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Safety regulations demand the elimination of random mistakes and the reliable operation of production units. However,
the control and maintenance of batch and semi-continuous processes haalways been difficult. In this paper, a way of
preventing malfunctions in batch and semi-continuous processes is presented by using appropriately designed buffer
tanks. A stochastic model was investigated in which batch and continuous subsystems were linked by an intermediate
storage tank. The main concern was the reliability of the system. Reliable operation was defined as neither the exhaustion
of raw materials nor the excessive accumulation of them. The counting processes that describe the random batch-input
and random batch-output processes are supposed to be independent homogeneous Poisson processes with different
rates. By introducing a function that describes the material in storage, reliable operation is defined as when this function
satisfies two inequalities for a time interval of any duration. By applying probabilistic methods, an integral equation is
set up for the the reliability. Nevertheless, its analytical solution cannot be determined, hence the values according to a
Monte Carlo simulation are approximated. By applying this method, a link could be identified between the necessary initial
buffer and tank capacities that belong to a reliability level. Economic investigations were conducted to help determine the
optimal initial buffer and tank capacities that satisfy the appointed reliability level.

Keywords: intermediate storage, stochastic modelling, batch system control, Monte Carlo simula-
tion, economic optimization

1. Introduction

During the operations of chemical processes, one of-
ten encounters uncertainties. These events can stem from
equipment failures, mistakes made by staff managing the
process, or bad managerial decisions. These mistakes can
often lead to malfunctions which cannot be tolerated in
processes using dangerous or very expensive materials.
A serious malfunction can cause damage to equipment,
force the process to stop, or, in the worst-case scenario,
endanger the lives of operators. All of these can cause
serious financial damage to a company. Since these mal-
functions carry considerable risks, some procedures are
designed to be able to withstand and mitigate the effects
of random events. A good control system with trained
operators can be the key to neutralizing malfunctions.
However, in batch and semi-continuous processes the im-
plementation of control systems has always been diffi-
cult. One of the best ways to manage these processes is
the ISA-88 standard. ISA-88 provides a consistent set of
rules as well as terminology for batch control in addition
to defining the physical model, procedures and recipes.
However, the implementation of a control system which
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is up to standard is expensive given the costs of equip-
ment, salaries of operators, etc. In the light of these fac-
tors, an attempt was made to devise a method for the de-
sign and operation of intermediate storages to mitigate
the effects of malfunctions and reduce overall costs of
equipment and operators in a plant.

Intermediate storages, also known as buffer tanks, are
important units in the chemical industry. Throughout the
paper the investigated units will be referred to as buffer
tanks, intermediate storages or simply as tanks and stor-
ages. With these storages the production process can be
made safer by creating an emergency reserve to provide
raw materials for the operation of other units. The design
of buffer tanks is not trivial even when uncertainties are
disregarded which are present during the production pro-
cess [1]. However, to ensure the reliable operation of a de-
vice, which is even subject to uncertainties, a more com-
plex approach is required. Therefore, it could prove bene-
ficial to use stochastic models for the design of units since
with these models all random variables which define the
operation process can be taken into account. Operating
and design parameters of the buffer tank must be chosen
so that the amount of material stored is always sufficient
to satisfy the demands of customers while also providing
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a reserve of the raw material in question in the event that
other units malfunction. Nowadays, models used to de-
termine these parameters under different operating con-
ditions are a significant focus of research [2–5].

These models are closely related to those applied in
insurance mathematics to calculate the amount of capi-
tal and insurance prices required to operate an insurance
company so that the firm can cover the damages of its
clients while still turning a profit. Many of the techniques
used in that field can be applied following minor adjust-
ments in these cases as well [5, 6].

During the study of chemical processes, infinite inter-
vals of time are often presumed, meanwhile, the proba-
bilities of the material in the tank overflowing or being
exhausted are investigated separately. If the process is in-
vestigated over an infinite time interval, then the function
that defines the reliability of the system can be expressed
as a solution of Volterra- or Fredholm-type integral equa-
tions. Despite being difficult to solve, it must be noted
that they are easier to handle than those that define re-
liability over a finite time interval. The main reason for
this, in the case of finite intervals, is that not only the first
occurrence but also the time remaining during the time
interval contribute to the reliability of the system. In the
case of infinite time intervals, this quantity is constant,
namely infinity. If only the probability of the raw material
in the tank being exhausted is studied as a function of the
initial buffer capacity or the probability of it overflowing
as a function of the tank capacity, then only the probabil-
ity of malfunction as a function of one variable need be
investigated [5, 6]. Solving equations with one variable
is simpler than solving integral equations that describe
the process as a function of two variables, namely initial
buffer and tank capacities, supplemented with the time in-
terval. The economical optimization of similar processes
has already been conducted in some simpler cases [7].

