

HUNGARIAN JOURNAL OF

INDUSTRY AND CHEMISTRY
Vol. 44(2) pp. 85–91 (2016)

hjic.mk.uni-pannon.hu
DOI: 10.1515/hjic-2016-0010

SIMULATION OF ELECTRICAL GRID WITH OMNET++ OPEN SOURCE
DISCRETE EVENT SYSTEM SIMULATOR

MILÁN SŐRÉS AND ATTILA FODOR*

Department of Electrical Engineering and Information Systems, University of Pannonia,
Egyetem út 10., Veszprém, 8200, HUNGARY

The simulation of electrical networks is very important before development and servicing of electrical networks
and grids can occur. There are software that can simulate the behaviour of electrical grids under different
operating conditions, but these simulation environments cannot be used in a single cloud-based project,
because they are not GNU-licensed software products. In this paper, an integrated framework was proposed
that models and simulates communication networks. The design and operation of the simulation environment
are investigated and a model of electrical components is proposed. After simulation, the simulation results were
compared to manual computed results.

Keywords: energy transmission, electrical networks simulation, distributed energy systems

1. Introduction

The simulation of electrical networks is important
before network planning, development, servicing, etc. is
conducted. There are many planning and simulation
software solutions on the market, which can simulate
electrical networks and grids, e.g. MATLAB, EPLAN,
WSCAD.

The problem with commercial simulation software
is that such software packages cannot be ported to a new
system. For example, if the development of a cloud-
based electrical network and grid simulation system is
required, standard simulation software products and
methods cannot be used. To solve this problem, a
simulation engine was used, which possesses a GNU
licence. The OMNeT++ Discrete Event Simulator
(DES) [1] was chosen. Mets et alia [2] have previously
used the OMNeT++ simulator environment.

OMNeT++ is an extensible, modular, component-
based C++ simulation library and framework, primarily
for building network simulators. OMNeT++ is not
supported directly by the simulation of an electrical
grid. To solve this incompetency, a model of the most
important electrical components was constructed and as
a result, the general simulation engine can be used for
cloud-based electrical grid simulation. Two methods
were implemented in our OMNeT++ software, which
investigated their mathematical foundations, as well.

*Correspondence: fodor.attila@virt.uni-pannon.hu

2. Simulated Network

According to load distribution the electrical distribution
system can be classified as:

• Fed at one end with one load at the other end;
• Fed at one end with more loads;
• Fed at both ends;
• Radial;
• Ring;
• The distribution system.
To test the OMNeT++ and model of the developed

components, a network architecture was chosen, which
is convenient and compatible with normal methods for
planning of electrical networks. A system has been
simulated, which is fed at both ends and consists of
three loads (Fig.1).

Of course, this OMNeT++ simulation project can
simulate any distribution systems, though exact values
will only be calculated in this case. To simplify our
calculations, the wire parameters shown in Table 1 were

Figure 1. Distribution system fed at both ends with
three loads.

Table 1. Wire parameters

ρ 1.85⋅10-8 Ωm
q 1 mm2
l1 27.027 m
l2 54.027 m
l3 27.027 m
l4 27.027 m

 SŐRÉS AND FODOR

Hungarian Journal of Industry and Chemistry

86

considered.
The resistances of all sections of wire are

computable using Eq.(1). The calculated resistances of
the sections of wire are R1 = R3 = R4 = 1 Ω and R2 = 2 Ω,
which were used in the OMNeT++ simulation.

 R = 2 ρ l / q (1)

The selected resistance values are far from the
resistance of wire used in real distribution systems, but
the calculations are simplified and the illustration of the
results more obvious. The values of current loads for
each load were I1 = 10 A, I2 = 16 A, and I3 = 5 A.

2.1. Classical Method of Calculating the
Voltage Drop

First, the voltage drop of a distribution system was
simulated, in order to calculate the voltage drops using
the classical method. Our system consists of three loads
and it is fed from both ends.

