

For Some Results of Semisecond Submodules

Rasha I. Khalaf

Department, of Mathematics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.
rasha sin79@yahoo.com

Article history: Received 15 May 2018, Accepted 19 September 2018, Published December 2018

Abstract

Let \mathcal{R} be a commutative ring with unity and let \mathcal{B} be a unitary R-module. Let \aleph be a proper submodule of \mathcal{B} , \aleph is called semisecond submodule if for any $r \in \mathcal{R}$, $r \neq 0$, $n \in \mathbb{Z}_+$, either $r^n \aleph = 0$ or $r^n \aleph = r \aleph$.

In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an \mathcal{R} -module \mathcal{B} is called semisecond, if \mathcal{B} is semisecond submodul of \mathcal{B} .

Keywords: Semisecond submodules, second submodules, secondary submodules.

1. Introduction

Let \mathscr{R} be a commutative ring with unity and let \mathscr{B} be a unitary \mathscr{R} -module. S.Yass in [1] introduced the notation of second submodule and second module where a submodule \aleph of an \mathscr{R} -module \mathscr{B} is called second submodule if for every $r \in \mathscr{R}$, $r \neq 0$, either $r \aleph = \aleph$ or $r \aleph = 0$ and a module \mathscr{B} is called semisecond if \mathscr{B} is semisecond submodule of \mathscr{B} . This definition leads us to introduce the notion of semisecond submodule and semisecond module as a generalization of second submodule and second module, where a submodule \aleph of an \mathscr{R} -module \mathscr{B} is called Semisecond if for every $r \in \mathscr{R}$, $r \neq 0$, $n \in \mathbb{Z}_+$, either $r^n \aleph = 0$ or $r^n \aleph = r \aleph$ and a module \mathscr{B} is Semisecond if \mathscr{B} is semisecond submodule of \mathscr{B} .

The main aim of this work is to give basic properties of Semisecond submodules. Moreover, we survey the relationships between semisecond submodules and other submodules.

Over this work we designate S.R.M. for submodule of an \mathcal{R} -module, for integral domain, for finitely generated, s.t. for such that and N.Z. for non-zero.

2. Semisecond Submodules

Definition (1):-let \aleph be a S.R.M. \mathscr{B} , \aleph is semisecond submodule if for every $r \in \mathscr{R}$, $n \in \mathbb{Z}_+$, either $r^n \aleph = 0$ or $r^n \aleph = r \aleph$.

An ideal I of a ring \mathcal{R} is semisecond ideal if it is semisecond submodule of the \mathcal{R} -module \mathcal{R} .

The later result is a description of semisecond submodule.

Proposition (2):- \aleph is S.R.M. \mathscr{B} is semisecond iff $r^2 \aleph = 0$ or $r^2 \aleph = r \aleph$ for any $r \in \mathscr{R}$, $r \neq 0$. Proof:-(\Longrightarrow) Is obvious.

 (\Leftarrow) if r=3, then $r^3\aleph = r(r^2\aleph)$. Since either $r^2\aleph = 0$ or $r^2\aleph = r \aleph$, that is either $r^3\aleph = r(0) = 0$ or $r^3\aleph = r(r\aleph) = r^2\aleph = r\aleph$. Suppose that $r^n\aleph = 0$ or $r^n\aleph = r \aleph$ is whole for n=k. To evidence that the permit is whole if n=k+1. $(r)^{k+1}\aleph = r(r^k\aleph)$. But $r^k\aleph = 0$ or $r^k\aleph = r\aleph$, that is $r^{k+1}\aleph = r(0) = 0$ or

 $(r)^{k+1} \aleph = r(r \aleph) = r^2 \aleph = r \aleph$. Hence by the principle of mathematical induction $r^n \aleph = 0$ or $r^n \aleph = r \aleph$ for any $r \in \mathcal{R}$, $r \neq 0$, $n \in \mathbb{Z}_+$. Therefore, \aleph is semisecond submodule.

Remarks and Examples (3):-

(1) Every second submodule is semisecond.