In this publication, the focus of interest was on inves-
tigating the process over a fixed finite time interval where
the reliability of the system was treated as a function of
two variables. A chemical process was examined where
a raw material was loaded into a buffer tank from a batch
reactor. Some of this raw material was drained from the
tank at randomly chosen intervals for customers as re-
quired. Moreover, the raw material could be constantly
extracted which fed the unit after the tank had been used
to separate components of the raw material and accumu-
late the key component. This differs from popular models
which investigate such processes that by and large only
deal with a batch feed and continuous extraction of the
raw material.

To investigate the model, a function was defined to
express the reliability of the process as a function of the
initial buffer and tank capacities. The integral equation
satisfied by the function, however, could not be solved an-
alytically, therefore, a Monte Carlo simulation was used
to approximate the reliability of the process numerically.

Based on the investigations using one variable, a func-
tion was applied to the numerical results whose param-
eters were identified using the least squares method. By
applying this function, the initial buffer and tank capac-
ities required could be calculated to ensure the reliable
operation of the unit over the examined finite time in-
terval. However, the required degree of reliability could
be achieved by an infinite number of parameter combina-
tions. From among these combinations that ensure a safe
operation, the optimal parameter pair was determined us-
ing economical optimization by considering the incomes
and expenditure of the process.

To investigate a process like this based on actual data
from a plant, a thorough knowledge of the distribution
functions of every random variable present is required. To
acquire such data, information about equipment failures
or mistakes made by the operators is required which is
documented in every chemical plant. Should the demand
for the raw material vary, data with regard to economic
trends from previous years can be used. If the amount
of data is sufficiently large, then various methods can be
used to compare the sample with a reference probability
distribution. In this way a known cumulative distribution
function can be used to approximate the empirical distri-
bution function of the sample.

In this publication, instead of using authentic data, as-
sumptions about the distribution of the random variables
were made, however, the techniques shown in this paper
can be applied to different distributions as well and by us-
ing our methods an answer to design and operation prob-
lems using authentic data can be found.

2. The investigated model

The change in mass of a raw material in a buffer tank was
studied. The intermediate storage acts as a link between a
batch system which feeds the tank and a batch in addition
to a semi-continuous processes which both drain material
from the tank (Fig. 1). The process was studied over the
finite time interval of [0, Tmax].

Over the course of the chemical process, the product
is synthesised periodically in a batch reactor (1). Then
the product, which is a mixture of byproducts, and the
key component are fed into the buffer tank (2). The buffer
tank, also known as the intermediate storage (2), is linked
to a continuously operational unit, e.g. a fractionating
column (3), which is responsible for purifying the prod-
uct by separating the byproducts from the key compo-
nent. However, as with most processes that produce mul-
tiple components, consumer demand is not exclusively
focused on the key component but on the raw mixture
of products as well. The goal of the plant is to design and
operate the intermediate storage in a way which supplies
the necessary amount of raw materials for the continuous
subsystem whilst satisfying the demands of the clientele.
The frequency and volume of consumer demand for the
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Figure 1: Illustration of the examined process (1. batch
reactor, 2. buffer tank, 3. fractionating column).

raw products as well as those of equipment failures and
mistakes made by operators within the batch subsystem
occur randomly. Due to equipment failures or mistakes
made by operators, the batch feeds that originate from
the reactor (1) can vary in terms of both mass and time of
arrival. The varying amounts and schedule of both feeds
and drainings can cause two types of malfunctions to oc-
cur, the materials in the tank can either overflow or be
completely exhausted which will hinder the rate of pro-
duction in the continuous subsystem and render it impos-
sible to meet consumer demands.

