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Abstract

Linear Feedback Shift Register (LFSR) systems are used widely
in stream cipher systems field. Any system of LFSR’s which wauldn't
be attacked must first construct the system of linear equations of the
LFSR unit. In this paper methods are developed to construct a system
of linear/nonlinear equations of key generator (a LFSR’s system)
where the effect of combining (Boolean) function of LFSR is obvious.
Before solving the system of linear/nonlinear equations by using one
of the known classical methods, we have to test the uniqueness of the
solution. Finding the solution to these systems mean finding the initial
values of the LFSR’s of the generator. Two known generators are used
to test and apply the ideas of the paper, these generators are the linear
system and Briier system.

Introduction

A LFSR System (LFSRS) consists of two main basic units. First,
is a LFSR function and initial state values (1). The second one is, the
Combining Function (CF), which is a boolean function (2). Most of all
stream cipher systems depend on these two basic units. Figure 1
shows a simple diagram of LFSR’s consists of n LFSR's.

This paper aims to find the initial values of every LFSR in the system
depending on the following information:
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- The length of every LFSR and their feedback functions are
known.

- The CF is known.

- The output sequence S (keystream) generated from the LESRS or
part of it known, or, practically, this means, a known plain attack
is applied (1).

This research consists of three stages, constructing system of
linear/nonlinear equations, test the uniqueness of the solution of this
system, and lastly, solving the system of linear/ nonlinear equations.

Constructing A System of Linear/Nonlinear
Equations

Before involving in solving the System of Linear Equations (SLE),
it should show how could the SLE be of a single LFSR constructed,
since it is considered as a basic unit of LFSRS. Let’s assume that all
LFSR’s are maximum LFSR. This means, Period (P)=2"-1, where r is
LFSR length.

Constructing LES for Single LFSR

Let SR, denotes a single LFSR with length r, let Ag=(a.;,a.
2...,as) be the initial value vector of SR,, s.t. aj, 1<j<r, be the
component j of the vector Ay, in another word, a; is the initial bit of
stage j of SR, let Co'=(cy,...,c;) be the feedback vector, cje{0,1}, if
c;i=1 that means the stage j is connected. Let S={s, |";' be the sequence

(or 8=(s,S1,.--,Sm-1) read “S vector”) with a length m generated from
SR:. The generation of S depends on the following equation (3):

T
Si S it Zai-'jcj izo,l,... .[1]
=
Equation [1] represents the linear recurrence relation.

The objective finds the Ay, when r, Cp and S are known.
Let M be a rxr matrix, which describes the initial phase of SR,
M=(Co|l rxr.1), where M’=I.
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Let A; represents the new initial of SR, after one shift, s.t.

¢, 1 - 0
A=ApxM=(a.;,a,,...,a1) czz O 0 =(Zr:a_jcj JA1,ee58100).
c, 0 -~ 0 B
In general,
A=A xM, i=0,1,2,... w:[2]

Equation [2] can be considered as a recurrence relation, so we have:
A=A XM=A;xM?*=. . =AxM! ...[3]

The matrix M' represents the i phase of SR,, equations [2,3] can be
considered as a Markov Process s.t., Ao, is the initial probability
distribution, where A; represents probability distribution and M is the
transition matrix (3, 4).

notice that: _

M?=[C,Co|lrxr2] and so on until we get M'=[Ci,...Collrxri], Where
1<i<r.

When Cp=C, then M""'=M.

Now let’s calculate C; (5) s.t.

Ci=MXC§.], i=1,2:"' [4]
Equation [1] can be rewritten as:
AoxCi=s; , i=0,1,..,t-1 «.[5]

When i=0 then AgxCg=s is the 1* equation of the SLE,
i=1 then A¢xC;=s, is the 2" equation of the SLE, and
i=r-1 then AgxCy.;=sy., is the r' equation of the SLE.