<u>Proof:</u> -Let \aleph be a S.R.M. \mathscr{B} such that \aleph is second submodule, that is $r \aleph = 0$ or $r \aleph = \aleph$ for every $r \in \mathscr{R}$, $r \neq 0$. If $r \aleph = 0$, then $r^2 \aleph = r(r \aleph) = r(0) = 0$. If $r \aleph = \aleph$, then $r^2 \aleph = r(r \aleph) = r \aleph$, that is $r^2 \aleph = 0$ or $r^2 \aleph = r \aleph$ so \aleph is semisecond by proposition (2.2).

The converse of this remark is not true in general for example: -

Consider the Z-module Z_8 , let $\aleph = \langle \overline{2} \rangle$, take r=2, $r \aleph = \{\overline{0},\overline{4}\}$. Thus $r \aleph \neq \aleph$ and $r \aleph \neq (0)$, that is \aleph is not second submodule, while for every $r \in Z$, $r \neq 0$, such that r is even, then r=2k for some $k \in Z$, so $r^2 \aleph = (2k)^2 \aleph = 0$. Also if r is odd, then r=(2k+1), so $r^2 \aleph = (4k^2+4k+1) \aleph = \aleph$ and $r \aleph = (2k+1) \aleph = 2k \aleph + \aleph = \aleph$. Thus $r^2 \aleph = r \aleph$. Thus \aleph is semisecond submodule.

- (2) The submodule Z of the Z-module Q is not semisecond submodule, but Q is a semisecond submodule of Q.
- (3) Any submodule of $Z_{p\infty}$ as Z-module is not semisecond submodule.
- (4) Let \aleph be a non-zero S.R.M. \mathscr{B} s.t. \mathscr{R} is a field, then \aleph is semisecond. Proof: - Let $r \in \mathscr{R}$, $r \neq 0$ and suppose $r^2 \aleph \neq 0$. To prove $r^2 \aleph = r \aleph$, let $r \in r \aleph$, then $r = r^2 (r^{-1}n) \in r^2 \aleph$, hence $r \aleph \subseteq r^2 \aleph$, which implies that $r^2 \aleph = r \aleph$. Thus \aleph is a semisecond submodule.
- (5) Let $f: \mathcal{B} \to \mathcal{B}'$ be an R-homorphism and \aleph is a semisecond submodule of \mathcal{B} , then $f(\aleph)$ is a semisecond submodule of \mathcal{B}' .

<u>Proof:</u> - Since \aleph is semisecond, then $r^2\aleph = r\aleph$ or $r^2\aleph = 0$. Hence either $f(r^2\aleph) = f(r\aleph)$ or $f(r^2\aleph) = f(0)$. Thus $r^2f(\aleph) = rf(\aleph)$ or $r^2f(\aleph) = rf(\aleph)$. Therefore, $f(\aleph)$ is a semisecond submodule of \mathscr{B}' .

(6) The inverse image of semisecond submodule need not to be a semisecond, for example: -

Let $\Pi: \mathbb{Z} \to \mathbb{Z}/<6>\cong \mathbb{Z}_6$, $<\overline{2}>$ is semisecond submodule in \mathbb{Z}_6 but $\Pi^{-1}(2)=2\mathbb{Z}$ is not a semisecond.

The opposite of remark and example (2.3. (1)) is true under the class of torsion free module over an integral domain, where a module \mathcal{B} over an I.D. is called **torsion free** if $\tau(\mathcal{B})=0$, where $\tau(\mathcal{B})=\{m\in\mathcal{B}; r\in\mathcal{R}, r\neq 0, rm=0\}$, see [2.P.45].

Proposition (4):-If \aleph is a semisecond S.R.M. \mathscr{B} such that \mathscr{B} is torsion free over an I.D. R, then \aleph is a second submodule.

Proof:- let $r \in \mathcal{R}$, $r \neq 0$. Since \aleph is semisecond submodule, then $r^2\aleph=0$ or $r^2\aleph=r\aleph$. If $r^2\aleph=0$, then $r^2=0$ (since M is torsion free) and since \mathcal{R} is an I.D., then r=0, which is contradiction. Thus $r^2\aleph=r\aleph$ and for any $n \in \aleph$, hence $\exists \ \acute{n} \in \aleph$ s.t. $r^2\acute{n}=rn$. Thus $r(n-r\acute{n})=0$. Since $r \neq 0$ and M is torsion free, then $(n-\acute{r}n)=0$, that is $n=r\acute{n}$, hence $\aleph \subseteq r\aleph$ and so, $r\aleph=\aleph$. Therefore, \aleph is a second submodule.