The current of the first and second feeding points
should be II and III, respectively. By applying
Kirchhoff’s Law, Eq.(2) is defined as:

 II + III = I1 + I2 + I3 . (2)

The total length of the wire is calculated as:

 Σ l = l1 + l2 + l3 + l4 . (3)

If II and III are known and the load currents are
subtracted from one of them, a load that is fed by both
ends is identified [4, 5]. Afterwards, the electrical
network can be separated to obtain two networks fed at
one end. The method of calculating, for example, II is as
follows:

 II Σ l = I3 l1 + I2 (l2 + l3) + I1 (l4 + l3 + l2) . (4)

Using Eqs.(2) and (3), the results of the
calculations of the total current, currents of feeding
points, and the length of the wire are I1 + I2 + I3 = 31 A,
II = 15.4 A and III = 15.6 A, and Σ l = 135 m,
respectively. From II and III, it can be determined that
the voltage drops accotding to Ohm’s Law. The
voltages of the loads are U1 = 214.6 V, U2 = 203.8 V,
and U3 = 214.4 V.

2.2. A Method of Calculating the Voltage Drop
Based on the Node-Potentials

The previously presented method can be easily used to
calculate networks consisting of topology fed at one end
as well as at both ends. However, our electrical grids are
obviously not that simple, see Fig.2 or they can even be
more complex. Furthermore, in this kind of method
implemented using OMNeT++ the presence of a small
solar plant on a rooftop is hard to handle.

Another method of calculating the voltage drops
and currents was identified. Using the node-potential
method, any parameter of an electrical network can be
calculated. To apply such a method, the feeding points
with voltage sources, the loads with current sources, and
the wires with resistances were modelled (Fig.3).

With this method the feeding points are modelled
with voltage sources exhibiting constant voltages, which
results in a crucial consequence for more complex
networks. If another feeding point is added to the
system, some part of it or even the whole network will
be parallel to the new feeding point, as it is directly
connected to the ground. That would make the
investigation of the system and the handling of complex
grids easier. Of course this is only a theoretical method
with many limitations and conditions, but it can be a
good basis on which to start our investigation, plus the
method can be developed. Later new elements, both
linear and non-linear, can be added to the network.
Although the focus of this paper was linear time-
invariant systems.

The electrical circuit can be transformed into a
directed graph, where the direction of the edges is the
same as the direction of the current in calculations. In
this case our network possesses six potentials. Two
potentials of the feeding points, three potentials of the
current sources and the ground potential (Fig. 4).

The index of the nodes is identical to the index of
potentials. If we apply Kirchhoff’s First Law to all
nodes, six equations and in ordinary cases five unknown
variable potentials from 1 to 5 (the ground potential is 0

Figure 2. A more complex electrical network than
shown in Fig.1.

Figure 3. The network fed at both ends modelled with
electrical elements.

Figure 4. Directed graph of the modelled circuit.

SIMULATION OF ELECTRICAL GRID WITH OMNET++

44(2) pp. 85–91 (2016) DOI: 10.1515/hjic-2016-0010

87

V) will results so the linear equation system can be
solved. They can be arranged them into a vector Φ.

 Φ =

𝛷!
𝛷!
⋮
𝛷!

 (5)

From the potential, voltages can be calculated
from Eq.(6).

 U = Φi – Φi+1 (6)

Obviously the voltages can be arranged into a
vector U, similarly to vector Φ. From the resistances, a
resistance matrix R or conductance matrix G can be can
created. For the node-potential method, a special matrix
was used. Once again, the central concept is Kirchhoff’s
First Law. The first row of the matrix contains the
conductances associated with the first node. The
direction of the voltage (likewise the direction of the
current) will determine their sign.

 𝐆 =

−𝐺! 𝐺! 0 … 0
𝐺! −(𝐺! + 𝐺!) 𝐺! … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝐺!