In the following, the mathematical assumptions of this
problem is discussed. Let z0 denote the initial buffer ca-
pacity of the intermediate storage, zmax represent the ca-
pacity of the tank, and the duration of the time intervals
between the consecutive batch feeds be tbi , i = 1, 2, · · ·
It is assumed that these intervals are independent random
variables of the exponential distribution with parameter
λl. In the same way, let the duration of the time inter-
vals between consecutive drainings from the intermedi-
ate storage be tli, i = 1, 2, · · · which like the feeds are
independent random variables of the exponential distri-
bution with parameter λl. The number of feeds over time
interval T denoted by Nb(T ), and the number of peri-
odic drainings by Nl(T ), which, because of our assump-
tions, are random variables of Poisson distribution with
parameter λb−T or λlT , respectively. The amount of raw
material fed into the intermediate storage during batch i
is denoted by yb

i , similarly the ith draining from the in-
termediate storage is represented by yl

i. The character c
represents the rate at which the raw product was drained

from the intermediate storage by the continuous subsys-
tem. The amounts of both the fed and drained batches are
assumed to be random variables of identical distribution.
The functions gb(y)and gl(y) are their respective proba-
bility density functions. It is supposed that the amounts of
materials in addition to the durations of feeds and drain-
ings are independent of each other. Assuming the mate-
rial in the intermediate storage was neither exhausted nor
overflew throughout the operating time T then equation

0 < z0 +

Nb(T )∑
i=1

yb
i −

Nl(T )∑
i=1

yl
i − cT ≤ zmax (1)

must be satisfied by the amount of material currently in
the buffer tank. Since these inequalities contain random
variables, they can only be fulfilled with a certain prob-
ability. The mass of material in the intermediate storage
can be expressed by equation

z(T ) = z0 +

Nb(T )∑
i=1

yb
i −

Nl(T )∑
i=1

yl
i − cT, (2)

the reliability of the system, i.e. the probability that the
material neither overflows nor is exhausted throughout
the time interval [0, Tmax], can be defined as shown in
equation

Ψ(z0, zmax, Tmax) = P (0 < z(T ) ≤ zmax)

for all 0 ≤ T ≤ Tmax. (3)

Conversely, 1−Ψ (z0, zmax, Tmax) is the probability of a
malfunction occurring, also referred to as a failure. Both
are defined as functions of the initial buffer and tank ca-
pacities as well as the operating time.

The expectation of z(T ), i.e. E(z(T )), can be ex-
pressed by

E (z (T )) = E
(
yb
i

)
λbT − E

(
yl
i

)
λlT − cT + z0 (4)

If 0 > E (z (T )) − z0, then the process has decreasing
tendency in average. If 0 < E (z (T )) − z0, then an
overflow can be expected over a large time interval. If
0 = E (z (T ))− z0, then the process is in equilibrium.

To evaluate the process, the time the failure first
occurred is required during the interval [0, Tmax],
when the amount of material exceeded the capac-
ity of the tank or was equal to zero. The time
of failure is defined as the following function:

TF (z0, zmax, Tmax) =

{
inf {T : 0 ≤ T ≤ Tmax : z(T ) ≤ 0 or zmax < z(T )} , if such a T value exists
∞, if for all 0 ≤ T ≤ Tmax 0 < z(T ) ≤ zmax

(5)
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This time point is a random variable too, its expecta-
tion,E(TF (z0, zmax, Tmax)·1TF (z0,zmax,Tmax)<∞), will
be denoted by E(TF ) and its standard deviation by
D(TF ). They are finite, as 0 ≤ TF (z0, zmax, Tmax) ·

1TF (z0,zmax,Tmax)<∞ ≤ Tmax is adhered to.

By applying the renewal theory [8], it can
be proven that Ψ satisfies the integral equations

Ψ (z0, zmax, Tmax) =
λl

λl+λb


min

( z0
c
,Tmax

)∫
0

z0−ct1∫
0

Ψ (z0 − ct1 − y1, zmax, Tmax − t1) · λle−λlt1gl(y1)dy1dt1 + e
−λlTmax

+

+
λb

λl+λb


min

( z0
c
,Tmax

)∫
0

zmax−(z0−ct2)∫
0

Ψ (z0−ct1+y2, zmax, Tmax−t2) · λbe
−λbt2gb(y2)dy2dt2+e

−λbTmax

 , (6)

if cTmax ≤ z0 and

Ψ (z0, zmax, Tmax) =
λl

λl+λb


min

( z0
c
,Tmax

)∫
0

z0−ct1∫
0

Ψ (z0−ct1−y1, zmax, Tmax−t1) · λle−λlt1gl (y1) dy1dt1

+

+
λb

λl+λb


min

( z0
c
,Tmax

)∫
0

zmax−(z0−ct2)∫
0

Ψ (z0−ct2+y2, zmax, Tmax−t2) · λbe−λbt2gb(y2)dy2dt2

 (7)

if z0 < cTmax.