Corollary (5):- If \mathcal{B} is a torsion free over an integral domain, then \aleph is second submodule of \mathcal{B} if and only if \aleph is semisecond.

Recall that a module \mathcal{B} is called **multiplication** if every submodule \aleph of \mathcal{B} , \exists an ideal I of \mathcal{R} s.t. I $\mathcal{B} = \aleph$, amounting to for every submodule \aleph of \mathcal{B} , $\aleph = [\aleph : \mathcal{B}]$. \mathcal{B} , see[3].

Proposition (6):- If \mathcal{B} is a faithful F.G. multiplication R-module, $\aleph < \mathcal{B}$, then \aleph is semisecond iff $[\aleph : \mathcal{B}]$ is semisecond ideal of R.

Proof:- (\Rightarrow) If \aleph is a semisecond submodule, then for any $r \in \mathcal{R}$, $r \neq 0$, $r^2 \aleph = r \aleph$ or $r^2 \aleph = 0$. If $r^2 \aleph = r \aleph$, then $r^2 [\aleph : \mathcal{B}]$. $\mathcal{B} = r [\aleph : \mathcal{B}]$. \mathcal{B} because \mathcal{B} is a multiplication module. Since \mathcal{B} is a F.G. faithful multiplication \mathcal{R} -module, then by [1] $r^2 [\aleph : \mathcal{B}] = r [\aleph : \mathcal{B}]$. If $r^2 \aleph = 0$, then $r^2 [\aleph : \mathcal{B}]$. \mathcal{B} =0 and hence $r^2 [\aleph : \mathcal{B}] \subseteq a_R^{nn}$ $\mathcal{B} = 0$. Thus $r^2 [\aleph : \mathcal{B}] = 0$ and so $[\aleph : \mathcal{B}]$ is a semisecond ideal.

Now, to prove the opposite. Let $[\aleph_{\mathcal{R}}^{:} \mathcal{B}]$ be a semisecond ideal, that is $[\aleph_{\mathcal{R}}^{:} M]$ is a semisecond submodule of the \mathcal{R} -module \mathcal{R} . Then by proposition (2.2) \forall $r \in \mathbb{R}$, $r \neq 0$, $r^{2}[\aleph_{\mathcal{R}}^{:} \mathcal{B}] = r[\aleph_{:} \mathcal{B}]$ or $r^{2}[\aleph_{:} \mathcal{B}] = 0$, that is $r^{2}[\aleph_{\mathcal{R}}^{:} \mathcal{B}] = r[\aleph_{\mathcal{R}}^{:} \mathcal{B}]$. \mathcal{B} or $r^{2}[\aleph_{\mathcal{R}}^{:} \mathcal{B}] = 0$. Since \mathcal{B} is a multiplication module, we have $r^{2}\aleph = r\aleph$ or $r^{2}\aleph = 0$ for every $r \in \mathcal{R}$, $r \neq 0$. Therefore, \aleph is a semisecond submodule.

We notice that the provision M is faithful cannot be dropped from proposition (2.6) for instance: Consider the Z-module Z_6 , Z_6 is F.G. multiplication Z-module but not faithful. However, the submodule $\aleph = <\overline{3}>$ is a semisecond submodule since for any $r^2 \notin ann \ \aleph = 2Z$, $r^2 \aleph = r \aleph$. But $[\aleph : \mathscr{B}] = [(\overline{3}) : Z_6] = 3Z$ is not semisecond in Z, Since for every $r^2 \notin ann \ (3Z) = 0$ and for each $r \neq \mp 1$ we have $r^2 (3Z) \neq r(3Z)$.

Proposition (7):- N.Z. \aleph S.R.M. \mathscr{B} is a semisecond \mathscr{R} -submodule iff \aleph is a semisecond \mathscr{R} /I-submodule, where $I \subseteq \underset{\mathcal{D}}{ann} \aleph$.