In general:
ApxC=S ]

C represents the matrix of all C; vectors s.t.
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C=(CoC;...C:1) . [7]

The LES can be formulated as:

Y=[ C"IS"] ...[8]

Y represents the extended matrix of the LES.

Example (1)

Let the SRy has Co'=(0,0,1,1) and S=(1,0,0,1), by using equation [4],
we get:

; in  the same  way,

o © = O

o - o O

L = B e
Il

S = = O

@)

[

[
(= BN e B

0

i
—— = = o o
— et (e
RS G (R

From equation [6] we have:

o O -

[6
0 011
0 1 0 ) . L
Ao ¥ 4 X =(1,0,0,1), this system can be written as equations:
1 0 1

aztas=l1
a_2+a.3=0
a+a,=0
atastas=l

Then the SLE after using formula [8] is:
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001 1]1
01 10j0

Y= w9
1 1.0 0[]0 i
1 01 1)1

Construction of SLE for LFSRS

Let’s have n ofSRrj with length rj, =1,2,...,n, with feedback

Coij

Cozj

vector Co= .,and have unknown initial value vector Ag=(a-

C[irjj
1js+++s8rj)> 0 SR has Mi=(Coj| I ;)

By using recurrence equation [4],
Cij=MjXCi.IJ, i:1,2,... [10]
by using equation [5]:

AgixCij=sij, i=0,1,...,r-1 and S;=(s0;,S1j,- - -,Sm-1,)-
S; represents the output vector of SRrj , which of course, is unknown

too. m represents the number of variables produced from the LFSR’s
with consideration to CF, in the same time it represents the number of
equations which are needed to solve the SLE. Of course, there is n of
SLE (one SLE for each SR,} with unknown absolute values).

Now, let Ay be the extended vector for m variables, which consists of
initial values from all LFSR’s and C is the matrix of C; vectors
considering the CF, C; represents the extended vector of all feedback
vectors Cjj, then AgxC=S.

To apply the construction process, two known systems are chosen
which are: the linear system and Briier generator.
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Linear System

As known, the outputs of every LFSR of the linear system are
XORed with each other to gain the sequence S which is generated
from this system.

Since the SR,J_ has rj number of unknown initial values, then m= er ;
i=1
Now, all the vectors Ay; are extended from rj to m as follows:

Agi=(a_jen@ 00 0.0)

A02=(0. . .0, 3_12,...,a_r22 sice Do .0)
And so on..

Ap=(0...0,0...0, ...;8_y,,...8_ ;)
And let

n
Ao=z Ay; =( B_yyseeesBg 58 12500058 g 50 v s Bpseens By gy )
=1

In fact, Ao represents a concatenation of all Ag; vectors respectively.
The same process will be done on the feedback vectors Cjj which must
be found first from equation [10]. Therefore, C; will be the extended
concatenation vector of all feedback C;; vectors too, s.t.

Since the CF is XOR, then S can be obtained from XORed which
are all unknown S;. Since m equations are needed, that means every
LFSR shifts m movements, then:

Si=(S03sS1js- - -sSm-1)s j=1,2,...,0, and s= Y s, , i=0,1,...,m-1, (the sum
j=1

here is XOR), then:
S= ZSJ =(SO,SI,- . -ssm-l)
j=1
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Fig.(2) illustrates the sequence S which is generated from the linear
system.

So C can be obtained from equation [7] and by applying equation
[6], the SLE can be constructed.

