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Three-parameter Weibull probability distribution function is used to represent the time-to-failure data. For parameter 
estimation, the errors-in-variables, maximum likelihood, and least squares methods are compared.  The results obtained from 
five data sets show that maximum likelihood method gives the most reliable parameter estimates which are close to those 
obtained by errors-in-variables approach. The least squares method gave the poorest results in most cases. For parameter 
estimation, the Luus-Jaakola direct search optimization procedure yielded the optimal parameter values in negligible 
computation time, taking less than a second of computation time on a Pentium4/2.66MHz personal computer for 50 data 
points. 
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Introduction 

 
Similar items, such as 100-watt incandescent light bulbs 
produced by the same company, subjected to similar 
environmental conditions tend to fail at different times. 
To predict the life of such items, the three-parameter 
Weibull probability distribution function has been found 
to represent the time-to-failure data reasonably well. 

The Weibull cumulative distribution function is 
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and its derivative is the Weibull probability density 
function 

].)(exp[))(()( 1 ββ
β α

µµ
α

β −
−−= − tttf           (2)  

The data are in the form of time to failure for n similar 
items arranged in order so that t1 is the time to failure of 
the first item and tn is the time to failure for the nth item. 

Statistically, a good estimate for the Weibull 
cumulative distribution function for n data points, as 
suggested by O’CONNER [1] and used recently by HUNG 
[2], is 
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The problem is to estimate the parameters µ, α, and β 
from a given reliability data set. 

There are three approaches that may be used to 
obtain the parameters, depending on the criterion used for 
optimization. 

 
Errors-in-Variables Estimation (EIV) 

 
Recently, errors-in-variables approach has been found 
useful for parameter estimation where there is a 
significant error in the independent variables [3]. Instead 
of estimating only the parameters, the method also 
estimates the values of the independent variables. 

Here we choose the performance index to be 
minimized as 
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where ti are the actual measured times to failure and 
                     (5) βαµ /1))](1ln([ iFt ssi −−+=

which, with the use of Eq.(3), becomes  
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Maximum likelihood estimation  (ML) 
 

The likelihood function is the product of the individual 
probability density functions. Thus the aim is to 
maximize the likelihood function 
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which is written as 
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To prevent computational difficulties, it is further 
specified that β ≥ 1. Otherwise, if β < 1 and if µ is very 
close to t1, the term (t1 - µ) β-1  becomes very large. 

 
Least squares estimation (LS) 

 
An alternative to the above two methods is to consider as 
a performance index the sum of squares of deviations of 
the cumulative distribution functions 
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Substituting Eq.(1) and Eq.(3) into Eq.(9) gives 
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The values of the three parameters α, β, and µ 

obtained from a set of data will depend on the choice of 
the performance index. The goal here is to examine the 
parameters obtained by these three performance indices I, 
L, and S. 

 
Optimization  procedure 

 
To obtain the three parameters, we decided to use direct 
search optimization, so that no transformations or 
auxiliary variables would have to be calculated. There are 
numerous direct search optimization procedures that may 
be used. Recently, genetic algorithm has been favored by 
some, but recent comparison of the genetic algorithm to 
the direct search procedure introduced by LUUS and 
JAAKOLA [4], and refined recently by LUUS [5-7], showed 
that the LJ optimization procedure tends to be somewhat 
faster and more reliable than the genetic algorithm [8]. 
Therefore, we used the LJ optimization procedure for the 
optimization. 

The LJ optimization procedure involves taking a 
number of random sampling points over a region, finding 
the best point, and then using the best point as the centre 
of the region for the next iteration. However, at the 
beginning of this iteration the region size is reduced by a 
factor γ < 1 to make the search more intensive around the 

best point. This procedure is continued for a number of 
iterations to finish a pass. Since it is desirable to obtain 
the optimum value of the performance index very 
accurately, a number of passes is usually necessary. The 
algorithm for the LJ optimization procedure is given by 
LUUS [9]. 