<u>Proof</u>:- \Rightarrow Let $\bar{r} = r+1 \in \bar{\mathcal{R}} = \mathcal{R} / I$. $(\bar{r})^2 \aleph = (r+I)^2 \aleph = r \aleph$. But $r^2 \aleph = 0$ or $r^2 \aleph = r \aleph$, since \aleph is semisecond, therefore $(\bar{r})^2 \aleph = 0$ or $(\bar{r})^2 \aleph = \bar{r} \aleph$. Thus \aleph is a semisecond $\bar{\mathcal{R}}$ -submodule. Similarly, we can proof the opposite.

Hence, we have the following result.

Corollary (8):- If \aleph is a N.Z. S.R.M. \mathscr{B} is a semisecond submodule iff \aleph is a semisecond submodules $\mathscr{R}/ann \ \aleph$ – submodule.

Proposition (9):- Let \aleph be N.Z. proper submodule of \mathscr{B} s.t. $\underset{\mathcal{R}}{ann} \aleph$ is a maximal ideal, then \aleph is a semisecond submodule.

<u>Proof:-</u> since $ann \ \aleph$ is a maximal ideal, then $\mathcal{R}/ann \ \aleph$ is a field and by remark and example (2.3.(4)) \aleph is semisecond submodule $\mathcal{R}/ann \ \aleph$ -submodule. Thus by corollary (2.8), \aleph is a semisecond submodule \mathscr{R} -submodule.

Remark (10):- If $\aleph = \aleph_1 \oplus \aleph_2$ is semisecond submodule in $\mathcal{B} = \mathcal{B}_1 \oplus \mathcal{B}_2$, then N_1 and N_2 are semiseconds in \mathcal{B}_1 , \mathcal{B}_2 respectively.

Proof:- It follows directly by remark and example (2.3.(5)).

so $r^2\aleph_2=r\aleph_2$. It follows that $r^2(\aleph_1 \oplus \aleph_2) = r^2\aleph_1 \oplus r^2\aleph_2=r\aleph_1 \oplus r\aleph_2$.

Remark (11):- Let $\mathcal{B} = \mathcal{B}_1 \oplus \mathcal{B}_2$. If \aleph_1 and \aleph_2 are semisecond submodules in \mathcal{B}_1 and \mathcal{B}_2 respectively, then it is not necessarily that $\aleph_1 \oplus \aleph_2$ is semisecond submodule in M for example:-

Let $\mathscr{B} = \mathbb{Z}_6 \oplus \mathbb{Z}_{16}$, let $\aleph = \langle \overline{3} \rangle \oplus \langle \overline{2} \rangle$, $\langle \overline{3} \rangle$ is semisecond submodule in \mathbb{Z}_{6} , $\langle \overline{2} \rangle$ is semisecond submodule in \mathbb{Z}_{16} . However $2 \aleph = \langle \overline{0} \rangle + \langle \overline{4} \rangle$, $(2^2) \aleph = 4 \aleph = \langle \overline{0} \rangle \oplus \langle \overline{8} \rangle$, then $2^2 \aleph \neq 2 \aleph$ and $2^2 \aleph \neq \langle \overline{0} \rangle \oplus \langle \overline{0} \rangle$.

The following result shows the direct sum of two semisecond submodules under certain condition.

Proposition (12):- Let \aleph_1 and \aleph_2 be semisecond submodules in \mathcal{B}_1 and \mathcal{B}_2 respectively such that $\underset{\mathcal{R}}{ann} \aleph_1 = \underset{\mathcal{R}}{ann} \aleph_2$. Then $\aleph_1 \bigoplus \aleph_2$ is semisecond submodule in $\mathcal{B} = \mathcal{B}_1 \bigoplus \mathcal{B}_2$. Proof:- Let $r \in \mathcal{R}$, $r \neq 0$, then $(r^2 \aleph_1 = r \aleph_1 \text{ or } r^2 \aleph_1 = 0)$ and $(r^2 \aleph_2 = r \aleph_2 \text{ or } r^2 \aleph_2 = 0)$. Suppose $r^2 \aleph_1 = 0$, then $r^2 \aleph_2 = 0$ since $\underset{\mathcal{R}_1}{ann} \aleph_1 = \underset{\mathcal{R}_2}{ann} \aleph_2$ and so $r^2 (\aleph_1 \bigoplus \aleph_2) = 0$. If $r^2 \aleph_1 = r \aleph_1$ and $r^2 \aleph_1 \neq 0$, hence $r^2 \aleph_2 \neq 0$

Now, we survey the relationships between semisecond submodules and some kind of submodules.

