

On θ-Totally Disconnected and θ-Light Mappings

Haider Jebur Ali Huda Fadel Abass

Dept of Mathematics / College of Science / Al-Mustansiriyah University, haiderali89@yahoo.com huda.fadel91@gmail.com

Received in:24/January/2018, Accepted:27/March/2018

Abstract

In our research, we introduced new concepts, namely θ , θ^* and θ^{**} -light mappings, after we knew θ , θ^* and θ^{**} -totally disconnected mappings through the use of θ -open sets.

Many examples, facts, relationships and results have been given to support our work.

Keywords: θ -open set, light mapping, θ -homeomorphism function, θ -totally disconnected set, θ -light mapping.

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Introduction

Many researchers studied the light mappings such as the world's J.J.Charatonic and K.Omiljanowski[2]. In this paper, we provide other types of light mappings namely θ -light open mapping. Other scientists who studied the light mappings are the word M. Wldyslaw [5], M. K. Fort [3] and G. Sh. mohammed [1] and others.

In our work, we needed some basic definitions. Let (X, T) be topological space and A be a subset of X, a point $x \in A$ is said to be θ -interior point to A if $x \in \overline{U} \subseteq A$ for some $U \in \tau$ containing x. The set of all θ -interior points are called θ -interior set and we denoted by $\theta - int(A)$, a subset U of topological pace X is θ -open if and only if every point in U is a interior point [7]. Every θ -open set is an open set but the converse may not be true in general. A space X is said to be θ -Hausdorff if for every distinct point x, $y \in X$ there exist θ -open sets U_x , V_y containing x and y respectively such that $U_x \cap V_y = \emptyset[4]$. A mapping $f: X \to Y$ is said to be θ -open(θ^* -open and θ^** -open) if f(V) is θ -open(open and θ -open) in Y, whenever V is open (θ -open) in X [6]. Let X and Y be spaces and let f be a mapping from X into Y then f is said to be θ -homeomorphism if f is bijective, continuous and θ -closed (θ -open) [6]. A space X is said to be totally disconnected space if for every pair of distinct points, a, b $\in X$ has a disconnection $A \cup B$ to X such that $a \in A$ and $b \in B$ [8]. A surjective mapping $f: X \to Y$ is said to be totally disconnected mapping if and only if for every totally disconnected set U in X, f(U) is totally disconnected set in Y [1].

Definition(1): Let X be topological space, and let A and B are nonempty θ -open sets in X, then AUB is said to be θ -disconnection in X if and only if AUB=X and A\triangle B=\emptyseta.

Definition(2): Let X be topology space, $G \subseteq X$, let A, B are nonempty θ -open sets in X, then $A \cup B$ is said to be θ -disconnection in G if and only if satisfy the following:

- 1- G∩A≠ Ø.
- 2- G∩B≠ Ø.
- $3-(G\cap A)\cap(G\cap B)=\emptyset$.
- $4-(G\cap A)\cup(G\cap B)=G.$

Example (3): Let $X = \{a, b, c\}$ and let T_D is discrete topology define to X. Then $\{a\}$, $\{b, c\}$ are θ -disconnection to X and $\{a\}$, $\{b, c\}$ are θ -disconnection to subset $\{a, b\}$ to X.

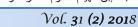
*Its known that every θ —open set s is open but the converse may be not true.

Example (4):

 (R, T_{cof}) the open subsets of R is open set but not θ -open.

Definition(5): A topology space X is said to be θ -totally disconnected if for every two distinct point p & q there exist θ -disconnection GUH to X such that P \in G & q \in H.

Ibn Al-Haitham Jour. for Pure & Appl. Sci.



Example (6): The rational numbers with relative usual topology is a θ -totally disconnected. Since if we take $q_1 \& q_2 \in Q$ where $q_1 < q_2$ there exist $r \in Q^c$ such that $q_1 < r < q_2$

$$G=\{x \in Q: x < r\}$$
 and $H=\{x \in Q: x > r\}$

Then GUH is θ -disconnection to Q such that $q_1 \in G \& q_2 \in H$

$$\overline{G}_{inG}=G \& \overline{H}_{inH}=H$$

So Q is a θ -totally disconnected.

Proposition (7): Every θ -totally disconnected set is totally disconnected.

Proof:

Let X be θ -totally disconnected space to prove X is totally disconnected space.