We used a multi-pass procedure, involving 25 passes, 
each consisting of 21 iterations. The initial values for the 
parameters were: µ = 0.5 t1, α = t1, β = 2.0, and the initial 
region size for the first pass was taken as 0.5 times the 
initial value. After every iteration the region sizes were 
reduced by γ = 0.95. At the beginning of the second pass, 
the region sizes were put to 0.01 times the parameter 
values. For the remaining passes, the region size for each 
parameter at the beginning of the pass was put equal to 
the amount by which the parameter changed during the 
previous pass. If this change, divided by the parameter 
value, was less than 10-6, then the region size was put to 
10-6 times the parameter value. The parameter estimates 
were run with R = 25 and with R = 100 random points per 
iteration. 

 
Numerical results 

 
All computations were done in double precision using 
WATCOM Fortran compiler version 9.5 on a 
Pentium4/2.66GHz personal computer. 

 
Example 1:  Lifetime of light bulbs 
 

As the first example we chose the data of WALPOLE and 
MYERS [10] relating to the lifetimes of 50 internally 
frosted incandescent 40-watt 110-volt light bulbs. The 
shortest lifetime was 702 h, so we chose the initial values: 
µ = 351, α = 702, and β = 2. Using the EIV approach, 
after 25 passes, we obtained the minimum value I = 
1.754306594335 × 104 with R = 100 in a total 
computation time of 0.83 s, and I = 1.754306594336 × 
104 with R = 25 in a computation time of 0.22 s. The 
convergence profile given in Fig.1 shows that 25 
randomly chosen test points per iteration are quite 
sufficient to get accurate values for the parameters within 
25 passes. However, when 100 points are used, 
convergence to 12 figures is obtained already in 11 
passes. 

Maximization of the likelihood function given in 
Eq.(8) yielded with R = 100 in a computation time of 1.49 
s the maximum value L = 1.0285396 × 10-139 with 
parameter values which are very close to those obtained 
by EIV, as is shown in Table 1. To calculate such a small 
number, each probability density function was multiplied 
by 103 and then the resulting likelihood function at the 
end was multiplied by 10-150. This avoided any possibility 
of underflow problems. 

Minimization of the sum of squares of deviations 
given in Eq.(9) yielded with R = 100 in a computation 
time of 0.50 s the minimum S = 5.6267167 × 10-2 with 
parameter values given in Table 1. These values are quite 
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different from those obtained from the other two methods. 
Also, the deviations of the estimated times to failure and 
the measured times to failure are substantially higher, as 
is shown in the last column of Table 1. 

It is natural for EIV to outperform the other two 
methods if the deviations of the same data points are used 
for estimating the parameters and then used for the 
evaluation, since in EIV the evaluation function is used 
for estimating the parameters. We therefore used only 
half of the data to obtain the parameters. Starting with the 
first data point, every second data point was used, plus 
the last data point, giving 26 data points.  

 
Fig.1  Convergence profile for Example 1, showing the effect of 
the number of random points used per iteration 

 
For evaluation of the results, the entire data length 

was used. As is shown in Table 2, the maximum 
likelihood method yielded the best results. Such 
evaluation was carried out with several additional data 
sets available in the literature. 

 
 
Example 2: Lifetime of batteries 
 

We now consider the lives of 40 similar batteries 
recorded to the nearest tenth of a year, as reported by 
WALPOLE AND MYERS [9]. Convergence was easily 
obtained, yielding I = 0.36569261, L = 7.5001463 × 10-19, 
and S = 3.724944 × 10-2 with the parameter values given 
in Table 3 for all the data. 
 
 
 
 
 
 
 

Table 1  Parameters obtained for Example 1 with the use of 50 
time-to-failure data points: 702, 765, 785, 811, 832, 855, 896, 
902, 905, 918, 919, 920, 923, 929, 936, 938, 948, 950, 956, 958, 
958, 970, 972, 978, 1009, 1009, 1022, 1035, 1037, 1045, 1067, 
1085, 1092, 1102, 1122, 1126, 1151, 1156, 1157, 1157, 1162, 
1170, 1195, 1195, 1196, 1217, 1237, 1311, 1333, 1340 