 (7)

The potential vector can be reduced by omitting Φ0
thus yielding a reduced potential vector Φr. Of course
the current matrix labeled I can be used.

 𝐈 =

𝐼!
𝐼!
⋮
𝐼!!

 (8)

Ohm’s Law helps to calculate the unknown
values of the network based on Eq.(9).

 I = G × Φ r (9)

In the method of node-potentials, the potentials are
considered to be unknown, while the other parameters
are given. As a result, matrix Φr contains all parameters
that should be calculated. In the present situation the
two potentials of the feeding points are considered to be
known, 230 V and the ground potential is 0 V. Each
current value of the loads is known, but the currents of
the feeding points are unknown. Therefore, the matrices
should be modified so that all unknown variables will
be present in one matrix, X, and all known parameters
in another one, C, a constant matrix. The G matrix must
be used as well and denoted by Gm.

 𝑿 =

𝛷!
𝛷!
𝛷!
𝐼!
𝐼!!

 (10)

 𝑪 =

𝐺!𝛷!
−𝐺!𝛷! + 𝐼!

𝐼!
−𝐺!𝛷! + 𝐼!

𝐺!𝛷!

 (11)

 𝑮𝒎 =

𝐺! 0 0 1 0
−(𝐺! + 𝐺!) 𝐺! 0 0 0

𝐺! −(𝐺! + 𝐺!) 𝐺! 0 0
0 𝐺! −(𝐺! + 𝐺!) 0 0
0 0 𝐺! 0 1

 (12)

By arranging the three matrices into one equation,
we get

 C = Gm × X (13)

Eq.(13) was solved using Gauss-Jordan
elimination method and the same results presented
earlier for I1 + I2 + I3, II and III, Σ l, U1, U2, and U3 were
obtained. To make use of the Gauss-Jordan elimination
method, the modified conductance matrix with the
constant matrix had to be extended. With the help of a
newly created matrix Ge, the elimination process
yielded the values for vector X directly.

The extended conductance matrix (Ge) is as
follows:

𝐺! 0 0 1 0 𝐺!𝛷!
− 𝐺! + 𝐺! 𝐺! 0 0 0 −𝐺!𝛷! + 𝐼!

𝐺! − 𝐺! + 𝐺! 𝐺! 0 0 𝐼!
0 𝐺! − 𝐺! + 𝐺! 0 0 −𝐺!𝛷! + 𝐼!
0 0 𝐺! 0 1 𝐺!𝛷!

 (14)

2.3. Comparison of the Two Methods

Although both calculations yield exactly the same
results, in our opinion the second one is preferred. The
structure of the matrices indicates that it can be applied
to even more complex grids, e.g. in radial topology.
Another advantage of the node-potential-based method
is that the direction of the load currents is irrelevant. For
example, even a small solar plant on a rooftop can be
simulated.

3. Simulation with OMNeT++

The OMNeT++ 4.x Integrated Development
Environment is based on the Eclipse platform, which
has been extended with new editors, views, wizards, and
additional functionality. Although OMNeT++ is not a
network simulator in itself, it has gained widespread
recognition as a network simulation platform in the
scientific community as well as in industrial settings,
and has built up a large community of users.

The most common area of application of
OMNeT++ is the simulation of telecommunication
networks. The simulator itself is message-based, so our
electrical distribution system had to “communicate” via

 SŐRÉS AND FODOR

Hungarian Journal of Industry and Chemistry

88

messages, which is rather unusual in terms of physics or
electrical engineering. OMNeT++ provides component
architecture for models. Components (modules) are
programmed in C++, then assembled into larger
components and models using a high-level language
(NED).

OMNeT++ simulation comprises three different
files, which are (i) Source code (CPP), (ii) Network file
(NED), and (iii) Configuration file (INI). In OMNeT++
modules are defined, which can communicate via
messages. Both modules and messages are special C++
objects. In the source code, we can specialize our
modules, and define their tasks precisely. The network
file contains the actual topology of the network system,
and the position and names of the used modules as well
as their connections. With the aid of the configuration
file, other network settings can be specified, though
none were used in our simulations.

