Q uasi-inner product spaces of quasi-Sobolev spaces and their completeness

Jawad Kadhim Khalaf Al-Delfi jawadaldelfi@uomustansiriyah.edu.iq Dept. of Mathematics / College of Science / Al-Mustansiriyah University

Abstract

Sequences spaces ℓ_p^m , $m \in \mathbb{R}$, $p \in \mathbb{R}$ that have called quasi-Sobolev spaces were introduced by Jawad . K. Al-Delfi in 2013 $[[1. In this paper, we deal with notion of quasi$ inner product space by using concept of quasi-normed space which is generalized to normed space and given a relationship between pre-Hilbert space and a quasi-inner product space with important results and examples. Completeness properties in quasi-inner product space gives us concept of quasi-Hilbert space. We show that , not all quasi-Sobolev spaces ℓ_p^m , are quasi-Hilbert spaces. The best examples which are quasi-Hilbert spaces and Hilbert spaces are ℓ_2^m , where $m \in \mathbb{R}$. Finally, propositions, theorems an examples are our own unless otherwise referred.

Keywords: quasi-Sobolev space, quasi-Banach space, Gâteaux derivative, quasi-inner product space, quasi-Hilbert space. smooth quasi-Hilbert space.

Mathematics |337

1. Introduction

The family of sequence spaces ℓ_p , $1 \le p \le \infty$ are normed space where, ℓ_2 is the only inner product space in this family. Completeness of these spaces can be proved with respect to appropriate norms [2, 3]. Since the triangle inequality fails in the family of sequence spaces ℓ_p , $0 \le p \le 1$ where, there is no norm for this range, then imply that it is not Banach space. For a sequence space ℓ_p , where $0 \le p \le 1$ and others, many concepts were introduced . One of these concepts is a quasi- Banach space which is based on the definition of a quasi- norm [4]. A quasi- Banach space is a topological linear space [5].

In $[1]$, we were constructed a set of all sequence spaces of power real number m, m $\in \mathbb{R}$. The new spaces have called quasi-Sobolev spaces and have denoted by ℓ_p^m . We were proved that these spaces are quasi-Banach spaces in case $0 \le p \le \infty$ and they are Banach spaces for $1 < p < \infty$. In our work, we need study these spaces with other concepts such as a pre-Hilbert space and a quasi- inner product space (q. i .p) and their completeness.

In normed spaces, mathematicians have used $G\hat{a}$ teaux derivatives to introduce notion of quasi- inner product space and have investigated properties of this concept such as completeness, smoothness and others [6,7, 8] . This paper is devoted transference above ideology on quasi-normed space to given (q, i, p) and is studied the relationship between this notion and others, in order to study quasi-inner product spaces for ℓ_p^m and their completeness.

 The paper consists of two sections. Section one includes definitions of quasi- normed space and quasi-Banach space with some useful results which are needed in the section two. One of important theorems which is presented in this section is Jordan-van Neumann theorem. This theorem gives necessary and sufficient conditions to be generated by an inner product space. The second two presents a $G\hat{a}$ teaux derivative that has big role to define many concepts, such as quasi- inner product space with completeness property of it. Also, this section shows that this functional is an inner product function in pre-Hilbert spaces. A space ℓ_p^m , for every $m \in \mathbb{R}$ and $p \in \mathbb{R}_+$ is a quasi-Hilbert space if it is a quasi-inner product space. Hence,

with ℓ_p^m , we find spaces which are quasi-Hilbert spaces and are not Hilbert spaces, spaces neither quasi-Hilbert spaces nor Hilbert spaces and spaces are quasi-Hilbert spaces and Hilbert space.

2. Quasi-normed spaces of sequence spaces.

 This section contains notions such as quasi-normed space, a pre-Hilbert space and others with the relationship between them. Also, theorems and equations which are useful in section two are introduced.

Definition 1.1. [4]:

A quasi-norm _a|| || on vector space *V* over the field of real numbers ℝ is a function $|| \cdot ||: V \longrightarrow [0, +\infty)$ with the properties:

(1) $_{a} ||v|| \ge 0$, $\forall v \in V$, $_{a} ||v|| = 0 \leftrightarrow v = 0$.