To design a buffer tank which is capable of operat-
ing with a desired degree of reliability of 1 − α where
α denotes the probability of malfunction during the time
interval [0, Tmax], solutions to equation

Ψ (z0, zmax, Tmax) = 1− α (8)

must be found.

3. Parameter dependence of the reliability
of the process and the expectation of
failure time

Since the integral equation proved to be exceedingly dif-
ficult to handle analytically, a Monte Carlo simulation to
approximate the probability values for different parame-
ters was used. Monte Carlo simulations are more widely
accepted tools in dealing with stochastic models [9, 10].

For the simulation environment, MATLAB R2015a
[11] was used. Realization of the process when the pa-
rameters Tmax = 50 h, λl = 0.3 h−1, λb = 0.4 h−1 and
c = 5 kgh−1 were chosen is demonstrated in Fig. 2. The
mean of the input suddenly increased in the function z(t),
the withdrawals from the batch caused sudden decreases
and continuous withdrawal resulted in a reduction in lin-
ear parts.

The amounts drained and fed were defined as ran-
dom variables from the Gaussian distribution. The initial
buffer capacity was 50 kg and continuous withdrawal re-
sulted in a linear decrease in the amount of material. At
T = 1 h, the tank was filled. The amount of material
in the tank increased by 3 kg, then the continuous with-
drawal resumed. A little bit later a sudden withdrawal

occurred. Similar events were repeated at random time
points with random quantities. At T = 7.8 h a large with-
drawal took place and the material became exhausted,
therefore, z(t) became negative. The time of failure, in
this case the time a shortage was observed, was TF = 7.8
h.

Although the process was investigated over an inter-
val of time, it is sufficient to compute the values of z(t)
only at those points where sudden changes occurred and
at the endpoint of the interval. An overflow could only
occur if an input was present. Both continuous and batch
withdrawals can cause shortages. If the amount of mate-
rial at the time points of batch inputs and outputs is com-

Figure 2: The change in the mass of material in the buffer
tank.
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Figure 3: The probability of a failure as a function of the
initial buffer and tank capacities.

puted, it can be determined whether or not the continuous
withdrawal caused the shortage during the time interval
bounded by the last two batch events. If it did, the time
point of the shortage can also be computed by solving a
linear equation.

By applying a Monte Carlo simulation, the proba-
bilities were approximated by relative frequencies and
the expected failure times were estimated by the average
times. 10, 000 simulations were conducted which yielded
an accuracy 0.01.

For example, Tmax = 50 h was fixed and the param-
eters of the process were λl = 8 h−1, λb = 12 h−1 and
c = 12 kg h−1. The amounts drained and fed were de-
fined as random variables from the Gaussian distribution
with a mean of 8 kg and a standard deviation of 2 kg.
With the aforementioned parameters, the probability of
malfunction was calculated and the following results ob-
tained for the process under the indicated conditions (Fig.
3).

Figure 4: The expected malfunction times as a function of
initial buffer and tank capacities.

Figure 5: A histogram of the malfunction times.

In Fig. 3 it can be seen that when the tank capac-
ity was fixed, the probability of failure increased as a
function of the initial amount of material. This can be
explained by the fact that although the likelihood of a
shortage decreased, the amount of material in the tank
tended to increase, therefore, the free volume of the tank
decreased, hence the increase in the probability of over-
flow. On the other hand, when the initial buffer capacity
was fixed, the probability of a failure decreased as a func-
tion of the tank capacity. This tendency can be explained
by the fact that the probability of overflow decreased and
stemmed from the fact that λb was greater than λl mean-
ing that the average time intervals between feeds were
smaller than those between drainings. This caused the
process to be more prone to malfunction due to overflow.

The times of failures (TF ) were investigated as well.
Expected failure times are shown in Fig. 4 as a func-
tion of the initial buffer and tank capacities. If no fail-
ure occurred, then TF was equal to zero, therefore, the
expected TF was close to zero as well.