All modules have four functions, which can be
defined by users. In our simulation, only two of them
were used; the initialize() and handleMessage()
functions. In the initialize function the initial parameters
of the modules can be set, in the handleMessage()
function the action in case of an incoming message can
be declared. With these functions, completely different
modules can be developed.

The main idea was to show the current or energy
flow via messages in our system. It worked quite well in
the case of a system fed at one end. Although because
of the message and handling of messages inclinations of
OMNeT++ in systems fed at both ends, the energy flow
was not so easy to show.

3.1. Implementing the Distribution System in
OMNeT++

The distribution system shown in Fig.1 had to be
implemented. It is obvious that we have at least three
different types of modules exist in this network as
follows: (i) feeding point, (ii) load, and (iii) connection
between them. The implemented electrical distribution
network is shown in Fig.5.

By analysing the topology more closely, we could
identify another module could be identified, connecting
two wires and a load, the node. Nodes are important
parts not only of grids with their topology, but also of
radial grids.

The previously used module is not shown in Fig.1
but there should be a ground point to make our
simulation easier and clearer. This ground point module

is the most important as it carries out the main
calculations and connects the loads to the producers.
Table 2 shows the modules and the names used in our
source code and files.

3.2. Modules and Messages

The class of messages possesses several variables,
including a void-type pointer called contextPtr, which is
a user-defined pointer. In our simulation, this pointer
was used to send data to modules. It points to a class,
which contains the used variables such as voltage,
current, effective power, reactive power, resistance, etc.
Of course, some of the variables are used in only one
module (e.g. the resistance in wire module), and some
in all of the modules (e.g. voltage, current). In the
constructor, all variables were set to zero.

The simulation consists of cycles. Each cycle
begins with the producers sending messages, and ends
when they receive their messages from ground modules.
In simulations, the Event Logging (EV) function can be
used to log the parameters or result(s) of the
calculations. There are two feeding points in all
simulations, though loads are user-defined (N) in pre-
processor instruction where both two- and three-point-
loaded networks can also be considered.

The first module is called Producer. It exhibits a
constant voltage value set in pre-processor instruction
#define UT 230. In advanced simulations, it should be a
user-defined value, and it is not necessarily constant. It
could be a function as well, but in this simple
simulation, it will remain constant throughout the whole
process. At the start of the simulation, only the voltage
of the producer is known, but the current and power are
unknown parameters until the end of the turn. Thus,
these values are set to -1 at the beginning. All three
parameters are set in the initialize() function. The next
stage of the module is handling an incoming message.
The incoming message is actually a pointer to the
message. At first, in all modules, the values of the
pointer were stored as local variables were identified.
This is very useful as during simulation some memory
allocation problems. The message contains information
only about the currents (the voltage remains constant).
The current of the producers is set to the value from the
message. The power is calculated from the current and
voltage values. The module is connected to the ground
and one-wire modules. The producer module logs the
voltage, current, and power.

Figure 5. The schematic of the network using
OMNET++.

Table 2. Summary of modules used in OMNET++
simulations.

Parts of the system Module names
Feeding point Producer
Load Consumer
Connections Wire
Node Node
Ground point Ground

SIMULATION OF ELECTRICAL GRID WITH OMNET++

44(2) pp. 85–91 (2016) DOI: 10.1515/hjic-2016-0010

89

The second module simulates the load and referred
to as consumer. It exhibits a constant current and power
factor. Both users are defined. Current values are the
same as discussed above in Section 2. From these and
the voltage from the incoming message, the module
calculates the power and reactive power. This block
sends the current value to the ground block for further
calculations. Consumer modules are connected to one
node and the ground module, which logs voltage,
current, power, reactive power, and the power factor.