A submodule \aleph of a module \mathscr{B} is rendering **semiprime** if $\aleph \neq \mathscr{B}$ and $r \in \mathscr{R}$, $m \in \mathscr{B}$, $k \in \mathbb{Z}^+$ with $r^K m \in \aleph$, then $r m \in \aleph$, see[4]. Equivalently \aleph is semiprime if whenever $r \in \mathscr{R}$, $m \in \mathscr{B}$, $r^2 m \in \aleph$, then $r m \in \aleph$, see[3,prop.(1.2)].

An R-module \mathcal{B} is rendering **semiprime** if (0) is a semiprime submodule of \mathcal{B} .

Proposition (13):- Let \mathcal{B} be a semiprime \mathcal{R} -module, \aleph submodule of \mathcal{B} if \aleph is semisecond, then \aleph is semiprime submodule of \mathcal{B} .

Proof:- Let $a^2x \in \aleph$, where $a \in \mathcal{R}$, $x \in \mathcal{B}$. to prove $ax \in \aleph$. Since \aleph is semisecond, then either $a^2\aleph = 0$ or $a^2\aleph = a\aleph$. Assume $a^2\aleph = (0)$. Put $a^2x = n$ for some $n \in \aleph$. Then $a^4x = a^2n \in a^2\aleph = 0$, hence $ax = 0 \in \aleph$ (since \mathcal{B} is semiprime). Assume $a^2\aleph = a\aleph$. Since $a^2x = n \in \aleph$, then $a^3x = an \in a\aleph = a^2\aleph$, so that $a^3x = a^2n_1$ for some $n_1 \in \aleph$. Hence $a^2(ax - n_1) = 0$. As \mathcal{B} is semiprime $a(ax_1 - n_1) = 0$ and so that $a^2x = an \in a\aleph = a^2\aleph$. Thus $a^2\aleph = a^2n_2$ for some $n_2 \in \aleph$. This implies $a^2(x - n_2) = 0$. But \mathcal{B} is semiprime, so that $a(x - n_2) = 0$. It follows that $ax = an_2 \in \aleph$. Therefore, \aleph is a semiprime submodule.

Note that the opposite of previous proposition is not hold in public for instance: - Take $\mathcal{B}=Z$ as Z-module. \mathcal{B} is prime so it is semiprime. Let $\aleph=<6>$ is semiprime, but N is not semisecond since for every $r\in Z$, $r\neq 0$, $r^2\aleph\neq (0)$ and $r^2\aleph\neq r\aleph$.

Reminiscence that a module \mathcal{B} is rendering **Coprime** if $\underset{\mathcal{R}}{ann} \mathcal{B} = \underset{\mathcal{R}}{ann} \frac{\mathcal{B}}{\aleph}$ for every proper submodule \aleph of \mathcal{B} , see [5]. Equivalently \mathcal{B} is coprime module if and only if \mathcal{B} is second module, see [6, th.(2.1.6)].

A submodule \aleph of an \mathscr{R} -module \mathscr{B} is rendering **irreducible** if \aleph cannot be expressed as a finite intersection of proper divisors of \aleph , See [4].

Proposition (14):- Let \mathcal{B} be a coprime module, let N be a submodule of \mathcal{B} such that \aleph is irreducible. If \aleph is semiprime, then \aleph is second and hence semisecond.

<u>Proof:-</u> Let \aleph be a semiprime \mathcal{R} -submodule, since \aleph is irreducible, then by [3,prop.(1-10)] \aleph is prime, but \mathcal{B} is coprime module, then by [6,prop(2.4.7)] \aleph is second, hence \aleph is semisecond.

Corollary (15):- Let \mathcal{B} be a prime module over regular ring \mathcal{R} (in sense of von Neuman), let \aleph be a submodule of \mathcal{B} such that \aleph is irreducible. Then N is semisecond if and only if \aleph is semiprime.

