcup_{i=1}^{\infty} D_i = D$ Since \mathcal{K} is a λ -algebra, then by definition of \mathcal{K} , we have $\bigcup_{i=1}^{\infty} D_i \in \mathcal{K}$ which implies that $D \in \mathcal{K}$. Let $D_1, D_2, ... \in \mathcal{K}$ such that $D_i \downarrow D$. Then, $\bigcap_{i=1}^{\infty} D_i = D$, but \mathcal{K} is a λ -algebra, implies that $\bigcap_{i=1}^{\infty} D_i \in \mathcal{K}$ and $D \in \mathcal{K}$. Hence \mathcal{K} is a monotone class.

In general, the converse of above proposition is not true. For example, if $\mathfrak{P} = \{1,2,3\}$ and $\mathbb{M} = \{\Phi, \{1\}, \{1,2\}\}\)$, then \mathbb{M} is a monotone class, but not λ -algebra, because $\{1,2\} \in \mathbb{M}$ and $\{2\} \subset \{1,2\}$, but $\{2\} \notin \mathbb{M}$.

Definition 22 [6]

Let $\mathcal{J} \subseteq P(\mathfrak{P})$. Then the intersection of all monotone classes of \mathfrak{P} which include \mathcal{J} is called the monotone class generated by \mathcal{J} and denoted by $\mathbb{M}(\mathcal{J})$, that is, $\mathbb{M}(\mathcal{J}) = \bigcap \{\mathbb{M}_i : \mathbb{M}_i \text{ is a monotone class of } \mathfrak{P} \text{ and } \mathcal{J} \subseteq \mathbb{M}_i, \forall i \in I \}.$

Lemma 23 [6]

Let $\{\mathbb{M}_i\}_{i\in I}$ be a collection of monotone classes on \mathfrak{P} . Then $\bigcap_{i\in I} \mathbb{M}_i$ is a monotone class on \mathfrak{P} .

Proposition 24 [6]

Let $\mathcal{J} \subseteq P(\mathfrak{P})$. Then $\mathbb{M}(\mathcal{J})$ is the smallest monotone class of \mathfrak{P} which includes \mathcal{J} .

Theorem 25

Let $\mathcal{J} \subseteq P(\mathfrak{P})$. Then $\mathbb{M}(\mathcal{J}) \subseteq \lambda(\mathcal{J})$.

Proof

Let $\mathcal{J} \subseteq P(\mathfrak{P})$. Then by Proposition 7, we have $\lambda(\mathcal{J})$ is a λ -algebra of \mathfrak{P} which includes \mathcal{J} . From Proposition 21, we have, every λ - algebra is a monotone class, implies that $\lambda(\mathcal{J})$ is a monotone class which includes \mathcal{J} . But $\mathbb{M}(\mathcal{J})$ is the smallest monotone class which includes \mathcal{J} by Proposition 24, then $\mathbb{M}(\mathcal{J}) \subseteq \lambda(\mathcal{J})$.

3. Measure Defined on λ - algebra

Our aim in this section is to prove that any measure defined on λ - algebra is complete. We begin with the notions of measure on λ - algebra.

Definition 26

Let $(\mathfrak{P}, \mathcal{K})$ is measurable space relative to the λ -algebra \mathcal{K} . Then, a set function \mathfrak{M} , $\mathfrak{M}: \mathcal{K} \to [0, \infty]$ is called measure relative to the λ -algebra \mathcal{K} if whenever $D_1, D_2, ...$ form a finite or countably infinite collection of disjoint sets in \mathcal{K} , we have $\mathfrak{M}(\bigcup_{n=1}^{\infty} D_n) =$ $\sum_{n=1}^{\infty} \mathfrak{M}(D_n)$ and $\mathfrak{M}(\Phi) = 0$.

Example 27

Let $\mathfrak{P} = \{1,2,3\}$ and $\mathcal{K} = \{\Phi,\{1\},\{3\},\{1,3\},\mathfrak{P}\}$. Then $(\mathfrak{P},\mathcal{K})$ is measurable space relative to the λ - algebra \mathcal{K} . If we define a set function $\mathfrak{M}: \mathcal{K} \to [0,\infty]$ by

$$\mathfrak{M}(D) = \begin{cases} o & ; if D = \Phi \\ \frac{1}{2} & ; if D = \{1\} or \{3\} \\ 1 & ; other wise \end{cases}$$

Then \mathfrak{M} is a measure relative to the λ - algebra \mathcal{K} .

Definition 28

A measure space relative to the λ -algebra \mathcal{K} is a triple ($\mathfrak{P}, \mathcal{K}, \mathfrak{M}$) where ($\mathfrak{P}, \mathcal{K}$) is measurable space relative to the λ -algebra \mathcal{K} and \mathfrak{M} is a measure relative to the λ -algebra \mathcal{K} .

