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Hydrodynamics of fluidized bed at acetylsalicylic acid crystallization from acetic acid solution is studied and a modified

form of Re number is proposed.
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Introduction

Crystallization in fluidized bed is a variety of
acetylsalicylic acid (AAS) continuous crystallization.
Only few data refer to fluidized bed crystallization.
GLASBY [1] reported about crystallization {(of AAS)
from 23-40% alcoholic solutions at 29-49 °C with the
growing of crystals from mean sizes of 500 pm to that of
1250 pm. He determined the mass transfer coefficients
from crystallization rate and obtained an activation
energy of crystallization of 91 kJ mol”, which suggested
the incorporation of molecule to the crystal network as
the rate-limiting step.

Crystallization from solutions of 96% ethanol was
studied by F. MATZ (F. F. Bayer) [2] who gave diagrams
for the determination of porosity vs. flow rate in the
field of Re < 2. The precision of the diagrams, 1-10% is
much smaller than that corresponding to the relation
€ =k (Fr/Re)’.

The present paper is an attempt to establish an
analytical method for determining the real porosity of
the fluidized bed, on the basis of mentioned criterial
relation, amending Re number for the case of
acetylsalicylic acid crystallization from saturated acetic
solutions, at 25 °C and for crystal dimensions of 100-
1600 um. These experiments are comnected to the
elaboration of a continuous crysiallization procedure[3].

Experimental

Acetylsalicylic acid crystals produced by SINTEZA -

Oradea are divided into dimensional classes by sieving
on a set of standard sieves of: 1600, 1250, 1000, 800,
630, 500, 400, 315, 200 and 160 upm. Saturated
solutions of acetylsalicylic acid in pure acetic acid
(analytical grade, Reactivul) have been used as
fluidisation media.

The experimental set-up consists of a fluidisation
column, a 10 dm’ reservoir for the saturated solution
and a collecting drum for the solution. The glass column
has an i.d. of 33 mm and is provided with a triple bed of
ceramic filling (30 mm height), 1-2 mm size sand (20
mm height) and 0.5-1 mm sand (10 mm height) at the
bottom, in order to realise a uniform flow rate across the
column section.

The mass of known size crystals is placed in the
column and the latter is filled with solution. Under the
action of compressed air, the solution flows through the
column at a controlled flow rate so that the imitial crystal
bed height, 4, increases to the value 2. When steady-
state conditions are attained the solution volume and
elapsed time are measured.

The real porosity is & = 1 - 40(1-g)/h, the Re,
number results from the fictional flow rate and the Re,
number from the criterial equation:

315
Re, = {_ 9:+(81+ Ar-036-*7%) }!&36

Correlation and the statistical analyses have been
made with the program Table curves.



Table I Porosity of the layer as a function of mean
microscopic size (width)

Sieve holes Mean size  Porosity
dimensions, um (@), mm gg)
630 0.67 0.65
500 0.50 0.60
400 042 0.55
315 0.31 0.50
200 0.20 0.40
100 0.14 0.30
Results and Discussions

Continuous crystallization studies have been made in a
cascade of two perfectly stirred tank reactors, in semi-
continuous system with discontinuous evacuation in
perfectly stirred tank reactor and in fluidised bed.

Real porosity of acetylsalicylic acid crystal layer
has been determined by means of direct measurements
of bulk volume and of saturated solution volume needed
for complete immersion of crystals. The results are
givenin Table 1.

For other dimensions, the following correlation
applies:

£o=0.93 - 0.238 7 \/d ; n=6; r=0.999; s=0.09; F=961

Crystals of a given size obtained by sieving on a
standard set of sieves, are placed in a glass column
measuring the initial height after immersion in a
saturated acetic solution. In order to obtain the real
porosity (&) of the bed, the bed is fluidized by recycled
saturated solution,

Theoretical porosity is computed from the criterial
relation Ar=Ga-Ap/p:

&= {(18-Re +36 -Rez)/Ar}‘l21

The mean size taken into account is the microscopic
mean width (Table I} as the crystals are far from being
sphere-shaped and because d.g, correlates much better
with microscopic mean width (r = 0.954, 5 = 0.080, F =
37) than with mean granulometric size (r =04, s = 0.23,
F = 07) for a set of 30 samples obtained by
crystailization,

Determination of the real porosity by the use of the
equivalent diameter (d,.,,) computed from the real mean
volume defermined by microscopic individual
measurements delivered weaker results.

Table 2 shows some of the resulting data. The Re,
number calculated from real porosity values is far from
those determined by means of fictional flow rate (Re,).
The ratios of the two Re values tend to a constant for a
given size of crystals. This ratio (B) increases as crystal
size is smaller and the two Re numbers get close to each
other only for the size of 0.5 mm, that is the one
accepied by US Pharmacopeia 1993,

Large deviations can be observed at low flow rates
and at low porosity compact beds. It is the case of