  
µ 

 
α 

 
β ∑

=
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50

1
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i

sii tt

 
EIV 
ML 
LS 

626.155 
623.527 
702.000 

450.129 
452.020 
371.347 

2.90623 
3.00294 
2.25438 

1.7543×104 

1.8188×104 

2.3295×104

 
Table 2 Parameters obtained for Example 1 with the use of 
every second data point and the last one (26 data points) but 
evaluated with all data points 

  
µ 

 
α 
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LS 

577.18 
590.06 
702.00 

510.72 
495.22 
380.64 

3.0347 
3.0953 
2.1505 

2.8713×104 

2.1177×104 

4.0526×104

 
 

Table 3 Parameters obtained for Example 2, given the time-to-
failure data: 1.6, 1.9, 2.2, 2.5, 2.6, 2.6, 2.9, 3.0, 3.0, 3.1, 3.1, 3.1, 
3.1, 3.2, 3.2, 3.2, 3.3, 3.3, 3.3, 3.4, 3.4, 3.4, 3.5, 3.5, 3.6, 3.7, 
3.7, 3.7, 3.8, 3.8, 3.9, 3.9, 4.1, 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.7 

  
µ 

 
α 
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EIV 
ML 
LS 

0.00000 
0.10346 
1.60000 

3.69330 
3.58331 
2.05230 

5.51662 
5.49813 
3.18526 

0.36569
0.38317
0.82921 

 
 In Table 4 are the parameter values for half of the 

data. By comparing the estimates in these two tables, 
again the maximum likelihood method is seen to give the 
best results if half of the data are used to obtain the 
parameters, and the parameter values are evaluated with 
the entire data length. Again, the least squares method 
yielded the worst results. 

 
 

Table 4  Parameters obtained for Example 2 with the use of 
every second data point and the last one (21 data points) but 
evaluated with all data 

  
µ 

 
α 

 
β ∑

=
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EIV 
ML 
LS 

0.00000 
0.00000 
1.60000 

3.7487 
3.7382 
2.1089 

4.9521 
5.2934 
2.8953 

0.65398
0.45611
0.85610 
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Example 3: Data used by Lockhart and Stephens 
 

The data given by COX and OAKES [11], and used by 
LOCKHART and STEPHENS [12] gave I = 261.79902, L = 
9.0746400 × 10-22, and S = 2.0017367 × 10-2 with a wide 
range of values for the parameters, as is seen in Table 5. 
The ML values obtained here correspond very closely to 
the ML values obtained by Lockhart and Stephens, 
namely, 99.02, 78.23 and 2.38.  
 

 
Table 5 Parameters obtained for Example 3, given the time-to-
failure data: 117, 135, 135, 162, 162, 171, 189, 189, 198, 225 

  
µ 

 
α 
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71.5445 
99.0109 
13.9179 

108.641 
78.240 
167.491 

3.0214 
2.3755 
4.7922 

261.799
412.692
321.376 

 
 

When only half of the data were used, we see in Table 
6 that the maximum likelihood method yielded the most 
consistent values for the parameters. 

 
Table 6  Parameters obtained for Example 3 with the use of 
every second data point and the last one (6 data points) but 
evaluated with entire data length 
 

  
µ 

 
α 

 
β ∑
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−
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EIV 
ML 
LS 

17.323 
102.506 
0.000 

169.824 
77.016 
188.474 

3.8339 
1.8877 
4.0675 

1068.61
423.78
1499.66 

 
 
Example 4:  Lifetime of fruit flies 
 
For the data on the lives of 50 fruit flies in seconds 

when exposed to a spray in a controlled laboratory 
experiment as given by WALPOLE AND MYERS [10], we 
obtained the parameter values shown in Table 7  with I = 
18.879469, L = 4.8751765 × 10-18, and S = 3.8023533 × 
10-2.  

 
 
Table 7 Parameters obtained for Example 4, given the time-to-
failure data: 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 
10, 10, 10, 10, 10, 11, 12, 12, 13, 13, 13, 13, 13, 14, 14, 15, 15, 
16, 16, 17, 18, 18, 18, 19, 19, 20, 23, 24, 27, 32 

  
µ 

 
α 

 
β ∑

=

−
50

1

2)(
i

sii tt  
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3.0000 
2.6548 
3.0000 

10.3405 
10.8189 
10.3032 

1.4947 
1.6606 
1.5949 

18.879
28.646
27.829 

When only half of the data were used, as is seen in 
Table 8, the best results were obtained with the least 
squares method. 