Example (2)
Let’s have the following feedback vectors for 3 LFSR with length 2,3
and 4:

1
1
1 0
Cori= | , Coo=| 0| and Cp3= 0 , then m=9.
1
1
And let S=(1,1,1,0,1,1,0,1,1).
By using equation [4],
1 0 1
C01=C31=C61:£J ,C11=C41:C7|=[J, and C21=C51=C31={0] ;
1 1 0 1) 0) (0 (1
Co=Cn=| 0 |,C12=Cs=| 1 |,C2r=| 1 [,Cs2=| 1 |,Csr=| 0 |,Cs=| 1 |,Cs=| O |.
1 1 1 0 1) \0) 0
1 1 0 1 0) 1) (1) (0
C—OC—IC‘IC—IC—IC—OC‘IC—O
13 1,231!3315431953 0!631’?3 0’831-
1 1 1 0 1) 0 (1 |

Then Cy'=(1,1,1,0,1,1,0,0,1).
The SLE can be written as follows:

1 0 1 1 0 1 1 0 1)
I 1 1 1 4 0 % 1 B
1 1 0 1 0 O 1 1 1
A[] 0 1 1 1 0 1 0 0 1 2(1’1311())1!1:0’1’1)
I L 10 1 08 1 1
1 1 0 1 ¢ 1 1 @
o o 1 1 1 1 0 1 O
g L~ ¥ E 0 X 9 7
1 1 1 L @ 1 @0 4 A

\
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s.t. Ap=(a.11,a.21,2.12,2-22,2.32,8.13,3.23,8.33,3.43), and the extended matrix
Y can be calculated from equation [8] is:

1110110 0 1]|1]
01 111101 1}1
10011111 1]1
111 100111]0
Y=[0 1 001 111 0]l
1 0010010 1]/1
1110010100
1L I 08 3410 1}1
101 11001 1|1}

Briier Generator

As usual, this system consists of odd number (n) of LFSR’s (in
this case of study, we chose n=3 LFSR’s). The CF of this generator is
F(x1,X2,X3)=X1X>+X1X3+X2X3 (5), for this reason m=T rp+113+1r3. Its
obvious that the mathematical system which is obtained is a system of
non-linear equations (SNLE). The SNLE is converted to SLE in order
to solve it.

The initial value is:
A=A01AntAgAptAnAgp=(dod),...,dn),

s.t. do=a.i1a-12, d1=a.118.22,....dm-1=a, 53, 5, or it can be taken from the
following equation:

a_,a_,, whenk=i*r, +jst. 1=0,...0 -1, J1=0,...5, -1
d, =qa_a_y, whenk=i*r, +j+rr,,st. i=0,...5 -], J=0..0—1 el 1]

a8 5, When k=i*r, +j+rr, 16,8t i=0,...5, 1 j=0,..5,~1

(this arrangement is not standard so it can be changed according to the
researcher requirements). :
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In the same way, equation [11] can be applied on the feedback vector
Ci:

Ci=CiiCix+Ci1Ci5+C;pCis.
And the sequence S will be:
S=818,+81S3+8,8; s.t. si=si1512+Si1Si3+Si28i3,

si is the element i of S.
So the SNLE can be obtained by equation [6].

Fig.(3) illustrates the sequence S which is generated from Briier
Generator.

Example(3)
Let’s use the same information of example (2), then:
m=26, S=(1,0,1,1,0,1,1,1,1,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0,1,1,0)

1
Cm=C3|=C61=C91=C|2,1=C15,1*C|3,1=C21,|=C24,1=(J,

0
Ci 1=C41=C71:C1011=C13.1=C16.1“—'C|9,1=C22,[=C25,1:(l ] ;

1
C21=C51=C31:Cu,1=C14,1=C17,1=C20.|=C23,1:[0J :

(1 1
Co2=C72=C142=C212= 0 | ,C12=Cs=C152=Cs 2= 1 |,
1 1
(0) 1
C22=C92=C162=C232=| 1 |,C32=C102,=C172=Caa=| 1 |,
1 0
0 0 1
Ca2=C11,=C13,=Css5=| 0 [,C55=C122=Cy9,=]| 1 » C62=C13,=Ca0=| 0 |.
1 0 0
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1 1 0
0 0 1
Co3=Cjs3= 0 L13=Ci63= ] ,C23=C:7,3— ,C33=Ci33= 1l
\1) \1) 1
(1) (0) 1
1 1 1
Cy3=Ci93= ' -Cs53=Ca03= 0 ,C63=C21,3— :C713=Cn 5= ol’
\OJ \1) \0 I
0) (0 1 0 0
0 1 1 0 0
Cs3=C233=| . [,Co3=Ca43=| . |,C103=C253=| |,Ci13=| |.Ciz3= ,
8=Cns=) | |C7Cas=) | 1.C10a=Cass=|  1.Cis 0 |€257|
1) 0 0 I 0
0 1
Cizs= 1 Cus= 4
1337 o [°C1957] o |-
0 0