 (2) $_{a}$ \parallel αv \parallel = α $_{a}$ \parallel v \parallel , $\forall v \in V$, $\forall \alpha \in \mathbb{R}$.

 (3) $_{a}$ $\|v+w\| \le C \left(\frac{1}{a} \|v\| + \frac{1}{a} \|w\| \right) \quad \forall v, w, \in V$, where $C \ge 1$ is a constant independent of *v* , *w*.

A quasi-normed space is denoted by $(V, |||,||)$ or simply *V*.

A function $|| \cdot ||$ be a norm if $C = 1$, thus it is generalization of norm. Every norm function is quasi-norm. The converse does not hold, in general.

Since every quasi-normed space *V* is a metric space by $d(v, w) = |v - w||$, then it is atopological linear space and the concepts of fundamental sequences and completeness in quasi-normed spaces are given [5]. A quasi- Banach space is a complete quasi-normed space.

Definition 1.2.

A symmetric linear functional on V^2 is a functional L such that:

- (1) $L(\beta v + \mu w, u) = \beta L(v, u) + \mu L(w, u)$;
- (2) $L(v, w) = L(w, v), \forall \beta, \mu \in \mathbb{R}, \forall v, w, u \in V.$

Remark 1.3.

 It is obvious, any inner product function satisfies definition 1.2 and generates a quasi norm which is $||v|| = (\langle v, v \rangle)^{1/2}, \forall v \in V$

Lemma 1.4.

In a pre-Hilbert space *V* , one has the equality:

$$
{q} \|\nu + w\|^{4} - |{q} \|\nu - w\|^{4} = 8(\mathbf{q} \|\nu\|^{2} + |\mathbf{q}|w\|^{2}) \square \square \nu, w \square \square \square \forall \nu, w, \in V
$$
 (1)

Proof:

Using remark 1.3, we get $\int_{q} ||v+w||^{2} = \langle v+w, v+w \rangle = \int_{q} ||v||^{2} + 2 \langle v, w \rangle +$ $\int_{a}^{a} ||w||^{2} \Rightarrow \qquad \int_{a}^{a} ||v+w||^{2} \bigg|^{2} = \int_{a}^{a} ||v||^{2} + \frac{a}{a} ||w||^{2} \bigg|^{2} + \qquad 4 \qquad \Box \Box v, \qquad w \qquad \Box$ $\left(\int_{a}^{a} ||v||^{2} + \int_{a}^{a} ||w||^{2} \right) + 4(*v*, w >)^{2}.$ Also, $\int_{q} ||v - w||^{2} = \int_{q} ||v||^{2} - 2 < v$, $w > + \int_{q} ||w||^{2} \Rightarrow$ $|q||v-w||^4 = \left(\frac{1}{|q||v||^2 + |q||w||^2}\right)^2 - 4 \square v, w \square \left(\frac{1}{|q||v||^2 + |q||w||^2}\right) + 4(2^2.$

Thus, $_q ||v+w||^4 - q ||v-w||^4 = 8(q||v||^2 + q||w||^2) \square v$, w $\square \square$ and this is the desired result.

Definition 1.5. [1]:

Let $\{\lambda_k\} \subset \mathbb{R}_+$ is monotonically increasing sequence such that $\lim_{K \to \infty} \lambda_k = +\infty$, quasi-Sobolev spaces are sequence spaces ℓ_p^m , where $0 \le p \le \infty$ and $m \in \mathbb{R}$ which are defined $\frac{1}{2}$ as $\frac{1}{2}$.

$$
\ell_p^m = \left\{ v = \{v_k\} : \sum_{k=1}^{\infty} \lambda_k^{\frac{mp}{2}} |v_k|^p < +\infty \right\}.
$$

IHSCICONF 2017 Special Issue

Ibn Al-Haitham Journal for Pure and Applied science https://doi.org/ 10.30526/2017.IHSCICONF.1806 Ibn Al-Haitham Journal for Pure and Applied science

When $m = 0$ then $\ell_p^0 = \ell_p$, $0 \le p \le \infty$. **Theorem 1.6. [1]:**

