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Stability properties and dynamic behaviour of continuous cooling crystallizers are analysed using a detailed moment 
equation model. A causal loop diagram between the variables reveals that the roots of instabilities lay in the interactions 
of the autoinhibition generated negative feedback, a positive feedback between the four leading moments of crystal size 
and a varying polarity feedback between the temperature and the moments. The stability of steady states is analysed by 
eigenanalysis of the Jacobian matrix and using the Mikhailov criterion. Stability maps and bifurcation diagrams are 
presented in the planes of different pairs of system parameters. 
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Introduction 

Non-isothermal continuous crystallizers, extensively 
used in the chemical industry, usually are very 
sensitive to both the external and internal (parameter) 
disturb-ances. This is because of the highly nonlinear 
kinetics, many temperature-dependent parameters, 
which are, in turn, also nonlinear, and different 
feedbacks between the variables and elementary 
processes taking place in crystallization processes. 
All these properties, as well as the interactions 
between the kinetics, fluid dynamics and crystal size 
distribution may give rise to different complexities in 
both the steady state and dynamic beha-viour of 
continuous crystallizers, a deeper understand-ing of 
which is important in relation to both the crystal-
lization process itself, and to the operation, control, 
and design of industrial crystallizers.  
 Since the observations by Miller and Seaman [1] 
on composition and crystal size distribution 
oscillations in industrial crystallizers, a number of 
works have dealt with their stability and dynamic 
behaviour under iso-thermal conditions [1-16], but 
less attention has been paid to the problem of taking 
into account the thermal effects. Tavare et al. [17] 
studied the temperature mul-tiplicity and stability of 

cooling MSMPR crystallizers using linear temperature-
dependence of the solubility. Melikhov et al. [18] shown 
that in a circulation vacuum crystallizer the dissolving 
zone may exhibit two steady states. Both works 
presented also stability criteria but used simplified 
models, and no primary nucleation and size-dependent 
growth were taken into account. 

The present study addresses the stability and bifurca-
tion phenomena of continuous cooling MSMPR crystal-
lizers by means of a detailed moment equation model. 
The stability is examined using the Mikhailov criterion, 
and the effects of primary and magma-dependent sec-
ondary nucleation are analysed. Bifurcation diagrams 
and simulation results concerning the dynamic behaviour 
of crystallizers, as well as the causal loop diagram 
revealing the important negative and positive feedback 
loops of the system, responsible for the complex 
behaviour of crystal-lizers are presented.  
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Mathematical model 

Population balance model 

Consider a continuous crystallizer the schematic 
repre-sentation of which is presented in Fig.1. 
 Let us assume that the following conditions are 
satis- 
fied: 

- the crystallizer may be seeded; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Schematic representation of a continuous cooling 
crystallizer 

 
- the crystals can be characterized by a linear 

dimen-sion L; 
- all new crystals are formed at a nominal size 

 so that we assume ; 0≥nL 0≈nL
- crystal breakage and agglomeration are 

negligible; 
- no growth rate fluctuations occur; 
- the overall linear growth rate of crystals G is 

size- dependent and has the form of power law 
expression: 
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- the primary nucleation rate Bp is described by 
the Volmer model: 
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where ε is the voidage of suspension expressed as 
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and µ3 is the third of the ordinary moments of the 
population density function ,which are defined as 
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 - the secondary nucleation rate Bb is described by the 
power law relation 
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where the coefficients kg, kp and kb are functions of 
temperature expressed as  
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 Under such assumptions the population balance mo-
del of the crystallizer consists of the following balance 
equations. 

Vapour 

 Volume balance of the crystal suspension 

 qq
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Feed subject to the initial condition 
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water out  Population balance equation governing the crystal 
size dynamics 
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subject to the initial and boundary conditions: 
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where n(L,t)dL expresses the number of crystals having 
size in the range L to dL at time t, while ep and eb are bin-
ary existence variables of the nucleation rates, by means 
of which the alternative variations of nucleation can be 
controlled. Naturally we have the constraint 
 1≥+ bp ee  (9) 

 Mass balance of solvent 
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with the initial condition 
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with the initial condition 
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 Energy balance for the crystal suspension takes form 
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with the initial condition 

  (12a) 0)0( TT =

where Rmc denotes the global rate of production of 
crystal mass in a unit volume of suspension: 
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 Energy balance for the cooling medium 

( ) ( ) )( hhhhinhinhh
hhh TTUaVTqTqC

dt
TCVd

−+−= ρ
ρ

 (14) 

subject to the initial condition 
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 The dependence of saturation concentration on 
the temperature is described by the expressions: 