A histogram of the malfunction times is provided in
Fig. 5 when z0 = 400 kg and zmax = 1500 kg. It demon-
strates that no quick failures occurred due to a shortage
of material resulting in an increase in the amount of ma-
terial and the tank overflowing. The distribution of the
malfunction time in this case is unimodal and the degree
of dispersion is quite large. The dispersion of the mal-
function time as a function of the initial buffer and tank
capacities can be seen in Fig. 6 which demonstrates that
when the tank is half full, large standard deviations with
regard to the malfunction times were calculated. In the
case of large or small capacities, the malfunction time
can be accurately predicted as the degree of dispersion
is small.
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Figure 6: The standard deviation of the malfunction times.

4. Design of the tank and initial buffer ca-
pacities for a given reliability level

During previous research, only models that consisted of
a batch feed and continuous drainage in the absence of
batch drainage [5–7] were studied. In the papers that deal
with these models, it has been published that the integral
equation for the reliability of the unit could be solved
analytically in special cases where the process over an
infinite time interval as a function of one variable is ob-
served. In these special cases the solutions to the equation
were mainly exponential in form or the linear combina-
tion of exponential functions [5, 6]. Consequently, when
fitting a function to simulated data, a function was chosen
which exhibits similar characteristics.

By fixing Tmax, seeking Ψ is suggested as a function
of the initial buffer capacity x and tank capacity y, in the
form of equation

H (x, y) = 1−
(

1− e(−Ax)
)C(

1− e(−B(y−x))
)D

,

(9)
where x < y; A, B, C, and D are positive parameters
which have to be optimized. Numerical values of Ψ were
computed by a Monte Carlo simulation for some values
of z0 and zmax, and the parametersA–D were determined
using the least squares method, by minimizing function

S (A,B,C,D) =
∑
r

∑
s

(Ψ (xr, ys)−H (xr, ys))
2

(10)
This function was minimized numerically. The approxi-
mated function exhibited a fit to the original function of
95 % on average which was calculated using a Monte
Carlo simulation. The error of the fitting was inversely
proportional to the number of simulations used to model
the system as well as the number of points with regard to
the tank and initial buffer capacities investigated. Since
the quality of the fit was high (95 % on average), it can
be assumed that even if the minimum identified is a lo-

Figure 7: The relationship between the tank and initial
buffer capacities that correspond to different levels of re-
liability 1− α.

cal minimum, the approximation is sufficient for use in
further computations.

Using the fitted function, equation

Ψ(x, y) ∼ H (x, y) =

= 1−
(
1− e−Ax

)C(
1− e−B(y−x)

)D
= 1− α. (11)

was solved. Appropriate initial buffer and tank capacities
for the process are provided by the solution to the equa-
tion above with a reliability of 1−α over the time interval
[0, Tmax].

A link between the values of x and y is provided by
the solution to the equation, namely equation

y = x−
ln

(
1−

(
1− α

(1− exp(−Ax))C

)1/D
)

B
. (12)

This relationship, using the parameter set presented in the
previous section, is given in Fig. 7.

The interval of the initial buffer capacity was
[100, 500] kg and the step sizes applied were 100 kg.
The interval of the tank capacity was [1000, 2500] kg
and the step sizes applied were also 100 kg. To elimi-
nate numerical inaccuracies, the values of the time inter-
vals were transformed into the time intervals [0, 100]. By
transforming the time intervals into a subset of [0, 100],
A = 0.4966, B = 0.12, C = 0.9324, and D = 86.4875
were computed. After the computations, the results were
transformed into the original time intervals. The required
tank capacities as a function of the initial buffer capacity
in the intermediate storage corresponding to the reliabil-
ities 1 − α = 0.95, 0.975, . . . 0.99 can be seen in Fig.
7.