<u>Proof</u>:(\Rightarrow) Since \mathscr{B} is prime, so it is semiprime. Thus we have the result by proposition (2.13).

(\Leftarrow) Since \mathscr{B} is prime module over regular ring, then by [6, corollary (2.4.3)] \mathscr{B} is coprime, hence we have the result by proposition (2.14).

Reminiscence that a submodule \aleph of a module \mathscr{B} is rendering **secondary** (dual notion of primary module) if for each $r \in R$, the homothety r^* on \aleph is either surjective or nilpotent, where r^* is nilpotent if there exist $k \in \mathbb{Z}_+$, such that $(r^*)^k = 0$, see[7]. It is obvious that every second submodule is secondary, but the opposite is not whole in public. The next lemma explains that the opposite is whole under certain condition.

Lemma (16):- Let \aleph be an \mathscr{R} -submodule such that $\underset{\mathscr{R}}{ann} \aleph$ is semiprime ideal. If \aleph is secondary, then \aleph is second submodule and hence semisecond.

Proof:- Since \aleph is secondary, then for any $r \in \mathcal{R}$, $r \neq 0$, $r \aleph = \aleph$ or $r^n \aleph = 0$; $n \in \mathbb{Z}_+$. If $r \aleph = \aleph$, then there is nothing to prove. If $r^n \aleph = 0$, then $r^n \in ann \ \aleph$. But $ann \ \aleph$ is semiprime, so $r \in ann \ \aleph$. Thus $r \aleph = 0$

Corollary (17): - Let \aleph be a S.R.M. \mathscr{B} such that $\underset{\mathcal{R}}{ann} \aleph$ is semiprime, then \aleph is secondary if and only if \aleph is second.

The opposite of corollary (17) need not to be whole in public for example: -

In Z₈ as Z-module, $\langle \overline{2} \rangle$ is Semisecond and not secondary.

The opposite is whole under the class of torsion free module over regular ring.

Remark (18): - If \aleph is semisecond submodules of torsion free module \mathscr{B} over regular ring, then \aleph is secondary.

Proof:- The proof directly by proposition (4).

and hence \(\cdot \) is second.

Corollary (19):- Let \mathscr{B} be torsion free over regular ring, let \aleph be submodule of \mathscr{B} such that $\underset{\mathcal{R}}{ann} \aleph$ is semiprime, then \aleph is secondary if and only if \aleph is semisecond.

Now, we turn our attention to the localization of semisecond.

Proposition (20):- Let \aleph be a semisecond submodule of an \mathscr{R} -module \mathscr{B} , then \aleph_s is semisecond \mathscr{R}_s -submodule of \mathscr{B}_s , s.t. S is a multiplicatively closed subset of R.

<u>Proof:-</u> Let $\bar{r} \in \mathcal{R}s$, $\bar{r} = \frac{r}{s}$, where $r \in \mathcal{R}$, $s \in S$. Assume that $(\bar{r})^2 \notin \underset{R_S}{ann} \aleph_s$. To prove $(\bar{r})^2 \aleph_s = \bar{r} \aleph_s$.

Since $(\bar{r})^2 \notin \underset{R_s}{ann} \aleph_s$, then $(\frac{r}{s})^2 \cdot (\frac{n}{a}) \neq \frac{0}{1}$ for some $n \in \aleph$, $a \in S$. $(\frac{r^2n}{sa}) \neq \frac{0}{1}$, that is for any $t \in s$, $r^2 t \neq 0$. Thus

 $r^2t\notin ann \aleph$ which implies that $r^2\notin ann \aleph$, so $r^2\aleph \neq 0$. But \aleph is semisecond, hence $r^2\aleph = r\aleph$. Therefore $(r^2\aleph)_s = (r\aleph)_s$. Thus $(r^2)_s \aleph_s = (r)_s \aleph_s$ and so $(\bar{r})^2\aleph_s = \bar{r}\aleph_s$.

Corollary (21):- Let \aleph be a semisecond submodule of an R-module \mathscr{B} , then \aleph_p is semisecond \mathscr{B}_p -submodule of \mathscr{B}_p for any prome ideal P of \mathscr{R} .