 ⎟
⎠
⎞

⎜
⎝
⎛−=

T
aaTcs

1
0 exp)(  (15a) 

or 
 . (15b) 2

210)( TaTaaTcs ++=
 Often, it is useful to complete the set of balance 
equations (7)-(14) by the equation for the equilibrium 
saturation concentration given as 

 
dt
dT

dT
dc

dt
dc ss =  (16) 

subject to the initial condition 
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 Therefore, the state of the continuous cooling 
crys-tallizer at time t≥0 is given by the sextuple 
[V(t),c(t), csv(t),T(t),Th(t),n(.,t)], and its dynamics is 
described by the population balance model formed by 
the mixed set of partial and ordinary differential 
equations (7)-(14). The time evolution of this system 
occurs in the state space R5×N that is the Descartes 
product of the vector space R5 of volume, 
concentrations and temperatures, and the function 
space N of population density func-tions. 
Consideration of dynamical problems of crystal-lizers 
in this product space, however, seems to be quite 
complex so that hitherto only a few works have 
studied dynamic problems in this space directly. 
Controllability analysis was carried out by Semino 
and Ray [21], while Lakatos and Sapundzhiev [22] 
studied the global sta-bility of crystallizers via 
Lyapunov's Direct Method. In the present study, we 
concentrate on a reduced case, applying a finite-
dimensional state space model based on the four 
leading moments of the crystal size instead of the 
distributed parameter system of Eqs (7)-(14). 

 

Moment equation model 

Since the overall crystal growth rate (1) is a linear func-
tion of size L, the population balance equation (8) can be 
converted into an infinite set of recursive ordinary 
differential equations for the moments (4) of the pop-
ulation density function which take the form 
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 Since the set of Eqs (7)-(16) can be closed by means 
of the first four leading moments, we reduce the infinite 
set of Eqs (17)-(18) to the set of equations governing 
these moments. In this way, expressing the first derivat-
ives of all the state variables, taking into account the 
tem-perature dependence of the parameters, and 
applying the scale factors  
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where st and sV can be chosen arbitrary, we introduce the 
following set of dimensionless variables 
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 Then, the dimensionless scaled equations in the state 
space form are given as: 
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subject to the initial conditions 
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tant positive feedback between the four leading moments 
x The moment equation model (19)-(29) of the con-

tinuous cooling crystallizer is, in principle, a finite di-
mensional dynamical system, generated by reducing 
the infinite dimensional population balance model 
without any simplifying assumptions. The reduced 
state is formed by the ninetuple  
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of scaled, dimensionless variables and the time evolu-
tion of this system occurs in a bounded region 

 of the state space, defined in the following 
manner  
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thus the feasible region of solutions of the dynamical 
system (19)-(29) is formed by the compact domain (32) 
of the state space R9. 

Qualitative feedback analysis 

Since any instability problem can be viewed as a feed-
back of properly phased signals, this difference can be 
explained qualitatively analysing the causal loop dia-
gram, used extensively in system dynamics [23,24]. 
Since a positive feedback destabilizes, while negative 
feedbacks stabilize the systems, in principle, their inter-
actions turn to be decisive for the dynamics of crystal-
lizer. Because of the nonlinearities of crystallizer, the 
dominance of the negative and positive feedbacks may 
change in time during the course of the process what can 
generate diverse patterns of behaviour of the system.  
 Let us consider the causal loop diagram of the mo-
ment equation model in the basic size-independent case, 
presented in Fig.2, similarly to that derived by Lakatos 
[14] for an isothermal MSMPR crystallizer. Here, we 
show only the main negative and positive causal links 
between the variables of Eqs (19)-(28). From the point 
of view of dynamics, the following feedback loops are 
the most interesting parts of this causal loop diagram: 

1. 1) There is a negative feedback in each of Eqs (19)-
(28) due to the draw off of crystals and solution. These 
effects arise in all continuous flow systems naturally, 
and under certain conditions those by themselves are 
capable of stabilizing the crystallizer. 

2. 2) There exists an important negative feedback loop 
y→x2→y generated by autoinhibition of the supersatura-
tion: nucleation and growth of crystals relieves supersa-
turation and inhibits further crystallization process.  

0→x1→x2→x3→x0 that is closed through the nucleation 
rate. 

4. 4) Depending on if the crystallization process is exo-
thermic or endothermic there exists also a positive or ne-
gative feedback between the temperature and the second 
moment of crystal size z→x2→z. In any case, however, 
increasing temperature affects the supersaturation neg-
atively.  
 Note that the concentration of solvent depends on a 
number of other variables but there is no feedback from 
ysv into the remaining variables, i.e. the concentration of 
solvent has no essential influence on the dynamic be-
haviour of crystallizer while the volume of the suspen-
sion has no effect on the dynamics at all.  
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The dynamic behaviour of crystallizers differs 
sig-nificantly on if the primary or secondary 
nucleation is the dominant mechanism of producing 
the new crystals [10, 11]. The main reason of this 
difference lays in the di-verse nature of positive 
feedbacks caused by the different forms of the 
nucleation rates. Namely, derivating both sides of 
Eq.(20) with respect to x3 we obtain inequality  
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for primary nucleation, i.e. in this case the positive feed-
back is rate-decreasing. Similarly, for secondary nuclea-
tion the inequality 
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holds, i.e. in this case the positive feedback is rate-
increasing, forming a feedback of autocatalytic nature.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. Causal loop diagram of the basic size-independent case showing only the main feedback loops  