It can be seen that with some initial values a reliabil-
ity of 0.99 is infeasible since the likelihood of a short-
age itself exceeds level α. The minimum initial amount
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Figure 8: The required initial buffer capacity correspond-
ing to a fixed tank capacity of 1, 900 kg and reliability
level of 0.8 as a function of the draining intensity (c) .

of material in the intermediate storage with a reliability
of 1− α can be expressed by

− ln
(

1− (1− α)
1/C
)

A
< xmin (13)

From Fig. 7 it can be seen that if the lower limit is used
as the initial buffer capacity, the corresponding storage
capacity is enormous. The reason for this is the fact that
the likelihood of a shortage is equal to α and an over-
flow is undesirable, therefore, the tank capacity must be
very large. According to the results shown in Fig. 7, this
value is approximately 150 kg. Moreover, if z0 exceeds
a certain level, the function is by and large linear. It is
shown by the linear part of the function that when the ini-
tial buffer capacity exceeds 250 kg, the likelihood of a
failure due to exhaustion of material is almost zero. The
likelihood α of an overflow is provided by the difference
between the tank and initial buffer capacities. Therefore,
to calculate the required tank capacity over this time in-
terval, the volume which can ensure that the likelihood of
overflow will remain as α is simply added to the buffer
capacity in the intermediate storage.

Finally, the minimum tank capacity that corresponds
to a given level of reliability can be determined by nu-
merically minimizing function

y = x−

ln

1−

(
1− α

(1− exp(−Ax))
C

)1/D


B
(14)

For the reliability level 1− α = 0.95, the minimum tank
capacity is approximately 1, 820 kg and the required ini-
tial buffer capacity approximately 245 kg.

By fixing the tank capacity and reliability level, the
dependence of the required initial buffer capacity on the
withdrawal rate was investigated. The values of the re-

Figure 9: The required drainage intensity corresponding
to a fixed tank capacity of 1, 900 kg and a reliability level
of 0.8 as a function of the initial buffer capacity.

quired initial buffer capacity were determined numeri-
cally according to the secant method. The reliability level
was 1−α = 0.8 and the tank capacity was 1, 900 kg. The
results can be seen in Fig. 8.

According to this result, by increasing the withdrawal
rate, the required initial buffer capacity increases sharply
which facilitates control of the process.

Finally, the required drainage intensity corresponding
to the reliability level of 1 − α = 0.8 and fixed tank ca-
pacity zmax = 1, 900 kg as a function of the initial buffer
capacity was provided (Fig. 9). It can be seen that it is
also a monotonically increasing function, but the rate of
increase is usually less than in the case of Fig. 8.

5. Economic investigations

According to Fig. 7, if the minimum required amount of
initial buffer capacity is supplied then the required level
of reliability of the process can be achieved by an infinite
number of combinations of tank and initial buffer capac-
ities. To determine the optimal combination, economic
evaluations of the design are recommended. It is assumed
that following a possible failure, the process is restarted,
however, such a restart is time-consuming and expensive.
During the calculations both the income and expenditure
associated with each parameter are taken into account.
These include the costs of raw materials, the buffer tank,
malfunctions and repairs as well as the income generated
from sales of both the key component and raw product. To
determine the income generated by the process at time T ,
equation

Q (T ) = Gkey (T ) +Graw (T )−Kmat (T )−
− Kshort (T )−Krep (T )−Ktank (15)

was used.
The symbols G and K represent the income and ex-

penditure of the process in USD. The profitability of

46(2) pp. 91–100 (2018)



98 TARCSAY, MIHÁLYKÓ-ORBÁN, MIHÁLYKÓ

the whole process, (Q) stems from the income gener-
ated from the sales of the key component (Gkey) and raw
product (Graw). The income is reduced by the various ex-
penses of the process, namely the costs of raw materials
(Kmat), restoring the buffer capacity of the tank in case
of exhaustion (Kshort), repairs (Krep) and the buffer tank
itself (Ktank). The method of calculating each source of
income and expenditure is shown below.

The main goal of the process is to produce the key
component, which is isolated in the continuous subsys-
tem. To calculate the profit that stems from this, equation

Gkey (T ) =

T − Nrep(T )∑
i=1

Trep

 cβkey (16)

was used. In this equation, βkey denotes the sale price of
the key component (USD kg−1), T represents the dura-
tion of the process throughout which the profit (h), the
number of malfunctions (Nrep(T )), and the random time
of repair (Trep) during each malfunction are examined.
Additionally, the plant secures an income from the sales
of the raw product as well as the remaining raw product at
the end of the production process, which can be defined
as shown in

Graw (T ) = βraw

δ
z0 −

T − Nrep(T )∑
i=1

Trep

 c +

+

Nb(T )∑
i=1

yb
i −

Nl(T )∑
i=1

yl
i

+

Nl(T )∑
i=1

yl
i

 (17)

where βraw denotes the sale price of the raw product
(USD kg−1) and δ is a factor which defines the price at
which the remaining raw product can be sold following
production.