For every $m \in \mathbb{R}$ and $p \in \mathbb{R}_+$ a space ℓ_p^m , is a quasi-Banach space with the function :

$$
{q}||v|| = \left(\sum{k=1}^{\infty} \lambda_{k} \frac{mp}{2} |v_{k}|^{p}\right)^{1/p}.
$$

We note that the constant $C = 2^{1/p}$ for $p \in (0, 1)$, and $C = 1$ for $p \in [1, +\infty)$. **Theorem 1.7. (**parallelogram equality)

Let *V* be a pre-Hilbert space. Then $\forall v, w \in V$,

$$
{q} \|\nu + w\|^{2} + |{q} \|\nu - w\|^{2} = 2 \frac{1}{q} \|\nu\|^{2} + 2 \frac{1}{q} \|w\|^{2}
$$
 (2)

Proof:

Since *V* be a pre-Hilbert space and $\langle v, w \rangle = \left(\frac{1}{4}\right)$ $\frac{1}{4}$ all $v + w \parallel^2$ $-\frac{1}{4}$ all $v - w \parallel^2$ $\Big)$ from remark 1.3 and proof of lemma 1.4 , then putting this function in equation (1) we obtain the desired result.

Now , we introduce Jordan-van Neumann theorem in quasi- normed spaces.

Theorem 1.8. (Jordan – van Neumann **)**

 A quasi-normed space *V* is a pre-Hilbert space iff equality (2) is satisfied by the quasinorm of *V*.

Proof:

The proof of this theorem is very technical and proceeds in a way similar to its version in normed space (see [3]).

 The next example shows the importance of the parallelogram equality mentioned in the previous theorem.

Example 1.9:

Let *v* and *w* belong to the quasi-normed space $\ell_{1/2}^{-1}$, where $v = \{v_k\} = \{0.1, 0, 0, 0, ...\}$, *w* $= \{w_k\} = \{0, 0.2, 0, 0, ...\}$ and take $\{\lambda_k\} = \{k\}, k \in \mathbb{N}$. Then we have:

$$
\|y_2\| v + w \|^2 = \left(\sum_{k=1}^{\infty} \lambda_k^{\frac{-1}{4}} |x_k + y_k|^{1/2}\right) = 0.4792627792275938 = \sup_{1/2} \|v - w\|^2, \text{ so}
$$

 $\|u_2\| v + w \|^{2} + \frac{1}{2} \|v - w \|^{2} = 0.9585255584551875$, and, $2 \frac{1}{2} \|v\|^{2} + 2 \frac{1}{2} \|w\|^{2} = 0.9585255584551875$ 0.482842712474619. It is clear that two sides of the equation (2) do not hold. Thus , $\ell_{1/2}^{-1}$ is not pre-Hilbert space.

3.Quasi-inner product spaces of sequence spaces

A Gâteaux derivative is used to define many concepts, such as quasi- inner product function, and smooth quasi-Hilbert space with some important results and examples. **Definition 2.1.**

Ibn Al-Haitham Journal for Pure and Applied science https://doi.org/ 10.30526/2017.IHSCICONF.1806

Let *V* be a vector space over the field ℝ equipped with $\| \cdot \|$. A Gâteaux derivative of $||v||$ is a functional $\delta(v, w)$ at $v \in V$ in the direction $w \in V$ which is defined as:

 $\delta(v, w) = (\delta_1(v, w) + \delta_2(v, w))$ such that:

$$
\delta_1(v, w) = \lim_{h \to +0} h^{-1} \left(\int_{q} \lVert v + hw \rVert - \int_{q} \lVert v \rVert \right), \text{ and } \delta_2(x, y) = \lim_{h \to -0} h^{-1} \left(\int_{q} \lVert v + hw \rVert - \int_{q} \lVert v \rVert \right), \text{ where } h \in \mathbb{R} \setminus \{0\}.
$$
 In similar way, we define $\delta(w, v)$.

Gâteaux derivatives $\delta(v,w)$ and $\delta(w,v)$ inspires the functionals $\tau(v,w)$ = $|y|$ $|y|$ $\frac{1}{2}$ $\delta(v, w)$

and $\tau(w, v)$ = || *w* || *^q* $\frac{1}{2}$ $\delta(w, v)$ sequentially.