Let $x,y \in X$ with $x \neq y$. So there exist a θ -totally disconnection to X (I mean there exist G and G which are G-open sets and G, G and $G \cap G$ with $G \cap G$ w

But every θ -open set is open set soX is totally disconnected space.

Remark (8):

The converse of above proposition is not true in general but in discrete space it is availed.

Definition (9): A surjective mapping $f: X \rightarrow Y$ is said to be θ -light mapping if for every $y \in Y$, $f^1(y)$ is θ -totally disconnected set.

Example(10): Let(Q, T_D) to topological space such that T_D is the discrete topology define to the rational number Q and let (Q, T_{ind}) is the indiscrete topology such that $k \in R$.Let $f:(Q, T_D) \rightarrow (Q, T_{ind})$ is a mapping define the following: f(x)=0.5 for each $x \in Q$ note that $f^{-1}(x)=Q$ if x=0.5 and $f^{-1}(x)=\emptyset$ when $x\neq 0.5$ where \emptyset and Q are θ -totally disconnected. Then f is θ -light mapping.

Remark (11): Every θ -totally disconnected is θ -hausdorff but the converse may be not true in general for example:

Example (12): (R, T_u) is θ -hausdorff but not θ -totally disconnected, where R is the set of real number .To show that (R, T_u) is not θ -totally disconnected.

Let x &y $\in Q \subseteq R$ such that $x \neq y$, x < y.

Then $\exists p \in Q^c$ such that $x , <math>(p, \infty) \& (-\infty, p)$ are θ -open sets in R since $P-1 \in (-\infty, p)$ there exist $(-\infty, p-1]$, $p-1 \in (-\infty, p-1] \subseteq (-\infty, p)$ where $\overline{(-\infty, p]} = (-\infty, p]$ the set (p, ∞) is similar.

 $(p, \infty) \cap (-\infty, p) = \emptyset$, but $(p, \infty) \cup (-\infty, p) \neq R$ (R has no θ -disconnection)

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

So (R, T_U) is not θ -totally disconnected.

Definition (13): A surjective mapping $f:X \to Y$ is said to be θ -totally disconnected if and only if for every totally disconnected set $U \subseteq X$ then f(U) is θ -totally disconnected in Y.

Definition (14): A surjective mapping $f:X \to Y$ is said to be θ^* -totally disconnected mapping if and only if for every θ - totally disconnected set $U \subseteq X$ then f(U) is totally disconnected

Examples (15): 1-Let $f: (R, T_u) \rightarrow (R, T_D)$ such that f(x)=x for each $x \in R$.

Since (Q, T_u) is totally disconnected set in (R, T_u) and $f(Q)=Q\subseteq (R, T_D)$

For each x, y \in Q there exist p \in Q^c such that x < p < y

 $G=\{x \in Q: x \leq p\}$ and $H=\{x \in Q: x \geq p\}$ are two open sets in (Q, T_u) such that $G \cup H=Q$, $G \cap H=\emptyset$

Now to prove (Q, T_D) is θ -totally disconnected in (R, T_D) where f(Q)=Q.

G={ $x \in Q: x \le 0$ } is θ -open set in (Q, T_D)

 $H=\{x\in Q:x>0\}$ is θ -open set in (Q, T_D)

 $H \cup G = Q, H \cap G = \emptyset$

So (Q, T_D) is θ -totally disconnected in (R, T_D) .

2- If we replace Q by (a, b] then the sets $G=\{x \in (a, b]: x < p\}$ and $H=\{x \in (a, b]: x > p\}$ where $p \in Q^c$ such that $a then ((a, b], <math>T_u$) is totally disconnected set in (R, T_u)

Definition (16): A surjective mapping $f:X \to Y$ is said to be θ^{**} -totally disconnected mapping if and only if for every θ - totally disconnected set $U \subseteq X$ then f(U) is θ -totally disconnected

Proposition (17): 1-Every θ -totally disconnected mapping is totally disconnected mapping.

2-Every θ -totally disconnected mapping is θ^{**} -totally disconnected mapping.

3-Every θ^{**} -totally disconnected mapping is θ^{*} -totally disconnected mapping.

Proof:

1-Let U be totally disconnected set in X, but f is θ -totally disconnected mapping then f(U) is θ -totally disconnected set in Y, but every θ -totally disconnected set is totally disconnected so f(U) is totally disconnected in Y, then f is totally disconnected mapping. The proof of 2 and 3 are similar.