 
Table 8 Parameters obtained for Example 4 with the use of 
every second data point and the last one (26 data points) but 
evaluated with entire data length 
 

  
µ 

 
α 

 
β ∑
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LS 

3.0000 
2.5974 
3.0000 

10.6904 
11.2482 
10.6047 

1.3285 
1.5300 
1.4892 

84.548
36.322
23.355 

 
 
 
Example 5:  Lifetime of fuel pumps 
 

For the data on the lives in years of 30 similar fuel pumps 
as presented by WALPOLE AND MYERS [10], convergence 
to I = 14.135236, L = 3.456841 × 10-26, and S = 
6.2525950 × 10-2  was easily obtained, yielding the 
parameter values in Table 9.  

When only half of the data were used, Table 10 shows 
that EIV yielded the best results. Here it is noted that for 
the maximum likelihood method µ is very close to t1 and 
β is very close to 1, so the maximum likelihood 
estimation procedure is not very reliable. For this 
example, therefore, the errors-in-variables approach gives 
the most reliable parameter estimates. 
 

 
Table 9 Parameters obtained for Example 5, given the time-to-
failure data: 0.2, 0.2, 0.2, 0.3, 0.3, 0.4, 0.5, 0.7, 1.0, 1.2, 1.3, 1.5, 
1.5, 1.8, 2.0, 2.3, 2.5, 3.0, 3.3, 4.0, 4.5, 4.7, 5.0, 5.5, 5.6, 5.9, 
6.0, 6.0, 6.0, 6.5 
 

  
µ 

 
α 

 
β ∑

=

−
30

1
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EIV 
ML 
LS 

0.00000 
0.20000 
0.00000 

3.2353 
2.5965 
3.1446 

1.4346 
1.0000 
0.9248 

14.135
26.517
68.778 

 
 
 

Table 10  Parameters obtained for Example 5 with the use of 
every second data point and the last one (16 data points) but 
evaluated with entire data length 
 

  
µ 

 
α 

 
β ∑

=

−
50

1

2)(
i

sii tt  

EIV 
ML 
LS 

0.00000 
0.20000 
0.00000 

3.3732 
2.6999 
3.2830 

1.3757 
1.0000 
0.8826 

15.642
28.337
105.122 
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Conclusions 
 

The Luus-Jaakola optimization procedure is easy to use 
for parameter estimation for the Weibull distribution, 
since no transformations are required. The optimal 
parameter values are readily obtained in negligible 
computation time on a personal computer.  

Errors-in-variables approach is easy to use with 
direct search optimization, and no computational 
difficulties were encountered with the use of the LJ 
optimization procedure. However, with the maximum 
likelihood function, great care is required if β < 1, and µ 
is very close to t1.   The parameter estimates obtained by 
EIV are closer to those obtained by maximum likelihood 
than by least squares. The least squares approach tends to 
give the least reliable parameter estimates. For most of 
the data sets, the maximum likelihood method gave the 
most consistent estimates for the parameters when a 
shorter data length was used. It is recommended to use 
both the errors-in-variables and the maximum likelihood 
methods to obtain the parameters in the Weibull 
distribution and then to examine and evaluate the results. 
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SYMBOLS 
 

f - Weibull probability density function 
F - Weibull cumulative distribution function 
Fs - statistically determined Weibull cumulative 

distribution function 
I  - performance index for errors-in-variables 
L  - likelihood function 
n number of items tested 
R - number of random points used in each iteration 
S - sum of squares of deviations of cumulative 

distribution functions 
ti - time for the ith  item to fail 

α - parameter to be determined 
β - parameter to be determined 
γ - region size reduction after every iteration in the LJ 

optimization procedure 
µ  - parameter to be determined 

 
Acronyms 

 
EIV - errors-in-variables estimation 
LJ   - Luus-Jaakola optimization procedure 
LS  - least squares estimation 
ML - maximum likelihood estimation 
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