 
 

Stability and dynamic behaviour 

The qualitative analysis has shown that the variables 
v and ysv does not influence the dynamic behaviour 
sig-nificantly, while zh, being, in principle, a control 
var-iable affects the system only through modulating 
the temperature z.  
 The behaviour of the crystallizer in the 
neighbour-hood of a steady state may be deduced by 
eigenanalysis of the Jacobian matrix of Eqs (19)-(28) 
at this state. The structure of the Jacobian matrix is 
shown in Fig.3 that supports the conclusions of the 
quality analysis.  
 Determining the eigenvalues of the Jacobian 
matrix the characteristic polynomial of the system 
can be built up by means of which the Mikhailov plot 
is constructed and the Mikhailov stability criterion 
[25] can be applied.  
 This criterion seems to be useful for analysing the 
stability of crystallizers, since it provides a simple 
gra-phical means for testing the stability of 
polynomials, al-lows a deep understanding and visual 
presentation of the phenomenon and can be 
formulated also in algebraic terms. 
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Fig.3. The structure of the Jacobian matrix 
of system (19)-(28) 

 
 The Mikhailov plots of the system (19)-(28) are 
shown in Fig.4 as a function of parameter ke in the case 
of primary nucleation, i.e. for eb=0. Since the Mikhailov 
stability criterion says that an nth order real polynomial is 
asymptotically stable if and only if the Mikhailov plot, 
starting at ω=0 from the positive real axis of the complex 
plane goes through n quadrants in turn, the plots in Fig.4 
for ke=1.0 and ke=3.0 indicate stable states, while for 
ke=5.0 and ke=10.0 we have unstable states. The basic 
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values of the parameters in all simulation runs were: 
Dap=5000, Dab=2000, v=1, fin=f=1, g=1, b=3, j=0.4, 
α=35, β=0, βg=1.1, βb=2.6, βp=3.45, b0=6, b1=3, 
b2=0.0,, φin=8.8, αh=30, vh=1, fh=1. 

 
Fig.4. Mikhailov plots of crystallizer for primary 

nucleation as a function of nucleation parameter ke 

 These curves are shown only for smaller values 
of ω, since for large ω values the polynomial 
constructed on the basis of eigenvalues of the 
Jacobian matrix (19)-(28) behaves like (jω)9. 
Therefore, the behaviour at small ω values entirely 
determines the stability of the system.  
 The Mikhailov plot can also be used to count the 
number of unstable zeroes, i.e. if it goes through only 
(n-k) quadrants in turn, then the polynomial has k un-
stable zeros. Plots ke=5.0 and ke=10.0 go through 
quad-rants 1-2-3-2-3-4-1 in turn, what means that it 
goes through only 7 quadrants in turn thus these plots 
repre-sent unstable states showing two eigenvalues 
with pos-itive real parts. As a consequence, these 
eigenvalues are conjugate pairs so that these 
instabilities mean limit cycle oscillations. Indeed, 
Fig.5 shows the projection of development of the 
limit cycle oscillations for ke=10.0 into the R3 
subspace of variables (x0,y,z).  
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Fig.5. Development of the limit cycle oscillations for 

ke=10.0 in the R3 subspace of variables (x0,y,z). 
 
 Fig.6 presents the bifurcation diagram ke–yS in 
which two Hopf bifurcations are seen at ke≈3.3 and 
ke≈15.9. Between these points the crystallizer 

generates limit cycle oscillations with varying amplitudes 
while outside this interval the crystallizer exhibits stable 
steady states.  

 
Fig.6. Bifurcation diagram ke-yS for primary nucleation with 

amplitudes of limit-cycle oscillations 

 When the secondary nucleation becomes the dom-
inant mechanism of forming the new crystals, i.e. when 
ep=0, then the crystallizer exhibits steady state multipli-
city and may have one, two, or even three steady states 
depending on the values of parameters. The detailed 
multiplicity analysis of nonisothermal crystallizers will 
be presented elsewhere, but it can be proved easily that 
for j>0 the system (19)-(28) always has a trivial 
boundary (washout) steady state. Under such conditions 
the crystallizer can not be ignited because of the small 
nucleation rate so that the washout steady states are 
always stable. Fig.7 presents the bifurcation diagram j-yS 
in the case of magma-dependent secondary nucleation 
where two regions are set by a boundary bifurcation 
point at j≈0.8. In the first region the crystallizer has two 
stable steady states, while in the second region only a 
unique washout steady state exists.  