Proposition (18): Let $f: X \rightarrow Y$ be bijective θ -open mapping. Then Y is θ -totally disconnected set whenever X is totally disconnected

Proof:

Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$ since f is bijective, then there exist two distinct points $x_1, x_2 \in Y$ X such that $f(x_1)=y_1$, $f(x_2)=y_2$. But X is totally disconnected space, then there exist disconnection GUH to X such that $x_1 \in G$ & $x_2 \in H$. also f is θ - open mapping and G, H are open sets in X. So f(G) and f(H) are θ - open sets in Y. $f(G) \cup f(H) = f(G \cup H) = f(X) = Y$ f is and one So to one mapping. $f(G) \cap f(H) = f(G \cap H) = f(\emptyset) = \emptyset$ Such that $y_1 \in f(G)$, $y_2 \in f(H)$ So $f(G) \cup f(H)$ is θ disconnection to Y. therefor Y is θ -totally disconnected set.

Corollary (19): A property of space being θ -totally disconnected a topological property.

Proposition (20): Let X and Y be topological space, let $f:X \to Y$ be homeomorphism. So if X is θ - totally disconnected then Y is totally disconnected set.

Proof:

Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$.since f is bijective, then there exist two distinct points $x_1, x_2 \in X$ such that $f(x_1)=y_1$, $f(x_2)=y_2$. But X is θ -totally disconnected set, then there exist θ -disconnection GUH to X such that $x_1 \in G$ & $x_2 \in H$. also f is homeomorphism, so f is open mapping. Since G and H are θ -open sets in X. So f(G) and f(H) are open sets in Y. But $f(G) \cup f(H) = f(G \cup H) = f(X) = Y$. Since f is bijective mapping.

So $f(G) \cap f(H) = f(G \cap H) = \emptyset$ Such that $y_1 \in f(G)$, $y_2 \in f(H)$ which implies $f(G) \cup f(H)$ is disconnection to Y. Therefor Y is totally disconnected set.

Proposition (21): Let $f:X \to Y$ be bijective θ^{**} -open mapping. Then Y is θ -totally disconnected set whenever X is θ -totally disconnected

Proof:

Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$.since f is bijective, then there exist two distinct points $x_1, x_2 \in X$ such that $f(x_1)=y_1$, $f(x_2)=y_2$. But X is θ -totally disconnected set, then there exist θ -disconnection GUH to X such that $x_1 \in G$ & $x_2 \in H$. also f is θ -homeomorphism, so f is θ -open mapping. Since G and H are θ - open sets in X. So f(G) and f(H) are θ - open sets in Y. But $f(G) \cup f(H)=f(G \cup H)=f(X)=Y$. Since f is bijective mapping.

So $f(G) \cap f(H) = f(G \cap H) = \emptyset$ such that $f(G) \cup f(H)$ is θ -disconnection to Y. therefore Y is also θ -totally disconnected.

Corollary (22): Let X and Y be topological space, let $f: X \to Y$ be θ -homeomorphism. So if X is θ - totally disconnected then Y is θ -totally disconnected set again.

Definition (23): A surjective mapping $f: X \rightarrow Y$ is $\theta(\theta *, \theta **)$ -Inversely totally disconnected, if $f^{-1}(U)$ is θ -totally disconnected (totally disconnected, θ -totally disconnected)set for every totally disconnected (θ -totally disconnected) set U in Y.

Proposition (24): 1-Every θ^{**} -Inversely totally disconnected mapping is θ^{*} -Inversely totally disconnected mapping.

- 2-Every θ -Inversely totally disconnected mapping is θ^{**} -Inversely totally disconnected mapping.
- 3-Every θ -Inversely totally disconnected mapping is θ^* -Inversely totally disconnected mapping.

Proof:

1-Let U is θ -totally disconnected set in Y. Since f is θ^{**} -Inversely totally disconnected mapping. $f^1(U)$ is θ -totally disconnected in X (proposition 7) so $f^1(U)$ is totally disconnected in X, then f is θ^{**} -Inversely totally disconnected mapping.

2-Let U is θ -totally disconnected set in Y. Then U is totally disconnected set in Y. To prove $f^1(U)$ is θ -totally disconnected set in Y. Since f is θ -Inversely totally disconnected mapping, $f^1(U)$ is θ -totally disconnected in X (proposition 7). Then f is θ^{**} -Inversely totally disconnected mapping

3-Let U is θ -totally disconnected set in Y. Then U is totally disconnected set in Y(proposition 7). Since f is θ^* -Inversely totally disconnected mapping. But $f^1(U)$ is θ -totally disconnected in X so $f^1(U)$ is totally disconnected in X. Then f is θ^* -Inversely totally disconnected mapping

<u>Theorem (25):</u> If $f:X \rightarrow Y$ is θ -Inversely totally disconnected mapping then f is θ -light mapping.