Among the expenses, it should be mentioned that the
cost of raw materials used for the production of the raw
product and the cost of the initial raw product in the tank
are calculated according to equation

Kmat(T ) = γmat

Nb(t)∑
i=1

yb
i + z0γmat (18)

where γmat is the cost of the raw material (USD kg−1).
In the event of its exhaustion, additional raw product is
required to restore the initial buffer capacity of the tank
and the cost of this is shown in

Kshort(T ) = Nshort(T )z0γmat, (19)

where Nshort(T ) denotes the number of malfunctions
caused by exhaustion during time T .

Finally, the cost of repairs and installing the interme-
diate storage itself need to be considered. To determine
the installation costs, the installation factor of the tank
(f ) and the cost of the tank (γtank in USD) were taken

Figure 10: Mean profit as a function of the initial buffer
and tank capacities.

into account. To determine the expense of repairs, the
parameter γrep was used to represent the cost of repairs
(USD h−1) which was calculated according to equations

Krep(t) =

Nrep(t)∑
i=1

Trepγrep (20)

and
Ktank = f z0.6

max γtank. (21)

The cost of installing the buffer tank was calculated ac-
cording to references found in the literature [12].

The mean of the profit was investigated according
to the reliability level of 0.95 ≤ 1 − α using a Monte
Carlo simulation and its optimum was calculated using
the grid method. It is shown by the results that if the re-
liability of the system is high, then the costs of repairs
and malfunctions in general are negligible compared to
the cost of storage. As a result, the maximum profit was
achieved close to the minimum storage capacity which
is shown in Fig. 10. This value roughly corresponds to
the minimum of the investigated boundary, using a reli-
ability of 0.95. To generate this figure the following pa-
rameters were used: βkey = 120 USD kg−1, δ = 0.3,
γmat = 80 USD kg−1, βraw = 100 USD kg−1, f = 100
USD kg−0.6, γtank = 12, 000 USD, mtrep = 0.5 h, and
σtrep = 0.29 h, where repair times were independent ran-
dom variables of the uniform distribution during the time
interval [0, 1]. The maximum profit according to these
calculations is 4.76 · 104 USD, which can be achieved
by tank and initial buffer capacities of 2, 101 kg and 389
kg, respectively.

6. Conclusion

In this paper, a stochastic storage model was investigated.
Random batches as inputs and outputs, as well as contin-
uous withdrawal were allowed. A Monte Carlo simula-
tion was used for the investigation. An analytic function
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was fitted to the simulated data, which provided a link
between the initial buffer and tank capacities that corre-
spond to a given level of reliability.

The results agree with engineering practice. Although
the data for the research did not stem from authentic
sources, by utilizing data from the industry, the distribu-
tion of the random variables present during the process
could be determined using standard statistical methods.
Therefore, the method can be a useful supplement during
the design phase of a chemical plant and also be utilized
to help simplify the overall control of a chemical process.

Symbols

Small letters

c draining intensity (kg h−1)
f installation factor of a tank (kg−0.6)
g probability density function (h−1)
m expectation
x fixed initial buffer capacity (kg)
y fixed tank capacity (kg)
yb mass of batch fed into the tank (kg)
yl mass of batch drained from the tank (kg)
z mass of material (kg)

Capital letters

A,B,C,D fixed parameters of the approximated
failure probability function

G income (USD)
E expectation
H approximated failure probability function
K expenses (USD)
N number of events during time

interval [0, Tmax]

P probability
Q net income (USD)
T time (h)
TF time of failure (h)

Greek letters

α probability of malfunction
β sale price (USD kg−1)
γ cost (USD kg−1)
δ ratio of decrease in material value
λ parameter of exponential distribution (h−1)
σ standard deviation
ψ function describing the probability of reliable

operation during time interval [0, Tmax]

Indices

0 initial
b feed
i index of event (i = 1, 2, · · · )
rep repair
short material exhaustion
l draining
mat reactant
max maximum
min minimum
r the number of mesh points of the initial

buffer capacity

s the number of mesh points of the tank capacity
t time
raw raw material
tank tank
key key component
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