by applying equation [4], C," will be:
Co'=(1,0,1,1,0,1,1 ,0,0,1,1,0,0,1,1,0,0,1,0,0,0,0,1,0,0,1).
Therefore,

10110110011001100100001001]/1

|..[12]
0

LES/NLES Constructing Algorithm can be introduced to illustrate the
construction of SLE.

00000100001100000000001100
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SLE Constructing Algorithm
INPUT : READ CR; {Single LFSR(1)/Linear(2)/Briier(3) }
READ n; { nhumber of LESR’s in cryptosystems }
FORj:=1TOnDo
BEGIN
READ r; ;{ Length of LFSR;}

READ C;J. vector; { Feedback connection of LFSR;}
M; = (Col L 1 :

READ A, vector; { Initial values of LFSR;}
END;
INITILIZE : CASE CR OF;
1 zmi=r;

2:m:= Z]rj -
j=
3rme= et ritet Rk,
END; {end case of CR}
PROCESS :FORi:=0TO m-1 Do
BEGIN
FOR j=1TOnDo
BEGIN
Ctj e ijci-l,];
8jj = Aoij.-j;
END;
CASE CR OF

2:5:= ) s, ; { XOR sum }
=1

Ci:= ZCU ; {Concatenation adding }
j=1
3 18 =81 *s;pDs;) *s;3Ds;p *si;
Ci:=Co|*C03+C0]*C03+C02*C03 ;{concatena!fon}
END; {end case of CR}
END;
FORJ =1TOn Do Sj e (SQJ, Sjaeces sm-l,j);
CASE CR OF

2u8— ZSJ 3 { XOR sum }
j=!
3: 8 =8,*S,®S,*S;88,*S;
END; {end case of CR}
cT:z (Cl'.h Cl"“s lel);
Y =[C",s"};
: Augmented matrix Y;
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Test For The Uniquness Of The Solution Of Sle/Snle

Since the system consists of m variables, then there are 2™-1
equations, but only m independent equations are needed to solve the
system. If the system contains dependent equations, then the system
has no unique solution (i.e. more than one solution or there is no
solution). So first it should test the uniqueness of the system by
calculating the rank of the system matrix (r(C")). If the rank equals the
matrix degree (deg(C')), then the system has a unique solution,
otherwise when (r(C')< deg(CT)) the system has no unique solution.

In order to calculate r(C") it should use the elementary operations
to convert the C' matrix to a simplest matrix by making, as many as
possible, the elements of the matrix zero’s. The elementary operations
should be applied in matrix rows and columns (6).

The other method of testing the uniqueness of the solution is by
finding the determinant of the matrix. The matrix C" has a unique
solution if and only if |C"=0 (6).

Example (4)
0 01 1
. |01 10 )
Let’s have the matrix C'= 1 o ol by using the elementary
1. 8.1 1
operations, the matrix can be converted to the matrix
0010
w01 00 . ' T
C' = T , this matrix has a rank = 4 =deg(C"), then the
8 0 0.1

matrix has a unique solution.

In case of r(C")< deg(C") (or IC"|=0), this means the uniqueness
condition is not satisfied, and we have to replace at least which is
equation by another one not used before, then retest the uniqueness.
This procedure is repeated until we obtain a SLE which has a unique
solution.
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Solving The Sle

When we would be sure that the SLE has a unique solution, the
SLE can be solved by using one of the most common classical
methods, its Gauss Elimination method. This method is chosen since it
has less complexity than other methods. As its known that, this
method depends on two main stages, first, is by converting the matrix
Y to up triangular matrix, and the second one, is finding the converse
solution (6). Example (5) shows the solving of a single SLE for one
LFSR.