Proof:

Since f is θ -Inversely totally disconnected mapping to prove f is θ -light mapping. Let $y \in Y$ to prove $f^1(y)$ is θ -totally disconnected set. Since f is θ -Inversely totally disconnected mapping, and $\{y\}$ is totally disconnected in Y, then $f^1(\{y\})$ is θ -totally disconnected set in X so f is θ -light mapping.

Proposition (26): let $f: X \rightarrow Z$ and $g: Z \rightarrow Y$ be surjective mapping if f is θ^{**} -inversely totally disconnected and g is θ -light mappings, then $h: X \rightarrow Y$ is θ -light mapping

Proof:

Let $c \in Y$ so $h^{-1}(c) = (g \circ f)^{-1}(c) = (f^{-1} \circ g^{-1})(c) = f^{-1}(g^{-1}(c))$. As g is θ -light mapping so $g^{-1}(c)$ is θ -totally disconnected. Also As f is θ^{**} -Inversely totally disconnected mapping so $f^{-1}(g^{-1}(c))$ is θ -totally disconnected. $h^{-1}(c)$ is θ -totally disconnected then h is θ -light mapping.

Theorem (27): Let h:X \rightarrow Y be a surjective mapping and h=gof such that for every f:X \rightarrow Z, g:Z \rightarrow Y be a surjective mappings then:

- 1-If h is θ -light mapping and f is θ^{**} -totally disconnected mapping then g is θ -light mapping.
- 2-If g is injective mapping and h is θ -light mapping then f is θ -light mapping.
- 3-If g be a surjective mapping and f is θ -light mapping then h is also θ -light mapping.

Proof:

1-Let $y \in Y$, so $h^{-1}(y)$ is θ -totally disconnected set in X as f is θ^{**} -totally disconnected mapping then $f(h^{-1}(y))$ is θ -totally disconnected set to Z, Let $f(h^{-1}(y)) = f((g \circ f)^{-1}(y)) = f((f^{-1} \circ g^{-1})(y)) = f((f^{-1}(g^{-1}(y))) = g^{-1}(y)$. So $g^{-1}(y)$ is θ -totally disconnected set to Z. In other words g is θ -light mapping.

2-Let $z\in Z$ so $g(z)\in Y$ since h is θ -light mapping, $h^{-1}(g(z))$ is θ -totally disconnected set to X. But $h^{-1}(g(z))=(g\circ f)^{-1}(g(z))=(f^1\circ g^{-1})(g(z))=f^1(z)$, So $f^1(z)$ is θ -totally disconnected set in X. In other words f is θ -light mapping.

3-Let $y \in Y$ as g is bijective mapping, then there exist only one point $z \in Z$ such that g(z)=y. As f is θ -light mapping, then $f^{-1}(z)$ is θ -totally disconnected set to X. As $f^{-1}(z)=h^{-1}(y)$, then $h^{-1}(y)$ is also θ -totally disconnected set to X. So h is θ -light mapping.

References

- 1. Mohammed, G. Sh., (2001). "Open Light Mappings" M.Sc. thesis, college of Education, The University of Al- Mustansiriyah
- 2. Charatonic, J.J and omiljanowski ,K. (1989)., "On Light Open Mappings", Baku international Topology conference proceed, ELM, Baku
- 3. Fort ,M. K. (1951). "A characterization of plane light open Mappings, Amer. Math. SOC. 3
- 4 Saleh, M. (2004), "On θ -closed sets and some forms of continuity", Archivum Mathematicum (Brno), 40, 383-393.
- 5. Wladyslaw, M. (1994). "On Open Light Mappings", comment. M ath., university Carulinae.35
- 6. Mohammed, N. S. (2015). "Certain Types of Perfect Mappings", M.SC. thesis, college of Since, Al-mustansiriyah University.
- 7. Veliko, N. V. (1968), "H-closed topological spaces, Amer. Math. Soc. Transl. AMS.78103-118.
- 8. Lipschutz, S. (1965). "General Topology", Professor of Mathematics Temple University