 
Fig.7. Bifurcation diagram j-yS for secondary nucleation with 

boundary bifurcation of the washout steady state 

 The bifurcation diagram Dab-yS of similar form is 
shown in Fig.8 in the case of magma-dependent second-
ary nucleation where two regions are set by a boundary 
bifurcation point at Dab≈460. Here, the first region ex-
hibits a unique washout steady state while two stable 
steady states exist in the second region. 
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Fig.8. Bifurcation diagram Dab-yS for secondary nucleation 
with boundary bifurcation of the washout steady state 

 In the case of magma-dependent secondary 
nuclea-tion limit cycle oscillations have not been 
observed in the feasible region of parameters. Fig.9 
presents some tran-sients of dimensionless 
concentration as a function of parameter Dab. 
Increasing Dab increases the willingness of 
crystallizer to generate damped oscillations in the 
tran- 

sient behaviour but next the crystallizer achieves 
stable stationary states. This phenomenon is 
important when designing the controlling system for 
s crystallizer.  

 
Fig.9. Damped oscillations of transients of crystallizer in 

the case of magma-dependent secondary nucleation  

Conclusions 

The stability and bifurcation analysis of continuous 
cooling crystallizers, carried out by means of a 
detailed moment equation model, has shown that 
there is a signi-ficant difference between the dynamic 
behaviour of crystallizers with primary and 
secondary nucleation. Continuous cooling 
crystallizers may exhibit limit cycle oscillations and 
multiple steady states. In the case of magma-

dependent nucleation there exists always a washout 
steady state where the crystallizer is not ig-nited. The 
Mikhailov plots and criterion, constructed on the basis of 
eigenanalysis of the Jacobian matrix al-lowed a very 
useful visual form of stability analysis in the frequency 
domain.  
 The causal loop diagram showing the negative and 
positive causal links between the model variables of 
crystallizer revealed that a positive feedback loop exists 
between the four leading moments of crystal size dis-
tribution closed through the nucleation rate. The auto-
inhibition generated negative feedback is closed mainly 
through the crystal growth rate although during the onset 
of crystallization the nucleation rate proves to be the 
dominant factor also in this feedback loop. The tem-
perature with the second moment and solute concentra-
tion forms feedbacks of positive or negative polarity de-
pending on if the crystallization process is exothermic or 
endothermic. Interactions of these feedbacks bet-ween 
the variables with the kinetic nonlinearities appear to be 
decisive for the instabilities of crystallizers.  
 Simulation studies concerned with the steady state 
multiplicity and stability patterns, as well as with the 
dynamic behaviour of cooling crystallizers allow us to 
conclude that continuous crystallizers have a broad range 
of complex behaviour in both the steady and dy-namic 
states. A further examination of these phenomena seems 
to be useful for both a better understanding of the 
crystallization process itself, and for improving the ope-
ration, control, and design methods of industrial crys-
tallizers. 
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Notation 

a    - constant of the crystal growth rate [m-1] 
b - exponent of secondary nucleation rate 
Bp - primary nucleation rate [no m-3s-1] 
Bb - secondary nucleation rate [No m-3s-1] 
c   - concentration of solute [kgm-3] 
cs   - equilibrium saturation concentration [kgm-3] 
Dap - dimensionless parameter for primary nucleation  
Dab - dimensionless parameter for secondary nucleation  
g  - exponent of crystal growth rate  
G   -  crystal growth rate [ms-1] 
Im  -  imaginary part of a complex number 
j   -  exponent of secondary nucleation rate  
ke   -  parameter of primary nucleation rate  
kg   -  rate coefficient of crystal growth [m3g+1 kg-g s-1] 
kp   -  rate coefficient of primary nucleation [no m-3s-1] 
kb   -  rate coefficient of secondary nucleation [no m3b-3 

kg-b s-1] 
kV  -  volume shape factor  
L   -  linear size of crystals [m]  
n   -  population density function [no m-4] 
Re  -  real part of a complex number 
sc - scale factor of the concentration [kg-1m3] 
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sm   - scale factor of the mth order moment of n  
  (m=0,1,2,...)  
xm  - mth order dimensionless moment (m=0,1,2,...)  
y   -  dimensionless concentration of solute  
Greek letters 
α   -  dimensionless parameter  
ß   -  dimensionless parameter  
γ -  dimensionles crystal growth rate  
ε    -  viodage of suspension  
µm  - mth order moment of n [mm-3] 
Θ -  dimensionless nucleation rate 
ρc -  density of crystals [kgm-3] 
ξ -  dimensionless time  
Subscripts 
0   -  initial value  
in  -  inlet value  
p   -  primary nucleation 
b   -  secondary nucleation  
S   -  steady state 
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