Solving SLE algorithm can introduce an illustration of the steps
which solve the SLE.

Solving SLE Algorithm
INPUT: READ CR; {Single LFSR(1)/Linear(2)/Briier(3)}

: CALL SLE Constructing;
INITIALIZE: Find Augmented Matrix Y;
PROCESS : REPEAT
CALL Uniqueness Test;
CALL Rank Test;
IF r(C") < deg(C") THEN
Replace old equation with new one in SLE;
UNTIL r(C") = deg(C™);
CALL Gauss Elimination Method;
OUTPUT : Find Ag;
END.

Example (5)
Let’s use the matrix Y of equation [9], after applying the elementary
operations, the up triangular matrix is then:
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110 0]0
o1 1 0]0
Y =
001 1]1
000 11

Now applying the converse solution to get the initial value vector:
Ay=(0,0,0,1).

The SLE of n_LFSR’s is more complicated than SLE of a single
LFSR, especially, if the CF is a high order (non-linear) function. First,
it should solve the variables which consist of multiplying more than
one initial variable bits of the combined LFSR’s. As an example of
Briier Generator, its going to solve the variables dj, 1<k<m-1, then
solving the initial values a.jj since dy is represented by multiplying two
initial bits. In other words, every system has its own LES system
because of the CF, so it has its own solving method.

As an example to find the variables aj of Briier Generator, first, the
solution vector Ay is divided into 3 parts, these parts have lengths
rixry, rxr3 and ryxr3. The first part which consists of Ap1.Ap, can be
divided in r; of parts, each with length r,, then Agf(dg,d],...,drz_l)

when

a.;1=1, that means we find a.;; and Ag, but if the first ry variables
(k=0,1,...,r>-1) are zero’s that means a.;,=0, and Ag, cannot be found
yet. The process is continued until all Ag; and Ag, elements are found.
So it is not hard to found Ao; if the same technique is applied. Notice
later, that only ryxry+r3 bits are needed from A to find the variables a.

1.

In the next example, the SLE system Y which is mentioned in
example (3) will be solved.

Example (6)
When solving the SLE of equation [12], then the solved vector of
solution is:

A¢=(dp,dy,...d>5)=(0,1,1,0,0,0,1,1,0,1 ,0,0,0,0,0,0,0,0,1,1,0,1,1,1,0,1).
A01.A02=(0,1,1,0,0,0)—>a.11.A¢2=(0,1,1)—a.; ;=1 and Ag=(0,1,1).
aai .A02=(0,0,0)—>a_2 1 20—)A0| =( 1 ,0) :
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In the same way we get Ap3=(1,1,0,1).
The problem is solved from 2x3+4=10 bits only.

Conclusion

- If we change our attack from a known plain attack to cipher
attack only, which means, changing in the sequence S (non-pure
absolute values), so we shall find a new technique to isolate the
right equations in order to solve the SLE.

- It is not hard to construct a SLE of any other LFSR systems, of
course, we have to know all the necessary information (CF, the
number of combined LFSR's and their lengths and tapping).
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LFSR, g
LFSR, E

8 1
LFSR, | >

Fig. (1) A system of n_LFSR’s
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S1=so1 s11 -.- Sm-1,1
S:=802 512 .+ Sm12 )
] ]

SpSq ... Sm.1:S

'
1
1
1
1
1
1
I

B 805 S o Sm-1.n

Fig. (2) Linear system

Si=s01 817 ... Sm-1.1

S>=802 S12 ... Sm.12
2502 S12 m-1. S0 S1 ... S;mi=S
S3=Sp3 S13 ... Sm-1.3

Fig. (3) Briier generator
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