Definition 2.2

A Gâteaux derivative $\tau(v, w)$ is said to be quasi-inner product function if $\tau(w, v)$ exists and the next equality is satisfied:

 $|q||v+w||^4 - |q||v-w||^4 = 8(|q||v||^2 \tau (v,w) + |q||w||^2 \tau (w,v)$, $\forall v, w \in V$ (3)

Similarly, $\tau(w, v)$. A space *V* is said to be a quasi-inner product if both $\tau(v, w)$ and $\tau(w, v)$ are quasi-inner product functions.

Lemma 2.3

For every positive integer $p \ge 1$ and $m \in \mathbb{R}$, the functional $\tau(v, w)$ in quasi-Sobolev spaces ℓ_p^m exists and is defined as :

$$
\tau(v, w) = \sqrt{||v||^{2-p} \sum_{k} \lambda_{k}^{\frac{mp}{2}}|v_{k}|^{p-1}(\text{sng } v_{k})w_{k}}, \forall v \in \ell_{p}^{m} \text{ s.t. } \sqrt{||v|| \in E},
$$

where, $E = \begin{cases} \sqrt{||v|| \ge 0}, & P = 1 \\ \sqrt{||v|| \ge 0}, & P \ge 2 \end{cases}$ and
 $\text{sng } v_{k} = \begin{cases} 1, & v_{k} > 0 \\ 0, & v_{k} = 0 \\ -1, & v_{k} < 0 \end{cases}$. (4)

Similarly, we define $\tau(w, v)$.

Proof:

 In definition 2.1, we use properties of limits of functions and applying definition of a quasi-norm function of ℓ_p^m which is in theorem 1.6 with help of the binomial theorem, which is for every positive integer p, $(v + w)^p = \sum_{k=0}^{p} {p \choose k} v^k w^{p-k}$ $k=0$, we get Eq. (4). **Proposition 2.4.**

The existence of the limit in definition of Gâteaux functions is necessary condition, not sufficient, in order that any quasi-normed space be a quasi-inner product space.

Proof

Suppose V is a quasi-normed space. From definition 2.1 , we observe that existence of $\delta_1(v, w)$ and $\delta_2(v, w)$ are connected by the limit on behavior of the quasi-norm as h \rightarrow ± 0 . hence, $\tau(v, w)$ is exist if this limit is exist. Also, with $\tau(w, v)$ similarly.

To explains above condition is not sufficiently, we take the example:

Example 2.5:

Suppose *v*, $w \in \ell_3^1$, where $v = \{v_k\} = \{1, 0, 0, 0, ...\}$, $w = \{w_k\} = \{1, 1, 0, 0, ...\}$ and take $\{\lambda_k\} = \{\sqrt{k}\}\$, $k \in \mathbb{N}$. Then, using lemma 2.3, we get $\tau(v, w) = 1$, $\tau(w, v) =$ 0.372884880824589 . Thus, $\tau(v, w)$ and $\tau(w, v)$ are exist . However, equation (3) is not satisfied. Therefore, the space ℓ_3^1 is not quasi-inner product space.

Remark 2.6.

 If cases the values of p differ from those values considered in lemma 2.3, we have quasi-Sobolev spaces ℓ_p^m which are not quasi- inner product. For instance, in case $p \in (0,1)$ *, as* it is shown in the example 1.9. Indeed,

with the space $\ell_{1/2}^{-1}$, $\delta_1(v, w)$ and $\delta_2(w, v)$ do not exist, since there is no limit as h \rightarrow ± 0 from definition 2.1. Then right hand in Eq. (3) is not finite, while left hand equal zero.

Definition 2.7

A quasi-normed space *V* is smooth if $\delta_1(v, w)$ and $\delta_2(v, w)$ have one value. When *V* is smooth quasi-normed space, then τ (*v*,*w*)= $_q || v || \lim_{h \to 0} h^{-1} (q || v + h w || -$

 $|q||v||$). Similarly, $\tau(w, v)$.

Proposition 2.8.

Every pre-Hilbert space.is a quasi-inner product space.

Proof:

Let V is a pre-Hilbert space. According to lemma 1.4, an inner product function gives eq. (1). Also, By remark 1.3 and definition 2.1, we obtain $\tau(v, w) = \langle v, w \rangle$ and $\tau(w, y) = \langle w, v \rangle$. Hence, we have equation (3), and the definition 2.2 is hold. Thus, *V* is an quasi-inner product space.