In real networks, the connecting wires exhibit
resistances as well, causing a voltage drop in the
system. In our example, this is desirable, almost 1 Ohm,
but our calculations are simple. In the initialize()
function, the lengths from Table 1 and R1 to R4
resistances from Section 2 are set. The wire module
calculates the voltage drop simply with Ohm’s law.
Obviously, it shows a useful value from the second
cycle, as the current is negative until that turn. Wires are
connected to one producer and one node or between
two nodes. Wires log the voltage drop, current,
resistance and length.

The Node module is especially useful in radial
topology, but also implemented here as well. The aim of
this module is to distribute current by applying
Kirchhoff’s First Law to our network. It works only
after the first ‘initial stage’. The module is connected to
two wires and one consumer module. It shows the value
of currents.

The ground module conducts the main calculations
of the simulation. It determines the exact current values
for each producer module. The calculations are based
upon Eqs.(2) and (3). The module takes into
consideration the length of each wire and the currents
from the consumer modules and distributes them. The
ground module is connected to all consumer and
producer modules in addition to logging the sum of
currents and the currents for each producer.

3.3. Simulation

As stated before, this OMNeT++ simulation can be
divided into three different stages. At first, the
OMNeT++ simulation engines build the network with
the user-defined values for each module. This is referred
to as stage 0, and there is no logging occurs here. In
other simulations, logging is possible here as well, but
in this case this opportunity is omitted.

The next stage, or the first cycle, starts when the
producers send their first message, and ends when they
get their message from the ground module. This part is
not necessary in other kinds of simulations. In this part
all modules have their own user-defined values, but they
do not have any effect on the other modules, e.g.
producers exhibit their own voltages, but their current
and power are both -1 or the voltage and current of
wires are both unknown (-1), as shown in Figs.6 and 7.

At this stage, the voltage of the consumers is 230
V, and its powers are calculated with this voltage,
shown in Fig.8. The first cycle of the simulation is
examined in Fig.9. Currents are “delivered” between the

modules throughout the whole network system.
However, at the end of the initializing stage, the ground
module calculates the sum of currents of the consumers
and the currents of each feeding point (Fig.10). Thus,
the producers receive their currents, and the correct
calculated values, e.g. voltages, powers, etc. will be
obtained without any unknown parameters (Fig.11).

Figure 8. Consumer logging during the first cycle.

Figure 9. The first cycle of the OMNeT++ simulation.

Figure 10. Current distribution.

Figure 6. Wire logging during the first cycle.

Figure 7. Node logging during the first cycle.

Figure 11. Voltage, current and power of the first
feeding point.

Figure 12. Logging of wire, node, and consumer
modules in the second cycle.

 SŐRÉS AND FODOR

Hungarian Journal of Industry and Chemistry

90

The previously shown modules can be examined and it
can be concluded that our voltage and current values are
known (Fig.12). It could be interesting to see how our
nodes work after the first stage, when applying
Kirchhoff’s First Law (Fig.13). We have to mention
that in the case of node modules Iout means the current
of the consumer subtracted from Iin.

3.4. Validation of the Simulation Results
It has been seen that the results of the OMNeT++
simulation and the results of the classical method of
calculating are the same. As an example, the results of
the voltage drops are shown in Fig.14.

3.5. Topology
All electric systems have unique topologies the position
of the components or element(s) and the wires that
connect them. By considering a network fed at both
ends with only one node, it conatins one node module
and two connecting modules between the feeding points
and the node. In the case of a similar network with two
loads there are two nodes and three connecting
channels, as in the previous case. From this point of
view the simulated network can be checked, this one
contaists of three loads and four channels. If a gred fed
at both ends with N loads (where N is a positive integer)
exists then the number of wire modules, w (also a
positive integer) can be calculated as follows:

 w = N + 1 (15)

Eq.(15) is only true for this type of topology. For
example for a topology in which there is only one
feeding point, the number of loads obviously is equal to
the number of wires (and nodes). A proven formula can
be applied to more complex topology variations. The
advantage of these formulae are that they automate the
creation of NED files either from another piece of
software or implemented from OMNeT++.