Table 2 Correlation of Re number at fluidization

Crystal
characteristics & Re,, Re, R
0.530 0.065 0.00784 8.29
d=0.14 0.680 0.140 0.0257 5.45
go=0.30 0.720 0.158 0.0337 4.69
Ar=29 0.750 0.200 0.0409 4.89
0.820 0.280 0.0625 4.48
0.790 0.480 0.153 3.18
d=0.20 0.760 0410 0.127 3.21
go= 040 0.740  0.380 0.112 3.38
Ar=8.5 0.630 0.240 0.0525 4.59
0.530 0.170 0.0230 7.39
0.500 0.120 0.0175 6.84
0.610 0.450 0.168 2.67
0.616 0.570 0.176 3.22
d=0.31 0.630 0.590 0.196 3.00
gp=0.50 0.634  0.630 0.202 3.11
Ar=32 0.661 0.870 0.247 3.52
0.670  0.950 0.263 3.61
0.780  1.130 0.539 2.10
0.800 1.320 0.607 2.17
0.820  1.500 0.683 2.195
0.880 2.560 1.980 1.29
d=042 0.850 2.100 1.690 1.245
g=0.53 0.830 1.900 1.510 1.26
Ar=68 0.760  1.500 1.003 1.49
0.730 1200 0.831 1.44
0.670  1.100 0.555 1.98
0.680 0.970 1.110 0.874
0.760 1910 2.010 0.950
d=0.50 0800 2.170 2.340 0.743
gp=0.60 0.830 2450 2.770 1.600
Ar=128 0.850 3.200 3.080 1.030
0.880 3.800 3.610 1.050
0.720 2.800 1.810 1.54
d=0.67 0.760  3.200 2.310 1.38
g=0.65 0.800 4.300 2.920 1.47
Ar=161 0.820  5.000 3.260 1.533
0.860 6.200 4.030 1.54

crystallization start in fluidised bed. On the other hand,
high flow rates are not recommended because of the
mechanical erosion of crystals that leads to both
unwanted increase of “powder” {microcrystalline form)
proportion and rounded forms of erystal clusters, thus
decreasing the commercial acceptance of the final
product. In addition, adsorption of microcrystals on
cluster surface gives them the non-commercial opaque
ook (“aged” crystals).

Better  correlation  beiween  hydrodynamic
conditions and mean size of the crystals that form the
fluidised bed was possible when the Re number was
corrected according to the ratio R = Re,/Re.. (Re,, =R -
Re,) Correlation of the correction ratio with crystal size
has the following form:

Ry =104-49.8 4+ 44.4 4",
n=37,r=0994,5=027, F= 122 '¢))

Ry=169+305-d-43.84",



Table 3 Cotaputing errors (%) for Re.,; values

Crystal R,=1.590 Ry=1.380 Ry =1.368
characteristics Re, Recor £,% Recor £,% Reor £,%
d=0.42 mm 1.980 1.610 -18.6 1.957 -1.1 1.871 -5.5
Ar=68 1.690 1.321 -21.8 1.605 -5.0 1.536 -9.2
go=0.55 1.510 1.194 -20.9 1.453 -3.8 1.388 -8.0
1.003 0.943 -5.9 1.147 14.0 1.096 9.3
0.831 0.755 -0.3 0.917 104 0.877 5.5
0.555 0.692 24.0 - - - -
n=26,r=099%4,5s=0.2,F=119 ) SYMBOLS
Ry®=-0.78 + 0.468 42, Ar Archimedes number, Ar = Ga-Ap/p
d microscopic mean size (width)
n=21,r=0997,5=0.12,F=607 (3 4.  column diameter
deor corrected mean size

where d is given in mm and Re<2.

Correlation of all obtained data leads to Eq.(1). This
gives errors up to 97% at flow rates close to the critical
fluidisation flow rate and/or when g < 2 g.

Increase of precision can be attained by eliminating
results obtained at low flow rates. Thus obtained
correlation Eq.(2) limits errors at less than 25%. Since
this correlation is altered by the presence of large size
crystals (Ar < 150; d > 0.5 mm) and because these sizes
are not commercial and require high energy
consumption for ° fluidisation, for a technical
crystallization they can be discarded. Under these
circumstances one can obtain correlation Eq.(3) when
errors are systematically in the range of 10%. Table 3
gives the errors that affect the determination of R ratios
for a given crystal size.

In conclusion, crystal mean dimensions and real
porosity and height of the fluidised bed can be
calculated on a theoretical basis if the Re number is
corrected as shown Re,o, = doowp / 1y = dwp / Rny=Rey,
/R, where d is microscopic mean width.

Conclusion

For the particular case of a fluidised bed of
acetylsalicylic acid, crystals in mother lquor
hydrodynamic equations are applied by the use of
corrected mean dimensions. The correction factor is
predictable and depend on mean width of crystals, which
is easy to determine.
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decn equivalent diameter of crystal

F Fisher test

Fr Froude number, Fr = w* Ig - deq
Ga Galilei number, Ga = Re’ /Fr

h crystal bed height on flow

hy initial crystal bed height

n number of data

r correlation coefficient

R correction number, R = Re,, /Re,
R, determinated correction number

Re Reynolds number, Re = wdg/

Re.. corrected Re, Re,, = Re, /R;
w fictional rate of flow

Re; real Re, calculated

Re,, fictional Re, calculated from w
s standard deviation

Ap pressure fall

Greek Letters

£ porosity

€ initial measured porosity

& real porosity, calculated from &
€ theoretical porosity, calculated
n dynamic viscosity of liquor

o) density of liquor
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