The converse of proposition does not hold**, consider** the following example:

Example 2.9:

Take example 2.5 with replace space ℓ_3^1 by ℓ_4^1 . Since Eq. (3) is satisfied with quasinormed space ℓ_4^1 , where the left and right hand of Eq. (3) are equal to 16, so it is quasi-inner product space. But the left and right hand of Eq. (2) are not equal, hence this space is not a pre-Hilbert space.

Definition 2.10.

A complete quasi- inner product space is called a quasi-Hilbert space.

If a quasi-Hilbert space is smooth, then it is called a smooth quasi-Hilbert space.

 We recall that completeness property is coming from this property of quasi-normed space. **Theorem 2.11.**

For every $m \in \mathbb{R}$, ℓ_2^m is a smooth quasi-Hilbert space and Hilbert space. **Proof:**

According to lemma 2.3, we get τ (*v*,*w*) = $\sum_{k} \lambda_k^m |v_k| (\text{sing } v_k)$ *w*_k, and $\tau(w,v) = \sum_{k}$ λ_k ^{*m*}| w_k | (*sng* w_k) v_k which are linear by definition 1.2, with definition of τ (*v*,*w*) and $\tau(w,v)$ as above, then they are symmetric, that is, $\tau(v,w) = \tau(w,v)$, and $\tau(v,v) = |v||^2 \ge$ 0, with equality iff $v = 0$. Hence, ℓ_2^m is a pre-Hilbert space. By proposition 2.8, it is a quasi-inner product space, where $8\sum_{k=1}^{\infty}$ $\lambda_k^{2m} |v_k|^3$ (sng v_{k)} w_k + 8 \sum_k

 $\lambda_k^{2m}|w_k|^3$ (sng w_k) v_k is value to both sides of equation (3). If we apply quasi-norm function of ℓ_2^m in definition 2.1, we obtain $\delta_1(v,w) = \delta_2(v,w)$ since the limit in $\delta_1(v, w)$ itself one $\delta_2(v, w)$. Then ℓ_2^m is smooth.

Now, since ℓ_2^m is a quasi-Banach space for every $m \in \mathbb{R}$ by theorem 1.6, then it is complete under $_{q} || v || = (\tau(v, v))^{1/2}$, i.e. every fundamental sequence $\{v_k\}$, $k \in \mathbb{N}$ is convergent in it. Therefore, Theorem is proved.

Remark 2.12.

Since a space ℓ_p^m , for every $m \in \mathbb{R}$ and $p \in \mathbb{R}_+$ is a quasi-Banach space, then ℓ_p^m is a quasi-Hilbert space if it is a quasi-inner product space.

References

[1] J.K. Al-Delfi., Quasi-Sobolev Spaces ℓ_p^m ., Bulletin of South Ural State University, Series of "*Mathematics.Mechanics .* Physics", 5, 1. , 107–109. (In Russian). 2013.

[2] W. Rudin, Functional Analysis., McGraw-Hill, Inc., New York, 1991.

[3] A. H. Siddiqi, Functional Analysis With Applications., Tata McGraw-Hill Publishing Company, Ltd, New Delhi, India, 1986.

[4] N. Kalton, Quasi-Banach Spaces., Handbook of the Geometry of Banach Spaces, Vol. Edit. by. Johnson W.B and. Lindenstrauss. J – Amsterdam etc.: Elsevier, 1099–1130. 2003 [5] J. Bergh ; J. Löfström, Interpolation Spaces. An Introduction., Berlin–Heidelberg– New York, Springer-Verlag, 1976.

[6] P.M. Milicic , On the g-orthogonal projection and the best approximation of vector in a quasi- inner product spaces., Scientiae Mathematicae Japonicae, 4, 3, 941-944. 2001.

[7] R .A . Tapia., A characterization of inner product spaces., Proc. Amer. Math. Soc., 41, 569-574. 1973

[8] A. Sahovi ; F.Vajzovi and Peco . S., Continuity conditions for the Hilbert transform on quasi-Hilbert spaces., Sarajevo journal of mathematics, (2014), Vol.10, No. 22, pp-111–120.