In the following Theorem, we use mathematical induction to prove that the linear combination of measure relative to the λ -algebra \mathcal{K} is also measure relative to the λ -algebra \mathcal{K} .

Theorem 29

Let $(\mathfrak{P}, \mathcal{K}, \mathfrak{M}_j)$ be a measure space relative to the λ -algebra \mathcal{K} and $c_j \in [0, \infty)$ for all j = 1, 2, ..., k. If a set function $\sum_{j=1}^k c_j \mathfrak{M}_j \colon \mathcal{O} \to [0, \infty]$ is defined by:

 $(\sum_{j=1}^{k} c_j \mathfrak{M}_j)(D) = \sum_{j=1}^{k} c_j \cdot \mathfrak{M}_j(D) \forall D \in \mathcal{D}$, then $(\mathfrak{P}, \mathcal{K}, \sum_{j=1}^{k} c_j \mathfrak{M}_j)$ is measure space relative to the λ - algebra \mathcal{K} .

Proof

If
$$k = 2$$
, then $(c_1\mathfrak{M}_1 + c_2\mathfrak{M}_2)(\Phi) = c_1 \cdot \mathfrak{M}_1(\Phi) + c_2 \cdot \mathfrak{M}_2(\Phi)$
= $c_1 \cdot 0 + c_2 \cdot 0 = 0$

Let $D_1, D_2, ...$ are disjoint sets in \mathcal{K} . Since \mathfrak{M}_j is measure relative to the λ - algebra $\mathcal{K}, j = 1, 2$

Then,
$$\mathfrak{M}_{j}(\bigcup_{n=1}^{\infty}D_{n}) = \sum_{n=1}^{\infty} \mathfrak{M}_{j}(D_{n})$$
. So, we have
 $(c_{1}\mathfrak{M}_{1} + c_{2}\mathfrak{M}_{2})(\bigcup_{n=1}^{\infty}D_{n}) = c_{1} \cdot \mathfrak{M}_{1}(\bigcup_{n=1}^{\infty}D_{n}) + c_{2} \cdot \mathfrak{M}_{2}(\bigcup_{n=1}^{\infty}D_{n})$
 $= c_{1} \cdot \sum_{n=1}^{\infty} \mathfrak{M}_{1}(D_{n}) + c_{2} \cdot \sum_{n=1}^{\infty} \mathfrak{M}_{2}(D_{n})$
 $= \sum_{n=1}^{\infty}c_{1} \cdot \mathfrak{M}_{1}(D_{n}) + \sum_{n=1}^{\infty}c_{2} \cdot \mathfrak{M}_{2}(D_{n})$
 $= \sum_{n=1}^{\infty}[c_{1} \cdot \mathfrak{M}_{1}(D_{n}) + c_{2} \cdot \mathfrak{M}_{2}(D_{n})]$
 $= \sum_{n=1}^{\infty}[c_{1} \cdot \mathfrak{M}_{1}(D_{n}) + c_{2} \cdot \mathfrak{M}_{2}(D_{n})]$

Hence, $(\mathfrak{P}, \mathcal{K}, (c_1\mathfrak{M}_1 + c_2\mathfrak{M}_2))$ is measure space relative to the λ - algebra \mathcal{K} . Now, we assume that $(\mathfrak{P}, \mathcal{K}, \sum_{j=1}^k c_j\mathfrak{M}_j)$ is measure space relative to the λ - algebra \mathcal{K} , when k = m and we prove this fact when k = m + 1. Let $(\mathfrak{P}, \mathcal{K}, \mathfrak{M}_j)$ be a measure space relative to the λ - algebra \mathcal{K} and $c_j \in [0, \infty)$ for all j = 1, 2, ..., m, m + 1. Then

$$(\sum_{j=1}^{m+1} c_j \mathfrak{M}_j) (\Phi) = (\sum_{j=1}^m c_j \mathfrak{M}_j + c_{m+1} \mathfrak{M}_{m+1}) (\Phi)$$

= $\sum_{j=1}^m c_j \cdot \mathfrak{M}_j (\Phi) + c_{m+1} \cdot \mathfrak{M}_{m+1} (\Phi)$
= 0 since, \mathfrak{M}_j is measure relative to the λ - algebra \mathcal{K} .