3. Semisecond Modules

Yass in [1] introduced the notion of **second module** (where \mathcal{B} is second if for every $r \in \mathcal{R}$, $r \neq 0$, $r \mathcal{B} = 0$ or $r \mathcal{B} = \mathcal{B}$). Equivalently \mathcal{B} is second module if \mathcal{B} is second submodule of \mathcal{B} . In this section we introduce the notion of semisecond module as a generalization of second module. We give some properties of semisecond module.

Definition (22):- Let \mathscr{B} be an R-module, \mathscr{B} is rendering semisecond if \mathscr{B} is semisecond submodule, that is for any $r \in \mathscr{R}$, $r \neq 0$, $r^2 \mathscr{B} = r \mathscr{B}$ or $r^2 M = 0$.

Remarks and Examples (23)

- (1) It is obvious that every second module is semisecond, by remark and example (2.3.(1)). The opposite is not whole in public for instance: Z_4 as Z-module is not second since $2Z_4 \neq Z_4$ and $2Z_4 \neq (0)$ but Z_4 is semisecond module.
- (2) Z as Z-module is not semisecond, since for any $r \in \mathcal{R}$, $r \neq 0$, $r^2 Z \neq (0)$ and $r^2 Z \neq r Z$.
- (3) Consider the Z-module $Z_{p\infty}$, $\underset{Z}{ann}Z_{p\infty}=0$, that is for all $r\in Z$, $r\neq 0$, $r^2Z_{p\infty}\neq(\overline{0})$. But $Z_{p\infty}$ is divisible Z-module, so $r^2Z_{p\infty}=rZ_{p\infty}$; for all $r\in Z$, $r\neq 0$, then $Z_{p\infty}$ is semisecond.
- (4) Q as Z-module is semisecond module.
- (5) If n is a prime number, then Z_n is semisecond Z-module, but the opposite is not whole in public for example Z_6 is semisecond but 6 is not prime.
- (6) A module \mathcal{B} is semisecond \mathcal{R} -module iff \mathcal{B} is semisecond \mathcal{R} /I-module, where $I \subseteq_{\mathcal{R}}^{ann} \mathcal{B}$. **Proof**:- It follows by proposition (7).
- (7) A module $\mathcal B$ is semisecond $\mathcal R$ -module iff $\mathcal B$ is semisecond $\mathcal R/ann$ $\mathcal B$ -module.

Proof: It follows by corollary (8).

- (8)Let $f: \mathcal{B} \to \mathcal{B}'$ be an R-homomorphism, if \mathcal{B} is semisecond module, then $f(\mathcal{B})$ is semisecond \mathcal{B}' -module.
- (9) Let \mathscr{B} be a semisecond \mathscr{R} -module, then \mathscr{B}_s is semisecond \mathscr{R}_s -module, s.t. S is a multiplicatively closed subset of \mathscr{R} .

Proof: It holds by proposition (20).

(10) Let \mathcal{B} be a semisecond \mathcal{R} -module, then \mathcal{B}_p is a semisecond \mathcal{R}_p -module for any prime ideal P of \mathcal{R} .

Proof:- It follows by corollary (21).

References

- 1. Yassemi, S. The Dual Notion of Prime Submodules. *Arch. Math. (Born).* **2001**, *73*, 273-278.
- 2. Abdul-Baste, Z.; Smith, P.F. Multiplication Modules. *Comm. In Algebra.* **1988**, *16*, 755-779.
- 3. Athab, I.A. Prime Submodules and Semiprime Submodules. M.Sc. Thesis, University of Baghdad. **1996.**
- 4. Dauns, J. Prime Modules and One Sided Ideals in Ring Theory and Algebra III. *Proceedings of the third oklahomo conference.* **1980**, 301-344.
- 5. Annin, S. Associated and Attached Primes over Non Commutative Rings. Ph. D Thesis, University of Berkeley. **2002**.
- 6. Rasha, I.k. Dual Notions of Prime Submodules and Prime Modules. M.Sc. Thesis. University of Baghdad. **2009**.
- 7. MacDonald, L.G. Secondary Representation of Modules over Commutattive Ring. Sympos. *Math. XI*, **1973**, 33-43.