4. Summary of Simulation Experiences

It can be concluded that our DES program works
properly as shown in Section 3.4. Obviously there are
some advantages and disadvantages of this method.

4.1. Advantages
First of all it is an open-source platform, thus it can be
modified and developed easily. The use of other
auxiliary pieces of software can be added, too. As the
program includes a graphical viewer, individual

simulation results can be followed. The message
direction is the same as the current direction, thus a
negative current means failure in the program, or
negative values can be defined as unknown parameters.
Our system can be observed for values of interest. With
this definition the model later may be used in transient
analysis to consider the reinitialization cycles each time.

4.2. Disadvantages

On the other hand, as an open-source platform it is still
in the development phase. Sometimes the program gave
us crash reports during the development phase. The
message direction is the same as the current direction;
however, according to the message sending system of
OMNeT++ extra message(s) can be obtained.

Another issue is the network description file
(NED). Each time our network system is modified, the
whole code needs to be modified, including the
connection definition part, as well as the gate
declaration. Topology statements are omitted. Although
the time of the simulation is user-defined, all the steps
are to be followed the simulation may be rather lengthy.
In this case, the simulation of another type of electrical
distribution system was attempted, e.g. for a system fed
at only one end, a totally new program has to be written.
This program can be solved only if a formula is created
for each different type of topology. Real electrical grids
may be more complex than the situations our DES can
handle at the present.

5. Conclusion

The models of the electrical components have been
developed in this paper based on engineering principles
that are able to describe the behaviour of an electrical
grid. It seems that the OMNeT++ discrete event
simulator is suitable for the simulation of electrical
grids. At first we need to fix some problems mentioned
in Section 4.2.

A future task would be to implement new
electrical network components, e.g. photovoltaic power
plants, wind turbines, and different loads, etc. to the
simulation environment and subsequently the
OMNeT++ would be suitable to simulate smart grid
networks.

Figure 14. Voltage drop of the loads.

Figure 13. Applying Kirchhoff’s First Law to the
Node modules.

SIMULATION OF ELECTRICAL GRID WITH OMNET++

44(2) pp. 85–91 (2016) DOI: 10.1515/hjic-2016-0010

91

SYMBOLS

DES Discrete Event Simulatoion
EV Event Logger
I1, I2, I3 currents of the loads
II, III currents of the feeding points
l1, l2, l3, l4 length of the wires connecting loads and

feeding points
N number of loads
w number of wires
q diameter of the wire
U1, U2, U3 voltages of the loads
UT voltage of the feeding point
ρ resistivity
NED Network Description File
INI Initialization file
Φ potential
Φ potential vector
Φr reduced potential vector
R resistance matrix
G conductance matrix
Gm modified conductance matrix
Ge extended conductance matrix
I current vector
X vector of variables
C vector of constants

Acknowledgement

We acknowledge the financial support of this work by
the Hungarian State under the VKSZ_12-1-2013-0088
project.

REFERENCES

[1] OMNeT++ Discrete Event Simulator omnetpp.org
[2] Mets, K.; Verschueren, T.; Develder, C.;

Vandoorn, T.L.; Vandevelde, L.: Integrated
simulation of power and communication networks
for smart grid applications, Proc. IEEE 16th Int.
Workshop, Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD),
pp. 61-65, 2011

[3] Niemi, R.; Lund, P.D.: Decentralized electricity
system sizing and placement in distribution
networks, Applied Energy 2010 87(6), 1865-1869
DOI: 10.1016/j.apenergy.2009.11.002

[4] Gonen, T.: Electrical power transmission system
engineering: analysis and design (CRC Press, Boca
Raton, FL USA) 2011

[5] Jamniczky, Á.: Electric engines, (University of
Veszprém Press, Veszprém, Hungary) pp. 31–49,
1994 (in Hungarian)