Let $D_1, D_2, ...$ are disjoint sets in \mathcal{K} . Since $(\mathfrak{P}, \mathcal{K}, \sum_{j=1}^m c_j \mathfrak{M}_j)$ is measure space relative to the λ - algebra \mathcal{K} , then $\sum_{j=1}^m c_j \mathfrak{M}_j (\bigcup_{n=1}^\infty D_n) = \sum_{n=1}^\infty [\sum_{j=1}^m c_j \mathfrak{M}_j](D_n)$. So, we have

$$\begin{split} (\sum_{j=1}^{m+1} c_j \mathfrak{M}_j) \left(\bigcup_{n=1}^{\infty} D_n \right) &= (\sum_{j=1}^m c_j \mathfrak{M}_j + c_{m+1} \mathfrak{M}_{m+1}) (\bigcup_{n=1}^{\infty} D_n) \\ &= \sum_{j=1}^m c_j \cdot \mathfrak{M}_j (\bigcup_{n=1}^{\infty} D_n) + c_{m+1} \cdot \mathfrak{M}_{m+1} (\bigcup_{n=1}^{\infty} D_n) \\ &= (\sum_{j=1}^m c_j \mathfrak{M}_j) (\bigcup_{n=1}^{\infty} D_n) + c_{m+1} \cdot \mathfrak{M}_{m+1} (\bigcup_{n=1}^{\infty} D_n) \\ &= \sum_{n=1}^{\infty} \left(\sum_{j=1}^m c_j \mathfrak{M}_j \right) (D_n) + c_{m+1} \cdot \sum_{n=1}^{\infty} \mathfrak{M}_{m+1} (D_n) \\ &= \sum_{n=1}^{\infty} \left[\sum_{j=1}^m c_j \cdot \mathfrak{M}_j (D_n) \right] + \sum_{n=1}^{\infty} c_{m+1} \cdot \mathfrak{M}_{m+1} (D_n) \\ &= \sum_{n=1}^{\infty} \left[\sum_{j=1}^m c_j \cdot \mathfrak{M}_j (D_n) + c_{m+1} \cdot \mathfrak{M}_{m+1} (D_n) \right] \\ &= \sum_{n=1}^{\infty} \left[\sum_{j=1}^m c_j \mathfrak{M}_j + c_{m+1} \mathfrak{M}_{m+1} \right] (D_n) \\ &= \sum_{n=1}^{\infty} \left[\sum_{j=1}^{m+1} c_j \mathfrak{M}_j \right] (D_n). \end{split}$$

Hence, $\sum_{j=1}^{m+1} c_j \mathfrak{M}_j$ is measure relative to \mathcal{K} , therefore $(\mathfrak{P}, \mathcal{K}, \sum_{j=1}^k c_j \mathfrak{M}_j)$ is measure space relative to the λ - algebra \mathcal{K} .

Definition 30 [1]

A measure on a σ -field \mathcal{K} is a nonnegative, extended real-valued set function \mathfrak{M} on \mathcal{K} such that whenever $A_1, A_2, ...$ form a finite or countably infinite collection of disjoint sets in \mathcal{K} , we have, $\mathfrak{M}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathfrak{M}(A_n)$.

Definition 31 [1, 3]

A measure \mathfrak{M} on a σ -field \mathcal{K} is said to be complete iff whenever $A \in \mathcal{K}$ and $\mathfrak{M}(A) = 0$, we have $B \in \mathcal{K}$ for all $B \subset A$.

The following example shows that, if \mathfrak{M} is a measure on σ -field \mathcal{K} , then not necessarily that \mathfrak{M} is complete.

Example 32

Let $\mathfrak{P} = \{1,2,3\}$ and $\mathcal{K} = \{\Phi,\{1\},\{2,3\},\mathfrak{P}\}$. Then \mathcal{K} is σ -field of a set \mathfrak{P} . If we define a set function $\mathfrak{M}: \mathcal{K} \to [0,\infty]$ by

$$\mathfrak{M}(D) = \begin{cases} o & ; if D = \Phi \text{ or } D = \{2,3\} \\ 1 & ; other wise \end{cases}$$

Then \mathfrak{M} is a measure on σ -field \mathcal{K} , it is clear that \mathfrak{M} is not complete, because $\{2,3\} \in \mathcal{K}$ and $\mathfrak{M}(\{2,3\}) = 0$, now $\{2\}, \{3\} \subset \{2,3\}$, but $\{2\}, \{3\} \notin \mathcal{K}$.

Theorem 33

Every measure relative to the λ - algebra is complete.

Proof

Let \mathfrak{M} be a measure relative to the λ - algebra \mathcal{K} . Assume that $A \in \mathcal{K}$ such that $\mathfrak{M}(A) = 0$, since \mathcal{K} is a λ - algebra, then $B \in \mathcal{K}$ for all $B \subset A$. Therefore \mathfrak{M} is complete measure.

Example 34

Let $\mathfrak{P} = \{a, b, c, d\}$ and $\mathcal{K} = \{\Phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c\}, \{a, c\}, \mathfrak{P}\}$. Then \mathcal{K} is λ -algebra of a set \mathfrak{P} . If we define a set function $\mathfrak{M}: \mathcal{K} \to [0, \infty]$ by

 $\mathfrak{M}(D) = \begin{cases} o & ; if D \neq \mathfrak{P} \\ 1 & ; if D = \mathfrak{P} \end{cases}$

Then \mathfrak{M} is a measure on λ -algebra \mathcal{K} . Now, for any $A \in \mathcal{K}$ such that $\mathfrak{M}(A) = 0$, then $B \in \mathcal{K}$ for all $B \subset A$. Therefore \mathfrak{M} is complete measure.

4. Conclusions

The main results of this paper are the following:

- (1) Let $\{\mathcal{K}_i\}_{i\in I}$ be a collection of λ algebra on \mathfrak{P} . Then $\bigcap_{i\in I} \mathcal{K}_i$ is a λ algebra on \mathfrak{P} .
- (2) Let $\mathcal{J} \subseteq P(\mathfrak{P})$. Then $\lambda(\mathcal{J})$ is the smallest λ algebra of \mathfrak{P} which includes \mathcal{J} .
- (3) Let $\mathcal{J} \subseteq P(\mathfrak{P})$. Then \mathcal{J} is a λ -algebra of a set \mathfrak{P} if and only if $\mathcal{J} = \lambda(\mathcal{J})$.
- (4) Let J ⊆ P(𝔅) and Φ ≠ 𝔅 ⊆ 𝔅. If K is a λ-algebra of 𝔅 which includes J, then λ(J)|_𝔅

is a λ - algebra of a set \mathfrak{D} .

- (5) Let $\mathcal{J} \subseteq P(\mathfrak{P})$ and $\Phi \neq \mathfrak{D} \subseteq \mathfrak{P}$. Then $\lambda(\mathcal{J}|_{\mathfrak{D}}) = \lambda(\mathcal{J})|\mathfrak{D}$.
- (6) Every λ algebra is a α σ -field.
- (7) Every λ algebra is a β σ -field.
- (8) Every λ algebra is a monotone class.
- (9) Let \mathcal{J} be a collection of subsets of a nonempty set \mathfrak{P} . Then $\mathbb{M}(\mathcal{J}) \subseteq \lambda(\mathcal{J})$.
- (10) Let $(\mathfrak{P}, \mathcal{K}, \mathfrak{M}_j)$ be a measure space relative to the λ algebra \mathcal{K} and $c_j \in [0, \infty)$ for all

j = 1, 2, ..., k. If a set function $\sum_{j=1}^{k} c_j \mathfrak{M}_j \colon \mathscr{D} \to [0, \infty]$ is defined by:

 $(\sum_{j=1}^{k} c_j \mathfrak{M}_j)(D) = \sum_{j=1}^{k} c_j \cdot \mathfrak{M}_j(D) \forall D \in \mathcal{O}$, then $(\mathfrak{P}, \mathcal{K}, \sum_{j=1}^{k} c_j \mathfrak{M}_j)$ is measure space relative to the λ - algebra \mathcal{K} .

(11) Every measure relative to the λ - algebra is complete.

References

- Robert, B.A. *Real Analysis and Probability*, 1st ed; Academic Press, Inc: *New York*. 1972, ISBN: 75-182642.
- 2. Dietmar, A.S. *Measure and Integration*, 1st ed; ETH Zürich, Switzerland.**2016**, ISBN: 978-3-03-719-659-5.
- 3. Krishna, B.A.; Soumendra, N.L. *Measure Theory and Probability Theory*, 1st ed; Springer Science + Business Media, LLC: *New York*.**2006**, ISBN-10: 0-387-32903-X.
- 4. Peipei, W.; Minhao, Yu.; Jun, L. Monotone Measures Defined by Pan-Integral, *Advancesin Pure Mathematics*.2018, 8, 535–547, doi: 10.4236/apm.2018.86031.
- 5. Noboru, E.; Kazuhisa, N. σ -ring and σ -algebra of sets, *Formalized Mathematics*, **2015**, 23, 1, 51-57, doi: 10.2478/forma-2015-0004.
- Zhenyuan, W.; George, J.K. *Generalized Measure Theory*, 1st ed; Springer Science and BusinessMedia, LLC: *New York*.2009, ISBN: 978-0-387-76851-9.
- Ibrahim, S.A.; Hassan, H.E. Generalization of σ-field and New Collections of Sets Noted by δ-field, *AIP Conference Proceedings*.2019, 2096, 020019, 020019-1–020019-6, doi.org/10.1063/1.5097816.
- Hassan, H.E.; Ibrahim, S.A. On a New Kind of Collection of Subsets Noted by δ-field and Some Concepts Defined on δ-field, *Ibn Al-Haitham Journal for Pure and Applied Science*.2019, *32*, *2*, 62-70, Doi:10.30526/32.2.2140.